Definitions
Standard normal distribution
The simplest case of a normal distribution is known as the ''standard normal distribution'' or ''unit normal distribution''. This is a special case when and , and it is described by this probability density function (or density): : The variable has a mean of 0 and a variance and standard deviation of 1. The density has its peak at and inflection points at and . Although the density above is most commonly known as the ''standard normal,'' a few authors have used that term to describe other versions of the normal distribution.General normal distribution
Every normal distribution is a version of the standard normal distribution, whose domain has been stretched by a factor (the standard deviation) and then translated by (the mean value): : The probability density must be scaled by so that the integral is still 1. If is a standard normal deviate, then will have a normal distribution with expected value and standard deviation . This is equivalent to saying that the "standard" normal distribution can be scaled/stretched by a factor of and shifted by to yield a different normal distribution, called . Conversely, if is a normal deviate with parameters and , then this distribution can be re-scaled and shifted via the formula to convert it to the "standard" normal distribution. This variate is also called the standardized form of .Notation
The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit variance) is often denoted with the Greek letter (Alternative parameterizations
Some authors advocate using theCumulative distribution functions
The cumulative distribution function (CDF) of the standard normal distribution, usually denoted with the capital Greek letter (__Stein_operator_and_class_
Within_ Stein's_method_the_Stein_operator_and_class_of_a_random_variable____Maximum_entropy_
Of_all_probability_distributions_over_the_reals_with_a_specified_mean___Other_properties_
__Related_distributions_
__Central_limit_theorem_
__Operations_and_functions_of_normal_variables_
__Operations_on_a_single_normal_variable_
If__=_Operations_on_two_independent_normal_variables_
= *_If__=_Operations_on_two_independent_standard_normal_variables_
= If___Operations_on_multiple_independent_normal_variables_
*_Any_linear_combination_of_independent_normal_deviates_is_a_normal_deviate. *_If___Operations_on_multiple_correlated_normal_variables_
*_A_quadratic_form_of_a_normal_vector,_i.e._a_quadratic_function___Operations_on_the_density_function_
The_split_normal_distribution_is_most_directly_defined_in_terms_of_joining_scaled_sections_of_the_density_functions_of_different_normal_distributions_and_rescaling_the_density_to_integrate_to_one._The_truncated_normal_distribution_results_from_rescaling_a_section_of_a_single_density_function.__Infinite_divisibility_and_Cramér's_theorem_
For_any_positive_integer___Bernstein's_theorem_
Bernstein's_theorem_states_that_if___Extensions_
The_notion_of_normal_distribution,_being_one_of_the_most_important_distributions_in_probability_theory,_has_been_extended_far_beyond_the_standard_framework_of_the_univariate_(that_is_one-dimensional)_case_(Case_1)._All_these_extensions_are_also_called_''normal''_or_''Gaussian''_laws,_so_a_certain_ambiguity_in_names_exists. *_The___Statistical_inference_
__Estimation_of_parameters_
It_is_often_the_case_that_we_do_not_know_the_parameters_of_the_normal_distribution,_but_instead_want_to_Estimation_theory, estimate_them._That_is,_having_a_sample___Sample_mean_
Estimator___Sample_variance_
The_estimator___Confidence_intervals_
By_Cochran's_theorem,_for_normal_distributions_the_sample_mean___Normality_tests_
