In
computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
, algorithmic efficiency is a property of an
algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
which relates to the amount of
computational resource
In computational complexity theory, a computational resource is a resource used by some computational models in the solution of computational problems.
The simplest computational resources are computation time, the number of steps necessary t ...
s used by the algorithm. An algorithm must be
analyzed to determine its resource usage, and the efficiency of an algorithm can be measured based on the usage of different resources. Algorithmic efficiency can be thought of as analogous to engineering
productivity
Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production proces ...
for a repeating or continuous process.
For maximum efficiency it is desirable to minimize resource usage. However, different resources such as
time
Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
and
space
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
complexity cannot be compared directly, so which of two algorithms is considered to be more efficient often depends on which measure of efficiency is considered most important.
For example,
bubble sort and
timsort
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algor ...
are both
algorithms to sort a list of items from smallest to largest. Bubble sort sorts the list in time proportional to the number of elements squared (
, see
Big O notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Lan ...
), but only requires a small amount of extra
memory
Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, ...
which is constant with respect to the length of the list (
). Timsort sorts the list in time
linearithmic
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by ...
(proportional to a quantity times its logarithm) in the list's length (
), but has a space requirement
linear
Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear r ...
in the length of the list (
). If large lists must be sorted at high speed for a given application, timsort is a better choice; however, if minimizing the memory footprint of the sorting is more important, bubble sort is a better choice.
Background
The importance of efficiency with respect to time was emphasised by
Ada Lovelace
Augusta Ada King, Countess of Lovelace (''née'' Byron; 10 December 1815 – 27 November 1852) was an English mathematician and writer, chiefly known for her work on Charles Babbage's proposed mechanical general-purpose computer, the A ...
in 1843 as applied to
Charles Babbage
Charles Babbage (; 26 December 1791 – 18 October 1871) was an English polymath. A mathematician, philosopher, inventor and mechanical engineer, Babbage originated the concept of a digital programmable computer.
Babbage is considered ...
's mechanical analytical engine:
"In almost every computation a great variety of arrangements for the succession of the processes is possible, and various considerations must influence the selections amongst them for the purposes of a calculating engine. One essential object is to choose that arrangement which shall tend to reduce to a minimum the time necessary for completing the calculation"
Early
electronic computer
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These program ...
s had both limited
speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quanti ...
and limited
random access memory
Random-access memory (RAM; ) is a form of computer memory that can be read and changed in any order, typically used to store working Data (computing), data and machine code. A Random access, random-access memory device allows data items to b ...
. Therefore, a
space–time trade-off
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why diffe ...
occurred. A
task could use a fast algorithm using a lot of memory, or it could use a slow algorithm using little memory. The engineering trade-off was then to use the fastest algorithm that could fit in the available memory.
Modern computers are significantly faster than the early computers, and have a much larger amount of memory available (
Gigabytes instead of Kilobytes). Nevertheless,
Donald Knuth
Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer sc ...
emphasised that efficiency is still an important consideration:
"In established engineering disciplines a 12% improvement, easily obtained, is never considered marginal and I believe the same viewpoint should prevail in software engineering"
Overview
An algorithm is considered efficient if its resource consumption, also known as computational cost, is at or below some acceptable level. Roughly speaking, 'acceptable' means: it will run in a reasonable amount of time or space on an available computer, typically as a
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-oriente ...
of the size of the input. Since the 1950s computers have seen dramatic increases in both the available computational power and in the available amount of memory, so current acceptable levels would have been unacceptable even 10 years ago. In fact, thanks to the
approximate doubling of computer power every 2 years, tasks that are acceptably efficient on modern
smartphone
A smartphone is a portable computer device that combines mobile telephone and computing functions into one unit. They are distinguished from feature phones by their stronger hardware capabilities and extensive mobile operating systems, whic ...
s and
embedded system
An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is ''embedded'' as ...
s may have been unacceptably inefficient for industrial
server
Server may refer to:
Computing
*Server (computing), a computer program or a device that provides functionality for other programs or devices, called clients
Role
* Waiting staff, those who work at a restaurant or a bar attending customers and su ...
s 10 years ago.
