HOME
*



picture info

Geometric Mean
In mathematics, the geometric mean is a mean or average which indicates a central tendency of a set of numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometric mean is defined as the th root of the product of numbers, i.e., for a set of numbers , the geometric mean is defined as :\left(\prod_^n a_i\right)^\frac = \sqrt /math> or, equivalently, as the arithmetic mean in logscale: :\exp For instance, the geometric mean of two numbers, say 2 and 8, is just the square root of their product, that is, \sqrt = 4. As another example, the geometric mean of the three numbers 4, 1, and 1/32 is the cube root of their product (1/8), which is 1/2, that is, \sqrt = 1/2. The geometric mean applies only to positive numbers. The geometric mean is often used for a set of numbers whose values are meant to be multiplied together or are exponential in nature, such as a set of growth figures: values of the human population or inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only regular hexahedron and is one of the five Platonic solids. It has 6 faces, 12 edges, and 8 vertices. The cube is also a square parallelepiped, an equilateral cuboid and a right rhombohedron a 3-zonohedron. It is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations. The cube is dual to the octahedron. It has cubical or octahedral symmetry. The cube is the only convex polyhedron whose faces are all squares. Orthogonal projections The ''cube'' has four special orthogonal projections, centered, on a vertex, edges, face and normal to its vertex figure. The first and third correspond to the A2 and B2 Coxeter planes. Spherical tiling The cube can also be represented as a spherical tiling, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logarithm
In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of is , or . The logarithm of to ''base''  is denoted as , or without parentheses, , or even without the explicit base, , when no confusion is possible, or when the base does not matter such as in big O notation. The logarithm base is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number  as its base; its use is widespread in mathematics and physics, because of its very simple derivative. The binary logarithm uses base and is frequently used in computer science. Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations. They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalised F-mean
In mathematics and statistics, the quasi-arithmetic mean or generalised ''f''-mean or Kolmogorov-Nagumo-de Finetti mean is one generalisation of the more familiar means such as the arithmetic mean and the geometric mean, using a function f. It is also called Kolmogorov mean after Soviet mathematician Andrey Kolmogorov. It is a broader generalization than the regular generalized mean. Definition If ''f'' is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective, the ''f''-mean of n numbers x_1, \dots, x_n \in I is defined as M_f(x_1, \dots, x_n) = f^\left( \fracn \right), which can also be written : M_f(\vec x)= f^\left(\frac \sum_^f(x_k) \right) We require ''f'' to be injective in order for the inverse function f^ to exist. Since f is defined over an interval, \fracn lies within the domain of f^. Since ''f'' is injective and continuous, it follows that ''f'' is a strictly monotonic function, and therefore that the ''f''-mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logarithmic Average
In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer. Definition The logarithmic mean is defined as: :\begin M_\text(x, y) &= \lim_ \frac \\ pt &= \begin x & \textx = y ,\\ \frac & \text \end \end for the positive numbers x, y. Inequalities The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent one-third but larger than the geometric mean, unless the numbers are the same, in which case all three means are equal to the numbers. : \sqrt \leq \frac\leq \left(\frac2\right)^3 \leq \frac \qquad \text x > 0 \text y > 0. Toyesh Prakash Sharma generalizes the arithmetic logarithmic geometric mean inequality for any n belongs to the whole number as : \sqrt (\ln(\sqrt))^ (\ln(\sqrt)+n)\leq \frac\leq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logarithmic Identities
In mathematics, many logarithmic identities exist. The following is a compilation of the notable of these, many of which are used for computational purposes. Trivial identities : Explanations By definition, we know that: :\color \log \color_b \color (\colory\color) = \colorx\color \iff \colorb\color \color^x\color = \colory\color, where \colorb\color \neq 0 . Setting \colorx\color = 0, we can see that: \colorb\color \color^x\color = \colory\color \iff \colorb\color \color^\color = \colory\color \iff \color1\color = \colory\color \iff \colory\color = \color1\color . So, substituting these values into the formula, we see that: \color \log \color_b \color (\colory\color) = \colorx\color \iff \color \log \color_b \color (\color1\color) = \color0\color , which gets us the first property. Setting \colorx\color = 1, we can see that: \colorb\color \color^x\color = \colory\color \iff \colorb\color \color^\color = \colory\color \iff \colorb\color = \colory\color ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Mean
In mathematics, generalized means (or power mean or Hölder mean from Otto Hölder) are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means (arithmetic, geometric, and harmonic means). Definition If is a non-zero real number, and x_1, \dots, x_n are positive real numbers, then the generalized mean or power mean with exponent of these positive real numbers is: M_p(x_1,\dots,x_n) = \left( \frac \sum_^n x_i^p \right)^ . (See -norm). For we set it equal to the geometric mean (which is the limit of means with exponents approaching zero, as proved below): M_0(x_1, \dots, x_n) = \left(\prod_^n x_i\right)^ . Furthermore, for a sequence of positive weights we define the weighted power mean as: M_p(x_1,\dots,x_n) = \left(\frac \right)^ and when , it is equal to the weighted geometric mean: M_0(x_1,\dots,x_n) = \left(\prod_^n x_i^\right)^ . The unweighted means correspond to setting all . Special cases A few particular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inequality Of Arithmetic And Geometric Means
In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same (in which case they are both that number). The simplest non-trivial case – i.e., with more than one variable – for two non-negative numbers and , is the statement that :\frac2 \ge \sqrt with equality if and only if . This case can be seen from the fact that the square of a real number is always non-negative (greater than or equal to zero) and from the elementary case of the binomial formula: :\begin 0 & \le (x-y)^2 \\ & = x^2-2xy+y^2 \\ & = x^2+2xy+y^2 - 4xy \\ & = (x+y)^2 - 4xy. \end Hence , with equality precisely when , i.e. . The AM–GM inequality then follows from taking the positive square root of both sides and then dividing both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Capital Pi Notation
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a ''product''. The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''. Both numbers can be referred to as ''factors''. :a\times b = \underbrace_ For example, 4 multiplied by 3, often written as 3 \times 4 and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: :3 \times 4 = 4 + 4 + 4 = 12 Here, 3 (the ''multiplier'') and 4 (the ''multiplicand'') are the ''factors'', and 12 is the ''product''. One of the main properties of multiplication is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inequality Of Arithmetic And Geometric Means
In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same (in which case they are both that number). The simplest non-trivial case – i.e., with more than one variable – for two non-negative numbers and , is the statement that :\frac2 \ge \sqrt with equality if and only if . This case can be seen from the fact that the square of a real number is always non-negative (greater than or equal to zero) and from the elementary case of the binomial formula: :\begin 0 & \le (x-y)^2 \\ & = x^2-2xy+y^2 \\ & = x^2+2xy+y^2 - 4xy \\ & = (x+y)^2 - 4xy. \end Hence , with equality precisely when , i.e. . The AM–GM inequality then follows from taking the positive square root of both sides and then dividing both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]