History
Stacks entered the computer science literature in 1946, when Alan M. Turing used the terms "bury" and "unbury" as a means of calling and returning from subroutines.Non-essential operations
In many implementations, a stack has more operations than the essential "push" and "pop" operations. An example of a non-essential operation is "top of stack", or "peek", which observes the top element without removing it from the stack. This could be done with a "pop" followed by a "push" to return the same data to the stack, so it is not considered an essential operation. If the stack is empty, an underflow condition will occur upon execution of either the "stack top" or "pop" operations. Additionally, many implementations provide a check if the stack is empty and one that returns its size.Software stacks
Implementation
A stack can be easily implemented either through anArray
An array can be used to implement a (bounded) stack, as follows. The first element, usually at thearray /code> being the first element pushed onto the stack and the last element popped off. The program must keep track of the size (length) of the stack, using a variable ''top'' that records the number of items pushed so far, therefore pointing to the place in the array where the next element is to be inserted (assuming a zero-based index convention). Thus, the stack itself can be effectively implemented as a three-element structure:
structure stack:
maxsize : integer
top : integer
items : array of item
procedure initialize(stk : stack, size : integer):
stk.items ← new array of ''size'' items, initially empty
stk.maxsize ← size
stk.top ← 0
The ''push'' operation adds an element and increments the ''top'' index, after checking for overflow:
procedure push(stk : stack, x : item):
if stk.top = stk.maxsize:
report overflow error
else:
stk.items tk.top← x
stk.top ← stk.top + 1
Similarly, ''pop'' decrements the ''top'' index after checking for underflow, and returns the item that was previously the top one:
procedure pop(stk : stack):
if stk.top = 0:
report underflow error
else:
stk.top ← stk.top − 1
r ← stk.items tk.top return r
Using a dynamic array
In computer science, a dynamic array, growable array, resizable array, dynamic table, mutable array, or array list is a random access, variable-size list data structure that allows elements to be added or removed. It is supplied with standard lib ...
, it is possible to implement a stack that can grow or shrink as much as needed. The size of the stack is simply the size of the dynamic array, which is a very efficient implementation of a stack since adding items to or removing items from the end of a dynamic array requires amortized O(1) time.
Linked list
Another option for implementing stacks is to use a singly linked list
In computer science, a linked list is a linear collection of data elements whose order is not given by their physical placement in memory. Instead, each element points to the next. It is a data structure consisting of a collection of nodes whic ...
. A stack is then a pointer to the "head" of the list, with perhaps a counter to keep track of the size of the list:
structure frame:
data : item
next : frame or nil
structure stack:
head : frame or nil
size : integer
procedure initialize(stk : stack):
stk.head ← nil
stk.size ← 0
Pushing and popping items happens at the head of the list; overflow is not possible in this implementation (unless memory is exhausted):
procedure push(stk : stack, x : item):
newhead ← new frame
newhead.data ← x
newhead.next ← stk.head
stk.head ← newhead
stk.size ← stk.size + 1
procedure pop(stk : stack):
if stk.head = nil:
report underflow error
r ← stk.head.data
stk.head ← stk.head.next
stk.size ← stk.size - 1
return r
Stacks and programming languages
Some languages, such as Perl
Perl is a family of two high-level, general-purpose, interpreted, dynamic programming languages. "Perl" refers to Perl 5, but from 2000 to 2019 it also referred to its redesigned "sister language", Perl 6, before the latter's name was offici ...
, LISP
A lisp is a speech impairment in which a person misarticulates sibilants (, , , , , , , ). These misarticulations often result in unclear speech.
Types
* A frontal lisp occurs when the tongue is placed anterior to the target. Interdental lisping ...
, JavaScript
JavaScript (), often abbreviated as JS, is a programming language that is one of the core technologies of the World Wide Web, alongside HTML and CSS. As of 2022, 98% of Website, websites use JavaScript on the Client (computing), client side ...
and Python
Python may refer to:
Snakes
* Pythonidae, a family of nonvenomous snakes found in Africa, Asia, and Australia
** ''Python'' (genus), a genus of Pythonidae found in Africa and Asia
* Python (mythology), a mythical serpent
Computing
* Python (pro ...
, make the stack operations push and pop available on their standard list/array types. Some languages, notably those in the Forth
Forth or FORTH may refer to:
Arts and entertainment
* ''forth'' magazine, an Internet magazine
* ''Forth'' (album), by The Verve, 2008
* ''Forth'', a 2011 album by Proto-Kaw
* Radio Forth, a group of independent local radio stations in Scotla ...
family (including PostScript
PostScript (PS) is a page description language in the electronic publishing and desktop publishing realm. It is a dynamically typed, concatenative programming language. It was created at Adobe Systems by John Warnock, Charles Geschke, Doug Br ...