Computer manufacturers frequently bring out new models, often with higher
performance
A performance is an act of staging or presenting a play, concert, or other form of entertainment. It is also defined as the action or process of carrying out or accomplishing an action, task, or function.
Management science
In the work place ...
. Software costs can be quite high, so in some cases the simplest and cheapest way of getting higher performance might be to just buy a faster computer, provided it is
compatible
Compatibility may refer to:
Computing
* Backward compatibility, in which newer devices can understand data generated by older devices
* Compatibility card, an expansion card for hardware emulation of another device
* Compatibility layer, compo ...
with an existing computer.
There are many ways in which the resources used by an algorithm can be measured: the two most common measures are speed and memory usage; other measures could include transmission speed, temporary disk usage, long-term disk usage, power consumption,
total cost of ownership
Total cost of ownership (TCO) is a financial estimate intended to help buyers and owners determine the direct and indirect costs of a product or service. It is a management accounting concept that can be used in full cost accounting or even ecolog ...
,
response time
Response time may refer to:
*The time lag between an electronic input and the output signal which depends upon the value of passive components used.
* Responsiveness, how quickly an interactive system responds to user input
* Response time (biolog ...
to external stimuli, etc. Many of these measures depend on the size of the input to the algorithm, i.e. the amount of data to be processed. They might also depend on the way in which the data is arranged; for example, some
sorting algorithm
In computer science, a sorting algorithm is an algorithm that puts elements of a List (computing), list into an Total order, order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. ...
s perform poorly on data which is already sorted, or which is sorted in reverse order.
In practice, there are other factors which can affect the efficiency of an algorithm, such as requirements for accuracy and/or reliability. As detailed below, the way in which an algorithm is implemented can also have a significant effect on actual efficiency, though many aspects of this relate to
optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
issues.
Theoretical analysis
In the theoretical
analysis of algorithms, the normal practice is to estimate their complexity in the asymptotic sense. The most commonly used notation to describe resource consumption or "complexity" is
Donald Knuth
Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer sc ...
's
Big O notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Lan ...
, representing the complexity of an algorithm as a function of the size of the input
. Big O notation is an
asymptotic measure of function complexity, where
roughly means the time requirement for an algorithm is proportional to
, omitting
lower-order terms The leading-order terms (or corrections) within a mathematics, mathematical equation, Expression (mathematics), expression or mathematical model, model are the Term (logic), terms with the largest order of magnitude.J.K.Hunter, ''Asymptotic Analysis ...
that contribute less than
to the growth of the function as
grows arbitrarily large. This estimate may be misleading when
is small, but is generally sufficiently accurate when
is large as the notation is asymptotic. For example, bubble sort may be faster than
merge sort
In computer science, merge sort (also commonly spelled as mergesort) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the order of equal elements is the same ...
when only a few items are to be sorted; however either implementation is likely to meet performance requirements for a small list. Typically, programmers are interested in algorithms that
scale efficiently to large input sizes, and merge sort is preferred over bubble sort for lists of length encountered in most data-intensive programs.
Some examples of Big O notation applied to algorithms' asymptotic time complexity include:
Benchmarking: measuring performance
For new versions of software or to provide comparisons with competitive systems,
benchmark
Benchmark may refer to:
Business and economics
* Benchmarking, evaluating performance within organizations
* Benchmark price
* Benchmark (crude oil), oil-specific practices
Science and technology
* Benchmark (surveying), a point of known elevati ...
s are sometimes used, which assist with gauging an algorithms relative performance. If a new
sort algorithm
In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important ...
is produced, for example, it can be compared with its predecessors to ensure that at least it is efficient as before with known data, taking into consideration any functional improvements. Benchmarks can be used by customers when comparing various products from alternative suppliers to estimate which product will best suit their specific requirements in terms of functionality and performance. For example, in the
mainframe world certain proprietary
sort
Sort may refer to:
* Sorting, any process of arranging items in sequence or in sets
** Sorting algorithm, any algorithm for arranging elements in lists
** Sort (Unix), a Unix utility which sorts the lines of a file
** Sort (C++), a function in the ...
products from independent software companies such as
Syncsort compete with products from the major suppliers such as
IBM for speed.
