HOME



picture info

Mergesort
In computer science, merge sort (also commonly spelled as mergesort and as ) is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations of merge sort are stable, which means that the relative order of equal elements is the same between the input and output. Merge sort is a divide-and-conquer algorithm that was invented by John von Neumann in 1945. A detailed description and analysis of bottom-up merge sort appeared in a report by Goldstine and von Neumann as early as 1948. Algorithm Conceptually, a merge sort works as follows: #Divide the unsorted list into ''n'' sub-lists, each containing one element (a list of one element is considered sorted). #Repeatedly merge sublists to produce new sorted sublists until there is only one sublist remaining. This will be the sorted list. Top-down implementation Example C-like code using indices for top-down merge sort algorithm that recursively splits the list (called ''runs'' in this example) into su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Timsort
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorithm finds subsequences of the data that are already ordered (runs) and uses them to sort the remainder more efficiently. This is done by merging runs until certain criteria are fulfilled. Timsort has been Python's standard sorting algorithm since version 2.3, and starting with 3.11 it uses Timsort with the Powersort merge policy. Timsort is also used to sort arrays of non-primitive type in Java SE 7, on the Android platform, in GNU Octave, on V8, in Swift, and Rust. It uses techniques from Peter McIlroy's 1993 paper "Optimistic Sorting and Information Theoretic Complexity". Operation Timsort was designed to take advantage of ''runs'' of consecutive ordered elements that already exist in most real-world data, ''natural runs''. It ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Merge Algorithm
Merge algorithms are a family of algorithms that take multiple sorted lists as input and produce a single list as output, containing all the elements of the inputs lists in sorted order. These algorithms are used as subroutines in various sorting algorithms, most famously merge sort. Application The merge algorithm plays a critical role in the merge sort algorithm, a comparison-based sorting algorithm. Conceptually, the merge sort algorithm consists of two steps: # Recursively divide the list into sublists of (roughly) equal length, until each sublist contains only one element, or in the case of iterative (bottom up) merge sort, consider a list of ''n'' elements as ''n'' sub-lists of size 1. A list containing a single element is, by definition, sorted. # Repeatedly merge sublists to create a new sorted sublist until the single list contains all elements. The single list is the sorted list. The merge algorithm is used repeatedly in the merge sort algorithm. An example merge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Divide-and-conquer Algorithm
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem. The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform ( FFT). Designing efficient divide-and-conquer algorithms can be difficult. As in mathematical induction, it is often necessary to generalize the problem to make it amenable to a recursive solution. The correctness of a divide-and-conquer algorithm is usually proved by mathematical induction, and its computational cos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sorting Algorithm
In computer science, a sorting algorithm is an algorithm that puts elements of a List (computing), list into an Total order, order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the Algorithmic efficiency, efficiency of other algorithms (such as search algorithm, search and merge algorithm, merge algorithms) that require input data to be in sorted lists. Sorting is also often useful for Canonicalization, canonicalizing data and for producing human-readable output. Formally, the output of any sorting algorithm must satisfy two conditions: # The output is in monotonic order (each element is no smaller/larger than the previous element, according to the required order). # The output is a permutation (a reordering, yet retaining all of the original elements) of the input. Although some algorithms are designed for sequential access, the highest-performing algorithms assum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comparison Sort
A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occur first in the final sorted list. The only requirement is that the operator forms a total preorder over the data, with: # if ''a'' ≤ ''b'' and ''b'' ≤ ''c'' then ''a'' ≤ ''c'' (transitivity) # for all ''a'' and ''b'', ''a'' ≤ ''b'' or ''b'' ≤ ''a'' ( connexity). It is possible that both ''a'' ≤ ''b'' and ''b'' ≤ ''a''; in this case either may come first in the sorted list. In a stable sort, the input order determines the sorted order in this case. Comparison sorts studied in the literature are "comparison-based". Elements ''a'' and ''b'' can be swapped or otherwise re-arranged by the algorithm only when the order between these elements has been established based on the outcomes of prior comparisons. This is the case when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stack (abstract Data Type)