), are designed around language-defined stacks that are directly visible to and manipulated by the programmer.
The following is an example of manipulating a stack in Common Lisp
Common Lisp (CL) is a dialect of the Lisp programming language, published in ANSI standard document ''ANSI INCITS 226-1994 (S20018)'' (formerly ''X3.226-1994 (R1999)''). The Common Lisp HyperSpec, a hyperlinked HTML version, has been derived fro ...
("" is the Lisp interpreter's prompt; lines not starting with "" are the interpreter's responses to expressions):
> (setf stack (list 'a 'b 'c)) ;; set the variable "stack"
(A B C)
> (pop stack) ;; get top (leftmost) element, should modify the stack
A
> stack ;; check the value of stack
(B C)
> (push 'new stack) ;; push a new top onto the stack
(NEW B C)
Several of the C++ Standard Library
The C standard library or libc is the standard library for the C programming language, as specified in the ISO C standard.ISO/IEC (2018). '' ISO/IEC 9899:2018(E): Programming Languages - C §7'' Starting from the original ANSI C standard, it wa ...
container types have and operations with LIFO semantics; additionally, the template class adapts existing containers to provide a restricted API
An application programming interface (API) is a way for two or more computer programs to communicate with each other. It is a type of software interface, offering a service to other pieces of software. A document or standard that describes how ...
with only push/pop operations. PHP has a
SplStack
class. Java's library contains a class that is a specialization of . Following is an example program in Java
Java (; id, Jawa, ; jv, ꦗꦮ; su, ) is one of the Greater Sunda Islands in Indonesia. It is bordered by the Indian Ocean to the south and the Java Sea to the north. With a population of 151.6 million people, Java is the world's List ...
language, using that class.
import java.util.Stack;
class StackDemo
Hardware stack
A common use of stacks at the architecture level is as a means of allocating and accessing memory.
Basic architecture of a stack
A typical stack is an area of computer memory with a fixed origin and a variable size. Initially the size of the stack is zero. A ''stack pointer,'' usually in the form of a hardware register, points to the most recently referenced location on the stack; when the stack has a size of zero, the stack pointer points to the origin of the stack.
The two operations applicable to all stacks are:
* a ''push'' operation, in which a data item is placed at the location pointed to by the stack pointer, and the address in the stack pointer is adjusted by the size of the data item;
* a ''pop'' or ''pull'' operation: a data item at the current location pointed to by the stack pointer is removed, and the stack pointer is adjusted by the size of the data item.
There are many variations on the basic principle of stack operations. Every stack has a fixed location, in memory, at which it begins. As data items are added to the stack, the stack pointer is displaced to indicate the current extent of the stack, which expands away from the origin.
Stack pointers may point to the origin of a stack or to a limited range of addresses either above or below the origin (depending on the direction in which the stack grows); however, the stack pointer cannot cross the origin of the stack. In other words, if the origin of the stack is at address 1000 and the stack grows downwards (towards addresses 999, 998, and so on), the stack pointer must never be incremented beyond 1000 (to 1001, 1002, etc.). If a pop operation on the stack causes the stack pointer to move past the origin of the stack, a ''stack underflow'' occurs. If a push operation causes the stack pointer to increment or decrement beyond the maximum extent of the stack, a ''stack overflow'' occurs.
Some environments that rely heavily on stacks may provide additional operations, for example:
* ''Duplicate'': the top item is popped, and then pushed again (twice), so that an additional copy of the former top item is now on top, with the original below it.
* ''Peek'': the topmost item is inspected (or returned), but the stack pointer and stack size does not change (meaning the item remains on the stack). This is also called top operation in many articles.
* ''Swap'' or ''exchange'': the two topmost items on the stack exchange places.
* ''Rotate (or Roll)'': the topmost items are moved on the stack in a rotating fashion. For example, if , items 1, 2, and 3 on the stack are moved to positions 2, 3, and 1 on the stack, respectively. Many variants of this operation are possible, with the most common being called ''left rotate'' and ''right rotate.''
Stacks are often visualized growing from the bottom up (like real-world stacks). They may also be visualized growing from left to right, so that "topmost" becomes "rightmost", or even growing from top to bottom. The important feature is that the bottom of the stack is in a fixed position. The illustration in this section is an example of a top-to-bottom growth visualization: the top (28) is the stack "bottom", since the stack "top" (9) is where items are pushed or popped from.