Some benchmarks provide opportunities for producing an analysis comparing the relative speed of various compiled and interpreted languages for example
and
The Computer Language Benchmarks Game
The Computer Language Benchmarks Game (formerly called The Great Computer Language Shootout) is a free software project for comparing how a given subset of simple algorithms can be implemented in various popular programming languages.
The project ...
compares the performance of implementations of typical programming problems in several programming languages.
Even creating "
do it yourself
"Do it yourself" ("DIY") is the method of building, modifying, or repairing things by oneself without the direct aid of professionals or certified experts. Academic research has described DIY as behaviors where "individuals use raw and semi ...
" benchmarks can demonstrate the relative performance of different programming languages, using a variety of user specified criteria. This is quite simple, as a "Nine language performance roundup" by Christopher W. Cowell-Shah demonstrates by example.
Implementation concerns
Implementation issues can also have an effect on efficiency, such as the choice of programming language, or the way in which the algorithm is actually coded,
or the choice of a
compiler
In computing, a compiler is a computer program that translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that ...
for a particular language, or the
compilation options used, or even the
operating system
An operating system (OS) is system software that manages computer hardware, software resources, and provides common services for computer programs.
Time-sharing operating systems schedule tasks for efficient use of the system and may also in ...
being used. In many cases a language implemented by an
interpreter may be much slower than a language implemented by a compiler.
See the articles on
just-in-time compilation
In computing, just-in-time (JIT) compilation (also dynamic translation or run-time compilations) is a way of executing computer code that involves compilation during execution of a program (at run time) rather than before execution. This may cons ...
and
interpreted language
In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interprete ...
s.
There are other factors which may affect time or space issues, but which may be outside of a programmer's control; these include
data alignment
Data structure alignment is the way data is arranged and accessed in computer memory. It consists of three separate but related issues: data alignment, data structure padding, and packing.
The CPU in modern computer hardware performs reads and ...
,
data granularity
In the pursuit of knowledge, data (; ) is a collection of discrete values that convey information, describing quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted. ...
,
cache locality
In computer science, locality of reference, also known as the principle of locality, is the tendency of a processor to access the same set of memory locations repetitively over a short period of time. There are two basic types of reference localit ...
,
cache coherency
In computer architecture, cache coherence is the uniformity of shared resource data that ends up stored in multiple local caches. When clients in a system maintain caches of a common memory resource, problems may arise with incoherent data, whi ...
,
garbage collection
Waste collection is a part of the process of waste management. It is the transfer of solid waste from the point of use and disposal to the point of treatment or landfill. Waste collection also includes the curbside collection of recyclabl ...
,
instruction-level parallelism
Instruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence of instructions in a computer program. More specifically ILP refers to the average number of instructions run per step of this parallel execution.
Disc ...
,
multi-threading (at either a hardware or software level),
simultaneous multitasking, and
subroutine
In computer programming, a function or subroutine is a sequence of program instructions that performs a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed.
Functions may ...
calls.
[Guy Lewis Steele, Jr. "Debunking the 'Expensive Procedure Call' Myth, or, Procedure Call Implementations Considered Harmful, or, Lambda: The Ultimate GOTO". MIT AI Lab. AI Lab Memo AIM-443. October 197]
/ref>
Some processors have capabilities for vector processor, vector processing, which allow a single instruction to operate on multiple operands; it may or may not be easy for a programmer or compiler to use these capabilities. Algorithms designed for sequential processing may need to be completely redesigned to make use of parallel processing, or they could be easily reconfigured. As parallel
Parallel is a geometric term of location which may refer to:
Computing
* Parallel algorithm
* Parallel computing
* Parallel metaheuristic
* Parallel (software), a UNIX utility for running programs in parallel
* Parallel Sysplex, a cluster of ...
and distributed computing
A distributed system is a system whose components are located on different computer network, networked computers, which communicate and coordinate their actions by message passing, passing messages to one another from any system. Distributed com ...
grow in importance in the late 2010s, more investments are being made into efficient high-level
High-level and low-level, as technical terms, are used to classify, describe and point to specific goals of a systematic operation; and are applied in a wide range of contexts, such as, for instance, in domains as widely varied as computer scienc ...