Normality_tests_assess_the_likelihood_that_the_given_data_set__comes_from_a_normal_distribution._Typically_the_null_hypothesis_''H''0_is_that_the_observations_are_distributed_normally_with_unspecified_mean_''μ''_and_variance_''σ''2,_versus_the_alternative_''Ha''_that_the_distribution_is_arbitrary._Many_tests_(over_40)_have_been_devised_for_this_problem._The_more_prominent_of_them_are_outlined_below: Diagnostic_plots_are_more_intuitively_appealing_but_subjective_at_the_same_time,_as_they_rely_on_informal_human_judgement_to_accept_or_reject_the_null_hypothesis. *___Bayesian_analysis_of_the_normal_distribution_
Bayesian_analysis_of_normally_distributed_data_is_complicated_by_the_many_different_possibilities_that_may_be_considered: *_Either_the_mean,_or_the_variance,_or_neither,_may_be_considered_a_fixed_quantity. *_When_the_variance_is_unknown,_analysis_may_be_done_directly_in_terms_of_the_variance,_or_in_terms_of_the___Sum_of_two_quadratics_
_=_Scalar_form_
= The_following_auxiliary_formula_is_useful_for_simplifying_the_posterior_distribution, posterior_update_equations,_which_otherwise_become_fairly_tedious. :_=_Vector_form_
= A_similar_formula_can_be_written_for_the_sum_of_two_vector_quadratics:_If_x,_y,_z_are_vectors_of_length_''k'',_and_A_and_B_are_symmetric_matrix, symmetric,_invertible_matrices_of_size___Sum_of_differences_from_the_mean_
Another_useful_formula_is_as_follows:__With_known_variance_
For_a_set_of_i.i.d._normally_distributed_data_points_X_of_size_''n''_where_each_individual_point_''x''_follows___With_known_mean_
For_a_set_of_i.i.d._normally_distributed_data_points_X_of_size_''n''_where_each_individual_point_''x''_follows___With_unknown_mean_and_unknown_variance_
For_a_set_of_i.i.d._normally_distributed_data_points_X_of_size_''n''_where_each_individual_point_''x''_follows__Occurrence_and_applications
The_occurrence_of_normal_distribution_in_practical_problems_can_be_loosely_classified_into_four_categories: #_Exactly_normal_distributions; #_Approximately_normal_laws,_for_example_when_such_approximation_is_justified_by_the___Exact_normality_
__Approximate_normality_
''Approximately''_normal_distributions_occur_in_many_situations,_as_explained_by_the___Assumed_normality_
__Methodological_problems_and_peer_review_
John_Ioannidis_argues_that_using_normally_distributed_standard_deviations_as_standards_for_validating_research_findings_leave_falsifiability, falsifiable_predictions_about_phenomena_that_are_not_normally_distributed_untested._This_includes,_for_example,_phenomena_that_only_appear_when_all_necessary_conditions_are_present_and_one_cannot_be_a_substitute_for_another_in_an_addition-like_way_and_phenomena_that_are_not_randomly_distributed._Ioannidis_argues_that_standard_deviation-centered_validation_gives_a_false_appearance_of_validity_to_hypotheses_and_theories_where_some_but_not_all_falsifiable_predictions_are_normally_distributed_since_the_portion_of_falsifiable_predictions_that_there_is_evidence_against_may_and_in_some_cases_are_in_the_non-normally_distributed_parts_of_the_range_of_falsifiable_predictions,_as_well_as_baselessly_dismissing_hypotheses_for_which_none_of_the_falsifiable_predictions_are_normally_distributed_as_if_were_they_unfalsifiable_when_in_fact_they_do_make_falsifiable_predictions._It_is_argued_by_Ioannidis_that_many_cases_of_mutually_exclusive_theories_being_accepted_as_"validated"_by_research_journals_are_caused_by_failure_of_the_journals_to_take_in_empirical_falsifications_of_non-normally_distributed_predictions,_and_not_because_mutually_exclusive_theories_are_true,_which_they_cannot_be,_although_two_mutually_exclusive_theories_can_both_be_wrong_and_a_third_one_correct.__Computational_methods_
__Generating_values_from_normal_distribution_
__Numerical_approximations_for_the_normal_CDF_and_normal_quantile_function_
The_standard_normal_cumulative_distribution_function, CDF_is_widely_used_in_scientific_and_statistical_computing. The_values_Φ(''x'')_may_be_approximated_very_accurately_by_a_variety_of_methods,_such_as_numerical_integration,_Taylor_series,_asymptotic_series_and_Gauss's_continued_fraction#Of_Kummer's_confluent_hypergeometric_function, continued_fractions._Different_approximations_are_used_depending_on_the_desired_level_of_accuracy. *__give_the_approximation_for_Φ(''x'')_for_''x_>_0''_with_the_absolute_error__(algorith__History_