A ''right rotate'' will move the first element to the third position, the second to the first and the third to the second. Here are two equivalent visualizations of this process:
apple banana
banana right rotate> cucumber
cucumber apple
cucumber apple
banana left rotate> cucumber
apple banana
A stack is usually represented in computers by a block of memory cells, with the "bottom" at a fixed location, and the stack pointer holding the address of the current "top" cell in the stack. The top and bottom terminology are used irrespective of whether the stack actually grows towards lower memory addresses or towards higher memory addresses.
Pushing an item on to the stack adjusts the stack pointer by the size of the item (either decrementing or incrementing, depending on the direction in which the stack grows in memory), pointing it to the next cell, and copies the new top item to the stack area. Depending again on the exact implementation, at the end of a push operation, the stack pointer may point to the next unused location in the stack, or it may point to the topmost item in the stack. If the stack points to the current topmost item, the stack pointer will be updated before a new item is pushed onto the stack; if it points to the next available location in the stack, it will be updated ''after'' the new item is pushed onto the stack.
Popping the stack is simply the inverse of pushing. The topmost item in the stack is removed and the stack pointer is updated, in the opposite order of that used in the push operation.
Stack in main memory
Many CISC-type CPU designs, including the x86
x86 (also known as 80x86 or the 8086 family) is a family of complex instruction set computer (CISC) instruction set architectures initially developed by Intel based on the Intel 8086 microprocessor and its 8088 variant. The 8086 was introd ...
, Z80
The Z80 is an 8-bit microprocessor introduced by Zilog as the startup company's first product. The Z80 was conceived by Federico Faggin in late 1974 and developed by him and his 11 employees starting in early 1975. The first working samples were ...
and 6502
The MOS Technology 6502 (typically pronounced "sixty-five-oh-two" or "six-five-oh-two") William Mensch and the moderator both pronounce the 6502 microprocessor as ''"sixty-five-oh-two"''. is an 8-bit microprocessor that was designed by a small te ...
, have a dedicated register for use as the call stack
In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or ma ...
stack pointer with dedicated call, return, push, and pop instructions that implicitly update the dedicated register, thus increasing code
In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form, sometimes shortened or secret, for communication through a communication ...
density. Some CISC processors, like the PDP-11
The PDP-11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, ...
and the 68000
The Motorola 68000 (sometimes shortened to Motorola 68k or m68k and usually pronounced "sixty-eight-thousand") is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Secto ...
, also have special addressing modes for implementation of stacks, typically with a semi-dedicated stack pointer as well (such as A7 in the 68000). In contrast, most RISC
In computer engineering, a reduced instruction set computer (RISC) is a computer designed to simplify the individual instructions given to the computer to accomplish tasks. Compared to the instructions given to a complex instruction set comput ...
CPU designs do not have dedicated stack instructions and therefore most, if not all, registers may be used as stack pointers as needed.
Stack in registers or dedicated memory
Some machines use a stack for arithmetic and logical operations; operands are pushed onto the stack, and arithmetic and logical operations act on the top one or more items on the stack, popping them off the stack and pushing the result onto the stack. Machines that function in this fashion are called stack machine
In computer science, computer engineering and programming language implementations, a stack machine is a computer processor or a virtual machine in which the primary interaction is moving short-lived temporary values to and from a push down st ...
s.
A number of mainframes and minicomputer
A minicomputer, or colloquially mini, is a class of smaller general purpose computers that developed in the mid-1960s and sold at a much lower price than mainframe and mid-size computers from IBM and its direct competitors. In a 1970 survey, ...
s were stack machines, the most famous being the Burroughs large systems
The Burroughs Large Systems Group produced a family of large 48-bit mainframes using stack machine instruction sets with dense syllables.E.g., 12-bit syllables for B5000, 8-bit syllables for B6500 The first machine in the family was the B5000 in ...
. Other examples include the CISC HP 3000
The HP 3000 series is a family of 16-bit and 32-bit minicomputers from Hewlett-Packard. It was designed to be the first minicomputer with full support for time-sharing in the hardware and the operating system, features that had mostly been limite ...
machines and the CISC machines from Tandem Computers
Tandem Computers, Inc. was the dominant manufacturer of fault-tolerant computer systems for Automated teller machine, ATM networks, banks, stock exchanges, telephone switching centers, and other similar commercial transaction processing applicati ...
.
The x87 floating point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be ...
architecture is an example of a set of registers organised as a stack where direct access to individual registers (relative to the current top) is also possible.