API
An application programming interface (API) is a way for two or more computer programs to communicate with each other. It is a type of software interface, offering a service to other pieces of software. A document or standard that describes how ...
s for parallel and distributed computing systems such as CUDA
CUDA (or Compute Unified Device Architecture) is a parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for general purpose processing, an approach ...
, TensorFlow
TensorFlow is a free and open-source software library for machine learning and artificial intelligence. It can be used across a range of tasks but has a particular focus on training and inference of deep neural networks. "It is machine learnin ...
, Hadoop
Apache Hadoop () is a collection of open-source software utilities that facilitates using a network of many computers to solve problems involving massive amounts of data and computation. It provides a software framework for distributed storage an ...
, OpenMP
OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating syst ...
and MPI.
Another problem which can arise in programming is that processors compatible with the same instruction set
In computer science, an instruction set architecture (ISA), also called computer architecture, is an abstract model of a computer. A device that executes instructions described by that ISA, such as a central processing unit (CPU), is called an ' ...
(such as x86-64
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit version of the x86 instruction set, first released in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mod ...
or ARM
In human anatomy, the arm refers to the upper limb in common usage, although academically the term specifically means the upper arm between the glenohumeral joint (shoulder joint) and the elbow joint. The distal part of the upper limb between th ...
) may implement an instruction in different ways, so that instructions which are relatively fast on some models may be relatively slow on other models. This often presents challenges to optimizing compiler
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power cons ...
s, which must have a great amount of knowledge of the specific CPU and other hardware available on the compilation target to best optimize a program for performance. In the extreme case, a compiler may be forced to emulate
Emulate, Inc. (Emulate) is a biotechnology company that commercialized Organs-on-Chips technology—a human cell-based technology that recreates organ-level function to model organs in healthy and diseased states. The technology has applications ...
instructions not supported on a compilation target platform, forcing it to generate code or link an external library call to produce a result that is otherwise incomputable on that platform, even if it is natively supported and more efficient in hardware on other platforms. This is often the case in embedded system
An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is ''embedded'' as ...
s with respect to floating-point arithmetic
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be ...
, where small and low-power microcontroller
A microcontroller (MCU for ''microcontroller unit'', often also MC, UC, or μC) is a small computer on a single VLSI integrated circuit (IC) chip. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable i ...
s often lack hardware support for floating-point arithmetic and thus require computationally expensive software routines to produce floating point calculations.
Measures of resource usage
Measures are normally expressed as a function of the size of the input .
The two most common measures are:
* ''Time'': how long does the algorithm take to complete?
* ''Space'': how much working memory (typically RAM) is needed by the algorithm? This has two aspects: the amount of memory needed by the code (auxiliary space usage), and the amount of memory needed for the data on which the code operates (intrinsic space usage).
For computers whose power is supplied by a battery (e.g. laptop
A laptop, laptop computer, or notebook computer is a small, portable personal computer (PC) with a screen and alphanumeric keyboard. Laptops typically have a clam shell form factor with the screen mounted on the inside of the upper li ...
s and smartphone
A smartphone is a portable computer device that combines mobile telephone and computing functions into one unit. They are distinguished from feature phones by their stronger hardware capabilities and extensive mobile operating systems, whic ...
s), or for very long/large calculations (e.g. supercomputer
A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructions ...
s), other measures of interest are:
* ''Direct power consumption'': power needed directly to operate the computer.
* ''Indirect power consumption'': power needed for cooling, lighting, etc.