__Development_
Some_authors_attribute_the_credit_for_the_discovery_of_the_normal_distribution_to_Abraham_de_Moivre, de_Moivre,_who_in_1738_published_in_the_second_edition_of_his_"''The_Doctrine_of_Chances''"_the_study_of_the_coefficients_in_the_binomial_expansion_of_._De_Moivre_proved_that_the_middle_term_in_this_expansion_has_the_approximate_magnitude_of___Naming_
Today,_the_concept_is_usually_known_in_English_as_the_normal_distribution_or_Gaussian_distribution.__Other_less_common_names_include_Gauss_distribution,_Laplace-Gauss_distribution,_the_law_of_error,_the_law_of_facility_of_errors,_Laplace's_second_law,_Gaussian_law. Gauss_himself_apparently_coined_the_term_with_reference_to_the_"normal_equations"_involved_in_its_applications,_with_normal_having_its_technical_meaning_of_orthogonal_rather_than_"usual"._However,_by_the_end_of_the_19th_century_some_authors_had_started_using_the_name_''normal_distribution'',_where_the_word_"normal"_was_used_as_an_adjective –_the_term_now_being_seen_as_a_reflection_of_the_fact_that_this_distribution_was_seen_as_typical,_common –_and_thus_"normal"._Charles_Sanders_Peirce, Peirce_(one_of_those_authors)_once_defined_"normal"_thus:_"...the_'normal'_is_not_the_average_(or_any_other_kind_of_mean)_of_what_actually_occurs,_but_of_what_''would'',_in_the_long_run,_occur_under_certain_circumstances."_Around_the_turn_of_the_20th_century_Karl_Pearson, Pearson_popularized_the_term_''normal''_as_a_designation_for_this_distribution. Also,_it_was_Pearson_who_first_wrote_the_distribution_in_terms_of_the_standard_deviation_''σ''_as_in_modern_notation._Soon_after_this,_in_year_1915,_Ronald_Fisher, Fisher_added_the_location_parameter_to_the_formula_for_normal_distribution,_expressing_it_in_the_way_it_is_written_nowadays:__See_also_
*_Bates_distribution_–_similar_to_the_Irwin–Hall_distribution,_but_rescaled_back_into_the_0_to_1_range *_Behrens–Fisher_problem_–_the_long-standing_problem_of_testing_whether_two_normal_samples_with_different_variances_have_same_means; *_Bhattacharyya_distance_–_method_used_to_separate_mixtures_of_normal_distributions *_Erdős–Kac_theorem_–_on_the_occurrence_of_the_normal_distribution_in_number_theory *_Full_width_at_half_maximum *_Gaussian_blur_–_convolution,_which_uses_the_normal_distribution_as_a_kernel *_Modified_half-normal_distribution__Notes_
__References_
__Citations_
__Sources_
*_ *__In_particular,_the_entries_fo__External_links_
*___Fourier_transform_and_characteristic_function_
The____Moment_and_cumulant_generating_functions_
The___Stein_operator_and_class_
Within____Zero-variance_limit_
In_the_ limit_(mathematics), limit_when___Maximum_entropy_
Of_all_probability_distributions_over_the_reals_with_a_specified_mean___Other_properties_
__Related_distributions_
__Central_limit_theorem_
__Operations_and_functions_of_normal_variables_
__Operations_on_a_single_normal_variable_
If__=_Operations_on_two_independent_normal_variables_
= *_If__=_Operations_on_two_independent_standard_normal_variables_
= If___Operations_on_multiple_independent_normal_variables_
*_Any_linear_combination_of_independent_normal_deviates_is_a_normal_deviate. *_If___Operations_on_multiple_correlated_normal_variables_
*_A_quadratic_form_of_a_normal_vector,_i.e._a_quadratic_function___Operations_on_the_density_function_
The_split_normal_distribution_is_most_directly_defined_in_terms_of_joining_scaled_sections_of_the_density_functions_of_different_normal_distributions_and_rescaling_the_density_to_integrate_to_one._The_truncated_normal_distribution_results_from_rescaling_a_section_of_a_single_density_function.__Infinite_divisibility_and_Cramér's_theorem_
