HOME





Posterior Distribution
The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior probability contains everything there is to know about an uncertain proposition (such as a scientific hypothesis, or parameter values), given prior knowledge and a mathematical model describing the observations available at a particular time. After the arrival of new information, the current posterior probability may serve as the prior in another round of Bayesian updating. In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest posterior density interval ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conditional Probability
In probability theory, conditional probability is a measure of the probability of an Event (probability theory), event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. This particular method relies on event A occurring with some sort of relationship with another event B. In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is and the event is known or assumed to have occurred, "the conditional probability of given ", or "the probability of under the condition ", is usually written as or occasionally . This can also be understood as the fraction of probability B that intersects with A, or the ratio of the probabilities of both events happening to the "given" one happening (how many times A occurs rather than not assuming B has occurred): P(A \mid B) = \frac. For example, the probability that any given person has a cough on any given day ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Law Of Total Probability
In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events, hence the name. Statement The law of total probability isZwillinger, D., Kokoska, S. (2000) ''CRC Standard Probability and Statistics Tables and Formulae'', CRC Press. page 31. a theorem that states, in its discrete case, if \left\ is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event A :P(A)=\sum_n P(A\cap B_n) or, alternatively, :P(A)=\sum_n P(A\mid B_n)P(B_n), where, for any n, if P(B_n) = 0 , then these terms are simply omitted from the summation since P(A\mid B_n) is finite. The summation can be interpreted as a weighted average, and consequently the marginal probability, P(A), is sometimes called "average probability"; "overall probability" is sometimes used i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metropolis–Hastings Algorithm
In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. New samples are added to the sequence in two steps: first a new sample is proposed based on the previous sample, then the proposed sample is either added to the sequence or rejected depending on the value of the probability distribution at that point. The resulting sequence can be used to approximate the distribution (e.g. to generate a histogram) or to compute an integral (e.g. an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, there are usually other methods (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and these are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Of Success
The probability of success (POS) is a statistics concept commonly used in the pharmaceutical industry including by health authorities to support decision making. The probability of success is a concept closely related to conditional power and predictive power. Conditional power is the probability of observing statistical significance given the observed data assuming the treatment effect parameter equals a specific value. Conditional power is often criticized for this assumption. If we know the exact value of the treatment effect, there is no need to do the experiment. To address this issue, we can consider conditional power in a Bayesian setting by considering the treatment effect parameter to be a random variable. Taking the expected value of the conditional power with respect to the posterior distribution of the parameter gives the predictive power. Predictive power can also be calculated in a frequentist setting. No matter how it is calculated, predictive power is a random va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernstein–von Mises Theorem
In Bayesian inference, the Bernstein–von Mises theorem provides the basis for using Bayesian credible sets for confidence statements in parametric models. It states that under some conditions, a posterior distribution converges in total variation distance to a multivariate normal distribution centered at the maximum likelihood estimator \widehat_n with covariance matrix given by n^\mathcal(\theta_0)^ , where \theta_0 is the true population parameter and \mathcal(\theta_0) is the Fisher information matrix at the true population parameter value: :, , P(\theta, x_1,\dots x_n) - \mathcal(_n, n^\mathcal(\theta_0)^), , _ \xrightarrow = 0 The Bernstein–von Mises theorem links Bayesian inference with frequentist inference. It assumes there is some true probabilistic process that generates the observations, as in frequentism, and then studies the quality of Bayesian methods of recovering that process, and making uncertainty statements about that process. In particular, it states tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prediction Interval
In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval (statistics), interval in which a future observation will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis. A simple example is given by a six-sided die with face values ranging from 1 to 6. The confidence interval for the estimated expected value of the face value will be around 3.5 and will become narrower with a larger sample size. However, the prediction interval for the next roll will approximately range from 1 to 6, even with any number of samples seen so far. Prediction intervals are used in both frequentist statistics and Bayesian statistics: a prediction interval bears the same relationship to a future observation that a frequentist confidence interval or Bayesian credible interval bears to an unobservable population parameter: prediction intervals predict the distribution of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Statistical Classification
When classification is performed by a computer, statistical methods are normally used to develop the algorithm. Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or ''features''. These properties may variously be categorical (e.g. "A", "B", "AB" or "O", for blood type), ordinal (e.g. "large", "medium" or "small"), integer-valued (e.g. the number of occurrences of a particular word in an email) or real-valued (e.g. a measurement of blood pressure). Other classifiers work by comparing observations to previous observations by means of a similarity or distance function. An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied. In statistics, where classi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Class-membership Probabilities
In machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles. Types of classification Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample a class label : :\hat = f(x) The samples come from some set (e.g., the set of all documents, or the set of all images), while the class labels form a finite set defined prior to training. Probabilistic classifiers generalize this notion of classifiers: instead of functions, they are conditional distributions \Pr(Y \vert X), meaning that for a given x \in X, they assign probabilities to all y \in Y (and these probabilities sum to one). "Hard" classification can then be done usi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Classification
When classification is performed by a computer, statistical methods are normally used to develop the algorithm. Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or ''features''. These properties may variously be categorical (e.g. "A", "B", "AB" or "O", for blood type), ordinal (e.g. "large", "medium" or "small"), integer-valued (e.g. the number of occurrences of a particular word in an email) or real-valued (e.g. a measurement of blood pressure). Other classifiers work by comparing observations to previous observations by means of a similarity or distance function. An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied. In statistics, where classi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Credible Interval
In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability \gamma to fall within it. For example, in an experiment that determines the distribution of possible values of the parameter \mu, if the probability that \mu lies between 35 and 45 is \gamma=0.95, then 35 \le \mu \le 45 is a 95% credible interval. Credible intervals are typically used to characterize posterior probability distributions or predictive probability distributions. Their generalization to disconnected or multivariate sets is called credible set or credible region. Credible intervals are a Bayesian analog to confidence intervals in frequentist statistics. The two concepts arise from different philosophies: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random varia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normalizing Constant
In probability theory, a normalizing constant or normalizing factor is used to reduce any probability function to a probability density function with total probability of one. For example, a Gaussian function can be normalized into a probability density function, which gives the standard normal distribution. In Bayes' theorem, a normalizing constant is used to ensure that the sum of all possible hypotheses equals 1. Other uses of normalizing constants include making the value of a Legendre polynomial at 1 and in the orthogonality of orthonormal functions. A similar concept has been used in areas other than probability, such as for polynomials. Definition In probability theory, a normalizing constant is a constant by which an everywhere non-negative function must be multiplied so the area under its graph is 1, e.g., to make it a probability density function or a probability mass function. Examples If we start from the simple Gaussian function p(x) = e^, \quad x\in(-\infty,\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prior Probability Distribution
A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable. In Bayesian statistics, Bayes' rule prescribes how to update the prior with new information to obtain the posterior probability distribution, which is the conditional distribution of the uncertain quantity given new data. Historically, the choice of priors was often constrained to a conjugate family of a given likelihood function, so that it would result in a tractable posterior of the same family. The widespread availability of Markov chain Monte Carlo methods, however, has made this less of a concern. There are many ways to constru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]