, power consumption is growing as an important metric for computational tasks of all types and at all scales ranging from embedded Internet of things
The Internet of things (IoT) describes physical objects (or groups of such objects) with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other comm ...
devices to system-on-chip
A system on a chip or system-on-chip (SoC ; pl. ''SoCs'' ) is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include a central processing unit (CPU), memor ...
devices to server farm
A server farm or server cluster is a collection of computer servers, usually maintained by an organization to supply server functionality far beyond the capability of a single machine. They often consist of thousands of computers which require ...
s. This trend is often referred to as green computing
Green computing, green IT, or ICT sustainability, is the study and practice of environmentally sustainable computing or IT.
The goals of green computing are similar to green chemistry: reduce the use of hazardous materials, maximize energy effic ...
.
Less common measures of computational efficiency may also be relevant in some cases:
*''Transmission size'': bandwidth could be a limiting factor. Data compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression ...
can be used to reduce the amount of data to be transmitted. Displaying a picture or image (e.g. Google logo
The Google logo appears in numerous settings to identify the search engine company. Google has used several logos over its history, with the first logo created by Sergey Brin using GIMP. A revised logo debuted on September 1, 2015. The previo ...
) can result in transmitting tens of thousands of bytes (48K in this case) compared with transmitting six bytes for the text "Google". This is important for I/O bound computing tasks.
*''External space'': space needed on a disk or other external memory device; this could be for temporary storage while the algorithm is being carried out, or it could be long-term storage needed to be carried forward for future reference.
*''Response time'' ( latency): this is particularly relevant in a real-time application when the computer system must respond quickly to some external event.
*''Total cost of ownership'': particularly if a computer is dedicated to one particular algorithm.
Time
Theory
Analyze the algorithm, typically using time complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by ...
analysis to get an estimate of the running time as a function of the size of the input data. The result is normally expressed using Big O notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Lan ...
. This is useful for comparing algorithms, especially when a large amount of data is to be processed. More detailed estimates are needed to compare algorithm performance when the amount of data is small, although this is likely to be of less importance. Algorithms which include parallel processing may be more difficult to analyze.
Practice
Use a benchmark
Benchmark may refer to:
Business and economics
* Benchmarking, evaluating performance within organizations
* Benchmark price
* Benchmark (crude oil), oil-specific practices
Science and technology
* Benchmark (surveying), a point of known elevati ...
to time the use of an algorithm. Many programming languages have an available function which provides CPU time usage. For long-running algorithms the elapsed time could also be of interest. Results should generally be averaged over several tests.
Run-based profiling can be very sensitive to hardware configuration and the possibility of other programs or tasks running at the same time in a multi-processing
Multiprocessing is the use of two or more central processing units (CPUs) within a single computer system. The term also refers to the ability of a system to support more than one processor or the ability to allocate tasks between them. There are ...
and multi-programming environment.
This sort of test also depends heavily on the selection of a particular programming language, compiler, and compiler options, so algorithms being compared must all be implemented under the same conditions.
Space
This section is concerned with use of memory resources ( registers, cache
Cache, caching, or caché may refer to:
Places United States
* Cache, Idaho, an unincorporated community
* Cache, Illinois, an unincorporated community
* Cache, Oklahoma, a city in Comanche County
* Cache, Utah, Cache County, Utah
* Cache County ...
, RAM
Ram, ram, or RAM may refer to:
Animals
* A male sheep
* Ram cichlid, a freshwater tropical fish
People
* Ram (given name)
* Ram (surname)
* Ram (director) (Ramsubramaniam), an Indian Tamil film director
* RAM (musician) (born 1974), Dutch
* ...
, virtual memory
In computing, virtual memory, or virtual storage is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" which "creates the illusion to users of a very l ...
, secondary memory
Computer data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers.
The central processing unit (CPU) of a compute ...
) while the algorithm is being executed. As for time analysis above, analyze the algorithm, typically using space complexity
The space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it ex ...
analysis to get an estimate of the run-time memory needed as a function as the size of the input data. The result is normally expressed using Big O notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Lan ...
.
There are up to four aspects of memory usage to consider:
* The amount of memory needed to hold the code for the algorithm.
* The amount of memory needed for the input data
In computing, input/output (I/O, or informally io or IO) is the communication between an information processing system, such as a computer, and the outside world, possibly a human or another information processing system. Information, Inputs are ...
.