For_any_positive_integer___Bernstein's_theorem_
Bernstein's_theorem_states_that_if___Extensions_
The_notion_of_normal_distribution,_being_one_of_the_most_important_distributions_in_probability_theory,_has_been_extended_far_beyond_the_standard_framework_of_the_univariate_(that_is_one-dimensional)_case_(Case_1)._All_these_extensions_are_also_called_''normal''_or_''Gaussian''_laws,_so_a_certain_ambiguity_in_names_exists. *_The___Statistical_inference_
__Estimation_of_parameters_
It_is_often_the_case_that_we_do_not_know_the_parameters_of_the_normal_distribution,_but_instead_want_to_Estimation_theory, estimate_them._That_is,_having_a_sample___Sample_mean_
Estimator___Sample_variance_
The_estimator___Confidence_intervals_
By_Cochran's_theorem,_for_normal_distributions_the_sample_mean___Normality_tests_
Normality_tests_assess_the_likelihood_that_the_given_data_set__comes_from_a_normal_distribution._Typically_the_null_hypothesis_''H''0_is_that_the_observations_are_distributed_normally_with_unspecified_mean_''μ''_and_variance_''σ''2,_versus_the_alternative_''Ha''_that_the_distribution_is_arbitrary._Many_tests_(over_40)_have_been_devised_for_this_problem._The_more_prominent_of_them_are_outlined_below: Diagnostic_plots_are_more_intuitively_appealing_but_subjective_at_the_same_time,_as_they_rely_on_informal_human_judgement_to_accept_or_reject_the_null_hypothesis. *___Bayesian_analysis_of_the_normal_distribution_
Bayesian_analysis_of_normally_distributed_data_is_complicated_by_the_many_different_possibilities_that_may_be_considered: *_Either_the_mean,_or_the_variance,_or_neither,_may_be_considered_a_fixed_quantity. *_When_the_variance_is_unknown,_analysis_may_be_done_directly_in_terms_of_the_variance,_or_in_terms_of_the___Sum_of_two_quadratics_
_=_Scalar_form_
= The_following_auxiliary_formula_is_useful_for_simplifying_the_posterior_distribution, posterior_update_equations,_which_otherwise_become_fairly_tedious. :_=_Vector_form_
= A_similar_formula_can_be_written_for_the_sum_of_two_vector_quadratics:_If_x,_y,_z_are_vectors_of_length_''k'',_and_A_and_B_are_symmetric_matrix, symmetric,_invertible_matrices_of_size___Sum_of_differences_from_the_mean_
Another_useful_formula_is_as_follows:__With_known_variance_
For_a_set_of_i.i.d._normally_distributed_data_points_X_of_size_''n''_where_each_individual_point_''x''_follows___With_known_mean_
For_a_set_of_i.i.d._normally_distributed_data_points_X_of_size_''n''_where_each_individual_point_''x''_follows___With_unknown_mean_and_unknown_variance_
For_a_set_of_i.i.d._normally_distributed_data_points_X_of_size_''n''_where_each_individual_point_''x''_follows__Occurrence_and_applications
The_occurrence_of_normal_distribution_in_practical_problems_can_be_loosely_classified_into_four_categories: #_Exactly_normal_distributions; #_Approximately_normal_laws,_for_example_when_such_approximation_is_justified_by_the___Exact_normality_
__Approximate_normality_
''Approximately''_normal_distributions_occur_in_many_situations,_as_explained_by_the___Assumed_normality_
__Methodological_problems_and_peer_review_
John_Ioannidis_argues_that_using_normally_distributed_standard_deviations_as_standards_for_validating_research_findings_leave_falsifiability, falsifiable_predictions_about_phenomena_that_are_not_normally_distributed_untested._This_includes,_for_example,_phenomena_that_only_appear_when_all_necessary_conditions_are_present_and_one_cannot_be_a_substitute_for_another_in_an_addition-like_way_and_phenomena_that_are_not_randomly_distributed._Ioannidis_argues_that_standard_deviation-centered_validation_gives_a_false_appearance_of_validity_to_hypotheses_and_theories_where_some_but_not_all_falsifiable_predictions_are_normally_distributed_since_the_portion_of_falsifiable_predictions_that_there_is_evidence_against_may_and_in_some_cases_are_in_the_non-normally