In computer science, a stack is an abstract data type that serves as a collection (abstract data type), collection of elements with two main operations: * Push, which adds an element to the collection, and * Pop, which removes the most recently added element. Additionally, a peek (data type operation), peek operation can, without modifying the stack, return the value of the last element added. The name ''stack'' is an analogy to a set of physical items stacked one atop another, such as a stack of plates. The order in which an element added to or removed from a stack is described as last in, first out, referred to by the acronym LIFO. As with a stack of physical objects, this structure makes it easy to take an item off the top of the stack, but accessing a Data, datum deeper in the stack may require removing multiple other items first. Considered a sequential collection, a stack has one end which is the only position at which the push and pop operations may occur, the ''top'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Master Theorem (analysis Of Algorithms)
Master, master's or masters may refer to: Ranks or titles In education: *Master (college), head of a college *Master's degree, a postgraduate or sometimes undergraduate degree in the specified discipline * Schoolmaster or master, presiding officer of a school In military: * Master (naval), a former naval rank * Master mariner, a licensed mariner who is qualified to be a sea captain in the merchant marine *Master or shipmaster, the sea captain of a merchant vessel * Master-at-arms, a naval police officer, often addressed as "Master" in the Royal Navy In orders and organizations: *Master craftsman, in the Medieval guilds In other: * Master (form of address), an English honorific for boys and young men * Master (judiciary), a judicial official in the courts of common law jurisdictions * Master (Peerage of Scotland), the male heir-apparent or heir-presumptive to a title in the Peerage of Scotland * Master of ceremonies, or MC (emcee), the host of an official public or private stag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Queue (abstract Data Type)
In computer science, a queue is a collection of entities that are maintained in a sequence and can be modified by the addition of entities at one end of the sequence and the removal of entities from the other end of the sequence. By convention, the end of the sequence at which elements are added is called the back, tail, or rear of the queue, and the end at which elements are removed is called the head or front of the queue, analogously to the words used when people line up to wait for goods or services. The operation of adding an element to the rear of the queue is known as ''enqueue'', and the operation of removing an element from the front is known as ''dequeue''. Other operations may also be allowed, often including a '' peek'' or ''front'' operation that returns the value of the next element to be dequeued without dequeuing it. The operations of a queue make it a first-in-first-out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Run Of A Sequence
In computer science, a run of a sequence is a non-decreasing range of the sequence that cannot be extended. The ''number of runs'' of a sequence is the number of increasing subsequences of the sequence. This is a measure of presortedness, and in particular measures how many subsequences must be merged to sort a sequence. Definition Let X=\langle x_1,\dots,x_n\rangle be a sequence of elements from a totally ordered set. A run of X is a maximal increasing sequence \langle x_i,x_,\dots, x_,x_j \rangle. That is, x_>x_i and x_>x_ assuming that x_ and x_ exists. For example, if n is a natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ..., the sequence \langle n+1,n+2,\dots, 2n, 1,2,\dots, n\rangle has the two runs \langle n+1,\dots, 2n \rangle and \langle 1,\dots,n \rangle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lisp Programming Language
Lisp (historically LISP, an abbreviation of "list processing") is a family of programming languages with a long history and a distinctive, fully parenthesized Polish notation#Explanation, prefix notation. Originally specified in the late 1950s, it is the second-oldest high-level programming language still in common use, after Fortran. Lisp has changed since its early days, and many Programming language dialect, dialects have existed over its history. Today, the best-known general-purpose Lisp dialects are Common Lisp, Scheme (programming language), Scheme, Racket (programming language), Racket, and Clojure. Lisp was originally created as a practical mathematical notation for computer programs, influenced by (though not originally derived from) the notation of Alonzo Church's lambda calculus. It quickly became a favored programming language for artificial intelligence (AI) research. As one of the earliest programming languages, Lisp pioneered many ideas in computer science, includ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]