* The amount of memory needed for any output data.
**Some algorithms, such as sorting, often rearrange the input data and don't need any additional space for output data. This property is referred to as "in-place
In computer science, an in-place algorithm is an algorithm which transforms input using no auxiliary data structure. However, a small amount of extra storage space is allowed for auxiliary variables. The input is usually overwritten by the output ...
" operation.
* The amount of memory needed as working space during the calculation.
**This includes local variable
In computer science, a local variable is a variable that is given ''local scope''. A local variable reference in the function or block in which it is declared overrides the same variable name in the larger scope. In programming languages with o ...
s and any stack space needed by routines called during a calculation; this stack space can be significant for algorithms which use recursive
Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ...
techniques.
Early electronic computers, and early home computers, had relatively small amounts of working memory. For example, the 1949 Electronic Delay Storage Automatic Calculator
The Electronic Delay Storage Automatic Calculator (EDSAC) was an early British computer. Inspired by John von Neumann's seminal '' First Draft of a Report on the EDVAC'', the machine was constructed by Maurice Wilkes and his team at the Univers ...
(EDSAC) had a maximum working memory of 1024 17-bit words, while the 1980 Sinclair ZX80 came initially with 1024 8-bit bytes of working memory. In the late 2010s, it is typical for personal computers to have between 4 and 32 gigabyte, GB of RAM, an increase of over 300 million times as much memory.
Caching and memory hierarchy
Current computers can have relatively large amounts of memory (possibly Gigabytes), so having to squeeze an algorithm into a confined amount of memory is much less of a problem than it used to be. But the presence of four different categories of memory can be significant:
* Processor registers, the fastest of computer memory technologies with the least amount of storage space. Most direct computation on modern computers occurs with source and destination operands in registers before being updated to the cache, main memory and virtual memory if needed. On a CPU core, processor core, there are typically on the order of hundreds of bytes or fewer of register availability, although a register file may contain more physical registers than Instruction set architecture, architectural registers defined in the instruction set architecture.
* CPU cache, Cache memory is the second fastest and second smallest memory available in the memory hierarchy. Caches are present in CPUs, GPUs, hard disk drives and external peripherals, and are typically implemented in Static random-access memory, static RAM. Cache hierarchy, Memory caches are multi-leveled; lower levels are larger, slower and typically shared cache, shared between processor cores in multi-core processors. In order to process operands in cache memory, a processor (computing), processing unit must fetch the data from the cache, perform the operation in registers and write the data back to the cache. This operates at speeds comparable (about 2-10 times slower) with the CPU or GPU's arithmetic logic unit or floating-point unit if in the L1 cache. It is about 10 times slower if there is an L1 cache miss and it must be retrieved from and written to the L2 cache, and a further 10 times slower if there is an L2 cache miss and it must be retrieved from an L3 cache, if present.
* Main memory, Main physical memory is most often implemented in Dynamic random-access memory, dynamic RAM (DRAM). The main memory is much larger (typically gigabytes compared to ≈8 megabytes) than an L3 CPU cache, with read and write latencies typically 10-100 times slower. , RAM is increasingly implemented system-on-chip, on-chip of processors, as CPU or GPU memory.
* Virtual memory is most often implemented in terms of secondary storage device, secondary storage such as a Hard disk drive, hard disk, and is an extension to the memory hierarchy that has much larger storage space but much larger latency, typically around 1000 times slower than a cache miss for a value in RAM. While originally motivated to create the impression of higher amounts of memory being available than were truly available, virtual memory is more important in contemporary usage for its time-space tradeoff and enabling the usage of virtual machines. Cache misses from main memory are called page faults, and incur huge performance penalties on programs.
An algorithm whose memory needs will fit in cache memory will be much faster than an algorithm which fits in main memory, which in turn will be very much faster than an algorithm which has to resort to virtual memory. Because of this, cache replacement policies are extremely important to high-performance computing, as are Cache-aware model, cache-aware programming and Data structure alignment, data alignment. To further complicate the issue, some systems have up to three levels of cache memory, with varying effective speeds. Different systems will have different amounts of these various types of memory, so the effect of algorithm memory needs can vary greatly from one system to another.