_distributed_parts_of_the_range_of_falsifiable_predictions,_as_well_as_baselessly_dismissing_hypotheses_for_which_none_of_the_falsifiable_predictions_are_normally_distributed_as_if_were_they_unfalsifiable_when_in_fact_they_do_make_falsifiable_predictions._It_is_argued_by_Ioannidis_that_many_cases_of_mutually_exclusive_theories_being_accepted_as_"validated"_by_research_journals_are_caused_by_failure_of_the_journals_to_take_in_empirical_falsifications_of_non-normally_distributed_predictions,_and_not_because_mutually_exclusive_theories_are_true,_which_they_cannot_be,_although_two_mutually_exclusive_theories_can_both_be_wrong_and_a_third_one_correct.__Computational_methods_
__Generating_values_from_normal_distribution_
__Numerical_approximations_for_the_normal_CDF_and_normal_quantile_function_
The_standard_normal_cumulative_distribution_function, CDF_is_widely_used_in_scientific_and_statistical_computing. The_values_Φ(''x'')_may_be_approximated_very_accurately_by_a_variety_of_methods,_such_as_numerical_integration,_Taylor_series,_asymptotic_series_and_Gauss's_continued_fraction#Of_Kummer's_confluent_hypergeometric_function, continued_fractions._Different_approximations_are_used_depending_on_the_desired_level_of_accuracy. *__give_the_approximation_for_Φ(''x'')_for_''x_>_0''_with_the_absolute_error__(algorith__History_
__Development_
Some_authors_attribute_the_credit_for_the_discovery_of_the_normal_distribution_to_Abraham_de_Moivre, de_Moivre,_who_in_1738_published_in_the_second_edition_of_his_"''The_Doctrine_of_Chances''"_the_study_of_the_coefficients_in_the_binomial_expansion_of_._De_Moivre_proved_that_the_middle_term_in_this_expansion_has_the_approximate_magnitude_of___Naming_
Today,_the_concept_is_usually_known_in_English_as_the_normal_distribution_or_Gaussian_distribution.__Other_less_common_names_include_Gauss_distribution,_Laplace-Gauss_distribution,_the_law_of_error,_the_law_of_facility_of_errors,_Laplace's_second_law,_Gaussian_law. Gauss_himself_apparently_coined_the_term_with_reference_to_the_"normal_equations"_involved_in_its_applications,_with_normal_having_its_technical_meaning_of_orthogonal_rather_than_"usual"._However,_by_the_end_of_the_19th_century_some_authors_had_started_using_the_name_''normal_distribution'',_where_the_word_"normal"_was_used_as_an_adjective –_the_term_now_being_seen_as_a_reflection_of_the_fact_that_this_distribution_was_seen_as_typical,_common –_and_thus_"normal"._Charles_Sanders_Peirce, Peirce_(one_of_those_authors)_once_defined_"normal"_thus:_"...the_'normal'_is_not_the_average_(or_any_other_kind_of_mean)_of_what_actually_occurs,_but_of_what_''would'',_in_the_long_run,_occur_under_certain_circumstances."_Around_the_turn_of_the_20th_century_Karl_Pearson, Pearson_popularized_the_term_''normal''_as_a_designation_for_this_distribution. Also,_it_was_Pearson_who_first_wrote_the_distribution_in_terms_of_the_standard_deviation_''σ''_as_in_modern_notation._Soon_after_this,_in_year_1915,_Ronald_Fisher, Fisher_added_the_location_parameter_to_the_formula_for_normal_distribution,_expressing_it_in_the_way_it_is_written_nowadays:__See_also_
*_Bates_distribution_–_similar_to_the_Irwin–Hall_distribution,_but_rescaled_back_into_the_0_to_1_range *_Behrens–Fisher_problem_–_the_long-standing_problem_of_testing_whether_two_normal_samples_with_different_variances_have_same_means; *_Bhattacharyya_distance_–_method_used_to_separate_mixtures_of_normal_distributions *_Erdős–Kac_theorem_–_on_the_occurrence_of_the_normal_distribution_in_number_theory *_Full_width_at_half_maximum *_Gaussian_blur_–_convolution,_which_uses_the_normal_distribution_as_a_kernel *_Modified_half-normal_distribution__Notes_
__References_
__Citations_
__Sources_
*_ *__In_particular,_the_entries_fo__External_links_
*___Fourier_transform_and_characteristic_function_
The____Moment_and_cumulant_generating_functions_
The_