In the early days of electronic computing, if an algorithm and its data wouldn't fit in main memory then the algorithm couldn't be used. Nowadays the use of virtual memory appears to provide much memory, but at the cost of performance. If an algorithm and its data will fit in cache memory, then very high speed can be obtained; in this case minimizing space will also help minimize time. This is called the principle of locality, and can be subdivided into locality of reference, spatial locality and temporal locality. An algorithm which will not fit completely in cache memory but which exhibits locality of reference may perform reasonably well.
Criticism of the current state of programming
* David May (computer scientist), David May FRS a United Kingdom, British computer scientist and currently Professor of Computer Science at University of Bristol and founder and Chief technical officer, CTO of XMOS, XMOS Semiconductor, believes one of the problems is that there is a reliance on Moore's law to solve inefficiencies. He has advanced an 'alternative' to Moore's law (Wirth's law, May's law) stated as follows:
Software efficiency halves every 18 months, compensating Moore's Law
:May goes on to state:
In ubiquitous systems, halving the instructions executed can double the battery life and big data sets bring big opportunities for better software and algorithms: Reducing the number of operations from NN to Nlog(N) has a dramatic effect when N is large ... for N = 30 billion, this change is as good as 50 years of technology improvements.
* Software author Adam N. Rosenburg in his blog "''The failure of the Digital computer''", has described the current state of programming as nearing the "Software event horizon", (alluding to the fictitious "''shoe event horizon''" described by Douglas Adams in his ''Hitchhiker's Guide to the Galaxy'' book). He estimates there has been a 70 dB factor loss of productivity or "99.99999 percent, of its ability to deliver the goods", since the 1980s—"When Arthur C. Clarke compared the reality of computing in 2001 to the computer HAL 9000 in his book 2001: A Space Odyssey, he pointed out how wonderfully small and powerful computers were but how disappointing computer programming had become".
Competitions for the best algorithms
The following competitions invite entries for the best algorithms based on some arbitrary criteria decided by the judges:
* Wired magazine
See also
* Analysis of algorithms—how to determine the resources needed by an algorithm
* Arithmetic coding—a form of variable-length code, variable-length entropy encoding for efficient data compression
* Associative array—a data structure that can be made more efficient using Patricia trees or Judy arrays
* Benchmark (computing), Benchmark—a method for measuring comparative execution times in defined cases
* Best, worst and average case—considerations for estimating execution times in three scenarios
* Binary search algorithm—a simple and efficient technique for searching sorted arrays
* Branch table—a technique for reducing instruction path-length, size of machine code, (and often also memory)
* Comparison of programming paradigms—paradigm specific performance considerations
* Compiler optimization—compiler-derived optimization
* Computational complexity of mathematical operations
* Computational complexity theory
* Computer performance—computer hardware metrics
* Data compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression ...
—reducing transmission bandwidth and disk storage
* Database index—a data structure that improves the speed of data retrieval operations on a database table
* Entropy encoding—encoding data efficiently using frequency of occurrence of strings as a criterion for substitution
* Garbage collection (computer science), Garbage collection—automatic freeing of memory after use
* Green computing—a move to implement 'greener' technologies, consuming less resources
* Huffman algorithm—an algorithm for efficient data encoding
Improving Managed code Performance
€”Microsoft MSDN Library
* Locality of reference—for avoidance of CPU cache, caching delays caused by non-local memory access
* Loop optimization
* Memory management
* Optimization (computer science)
* Profiling (computer programming), Performance analysis—methods of measuring actual performance of an algorithm at run-time
* Real-time computing—further examples of time-critical applications
* Run-time analysis—estimation of expected run-times and an algorithm's scalability
* Simultaneous multithreading
*
* Speculative execution or Eager execution
* Branch prediction
* Super-threading
** Hyper-threading
* Threaded code—similar to virtual method table or branch table
* Virtual method table—branch table with dynamically assigned pointers for dispatching
References
{{Authority control
Analysis of algorithms
Computer performance
Software optimization
Software quality