Having the top-of-stack as an implicit argument allows for a small machine code
In computer programming, machine code is any low-level programming language, consisting of machine language instructions, which are used to control a computer's central processing unit (CPU). Each instruction causes the CPU to perform a very ...
footprint with a good usage of bus
A bus (contracted from omnibus, with variants multibus, motorbus, autobus, etc.) is a road vehicle that carries significantly more passengers than an average car or van. It is most commonly used in public transport, but is also in use for cha ...
bandwidth
Bandwidth commonly refers to:
* Bandwidth (signal processing) or ''analog bandwidth'', ''frequency bandwidth'', or ''radio bandwidth'', a measure of the width of a frequency range
* Bandwidth (computing), the rate of data transfer, bit rate or thr ...
and code caches, but it also prevents some types of optimizations possible on processors permitting random access
Random access (more precisely and more generally called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any othe ...
to the register file
A register file is an array of processor registers in a central processing unit (CPU). Register banking is the method of using a single name to access multiple different physical registers depending on the operating mode. Modern integrated circuit- ...
for all (two or three) operands. A stack structure also makes superscalar
A superscalar processor is a CPU that implements a form of parallelism called instruction-level parallelism within a single processor. In contrast to a scalar processor, which can execute at most one single instruction per clock cycle, a sup ...
implementations with register renaming
In computer architecture, register renaming is a technique that abstracts logical registers from physical registers.
Every logical register has a set of physical registers associated with it.
When a machine language instruction refers to a partic ...
(for speculative execution
Speculative execution is an optimization technique where a computer system performs some task that may not be needed. Work is done before it is known whether it is actually needed, so as to prevent a delay that would have to be incurred by doing t ...
) somewhat more complex to implement, although it is still feasible, as exemplified by modern x87 implementations.
Sun SPARC, AMD Am29000
The AMD Am29000, commonly shortened to 29k, is a family of 32-bit RISC microprocessors and microcontrollers developed and fabricated by Advanced Micro Devices (AMD). Based on the seminal Berkeley RISC, the 29k added a number of significant impro ...
, and Intel i960
Intel's i960 (or 80960) was a RISC-based microprocessor design that became popular during the early 1990s as an embedded microcontroller. It became a best-selling CPU in that segment, along with the competing AMD 29000. In spite of its success, ...
are all examples of architectures using register window
In computer engineering, register windows are a feature which dedicates registers to a subroutine by dynamically aliasing a subset of internal registers to fixed, programmer-visible registers. Register windows are implemented to improve the perf ...
s within a register-stack as another strategy to avoid the use of slow main memory for function arguments and return values.
There are also a number of small microprocessors that implements a stack directly in hardware and some microcontroller
A microcontroller (MCU for ''microcontroller unit'', often also MC, UC, or μC) is a small computer on a single VLSI integrated circuit (IC) chip. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable i ...
s have a fixed-depth stack that is not directly accessible. Examples are the PIC microcontroller
PIC (usually pronounced as ''"pick"'') is a family of microcontrollers made by Microchip Technology, derived from the PIC1650"PICmicro Family Tree", PIC16F Seminar Presentation originally developed by General Instrument's Microelectronics ...
s, the Computer Cowboys
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations ( computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These pro ...
MuP21, the Harris RTX
The RTX2010, manufactured by Intersil, is a radiation hardened stack machine microprocessor which has been used in numerous spacecraft.
Characteristics
It is a two-stack machine, each stack 256 words deep, that supports direct execution of For ...
line, and the Novix NC4016 NC4, NC-4 or similar may refer to:
* Curtiss NC-4, an aircraft
*North Carolina Highway 4, a state highway in eastern North Carolina
*Charlotte Route 4
Route 4 is an partial ring road located in Charlotte, North Carolina. Beginning and ending ...
. Many stack-based microprocessors were used to implement the programming language Forth
Forth or FORTH may refer to:
Arts and entertainment
* ''forth'' magazine, an Internet magazine
* ''Forth'' (album), by The Verve, 2008
* ''Forth'', a 2011 album by Proto-Kaw
* Radio Forth, a group of independent local radio stations in Scotla ...
at the microcode
In processor design, microcode (μcode) is a technique that interposes a layer of computer organization between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer. Microcode is a laye ...
level.
Applications of stacks
Expression evaluation and syntax parsing
Calculators employing reverse Polish notation
Reverse Polish notation (RPN), also known as reverse Łukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators ''follow'' their operands, in contrast to Polish notation (PN), in whi ...
use a stack structure to hold values. Expressions can be represented in prefix, postfix or infix notations and conversion from one form to another may be accomplished using a stack. Many compilers use a stack for parsing the syntax of expressions, program blocks etc. before translating into low-level code. Most programming languages are context-free languages
In formal language theory, a context-free language (CFL) is a language generated by a context-free grammar (CFG).
Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by ...
, allowing them to be parsed with stack-based machines.
Backtracking
Another important application of stacks is backtracking
Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it de ...
. Consider a simple example of finding the correct path in a maze. There are a series of points, from the starting point to the destination. We start from one point. To reach the final destination, there are several paths. Suppose we choose a random path. After following a certain path, we realise that the path we have chosen is wrong. So we need to find a way by which we can return to the beginning of that path. This can be done with the use of stacks. With the help of stacks, we remember the point where we have reached. This is done by pushing that point into the stack. In case we end up on the wrong path, we can pop the last point from the stack and thus return to the last point and continue our quest to find the right path. This is called backtracking.
The prototypical example of a backtracking algorithm is depth-first search
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible alon ...
, which finds all vertices of a graph that can be reached from a specified starting vertex. Other applications of backtracking involve searching through spaces that represent potential solutions to an optimization problem. Branch and bound
Branch and bound (BB, B&B, or BnB) is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical optimization. A branch-and-bound algorithm consists of a systematic enumeration of candidate soluti ...
is a technique for performing such backtracking searches without exhaustively searching all of the potential solutions in such a space.
Compile-time memory management
A number of programming language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.
The description of a programming ...
s are stack-oriented, meaning they define most basic operations (adding two numbers, printing a character) as taking their arguments from the stack, and placing any return values back on the stack. For example, PostScript
PostScript (PS) is a page description language in the electronic publishing and desktop publishing realm. It is a dynamically typed, concatenative programming language. It was created at Adobe Systems by John Warnock, Charles Geschke, Doug Br ...
has a return stack and an operand stack, and also has a graphics state stack and a dictionary stack. Many virtual machine
In computing, a virtual machine (VM) is the virtualization/emulation of a computer system. Virtual machines are based on computer architectures and provide functionality of a physical computer. Their implementations may involve specialized hardw ...
s are also stack-oriented, including the p-code machine
In computer programming, a p-code machine (portable code machine) is a virtual machine designed to execute ''p-code'' (the assembly language or machine code of a hypothetical central processing unit (CPU)). This term is applied both generically t ...
and the Java Virtual Machine
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes ...
.
Almost all calling convention
In computer science, a calling convention is an implementation-level (low-level) scheme for how subroutines or functions receive parameters from their caller and how they return a result. When some code calls a function, design choices have been ...
sthe ways in which subroutine
In computer programming, a function or subroutine is a sequence of program instructions that performs a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed.
Functions may ...
s receive their parameters and return resultsuse a special stack (the "call stack
In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or ma ...
") to hold information about procedure/function calling and nesting in order to switch to the context of the called function and restore to the caller function when the calling finishes. The functions follow a runtime protocol between caller and callee to save arguments and return value on the stack. Stacks are an important way of supporting nested or recursive
Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ...
function calls. This type of stack is used implicitly by the compiler to support CALL and RETURN statements (or their equivalents) and is not manipulated directly by the programmer.
Some programming languages use the stack to store data that is local to a procedure. Space for local data items is allocated from the stack when the procedure is entered, and is deallocated when the procedure exits. The C programming language
''The C Programming Language'' (sometimes termed ''K&R'', after its authors' initials) is a computer programming book written by Brian Kernighan and Dennis Ritchie, the latter of whom originally designed and implemented the language, as well as ...
is typically implemented in this way. Using the same stack for both data and procedure calls has important security implications ( see below) of which a programmer must be aware in order to avoid introducing serious security bugs into a program.
Efficient algorithms
Several algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
s use a stack (separate from the usual function call stack of most programming languages) as the principal data structure
In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, a ...
with which they organize their information. These include:
* Graham scan
Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(''n'' log ''n''). It is named after Ronald Graham, who published the original algorithm in 1972. The algorithm finds all vertices ...
, an algorithm for the convex hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of a two-dimensional system of points. A convex hull of a subset of the input is maintained in a stack, which is used to find and remove concavities in the boundary when a new point is added to the hull.
* Part of the SMAWK algorithm The SMAWK algorithm is an algorithm for finding the minimum value in each row of an implicitly-defined totally monotone Matrix (mathematics), matrix. It is named after the initials of its five inventors, Peter Shor, Shlomo Moran, Alok Aggarwal, Robe ...
for finding the row minima of a monotone matrix uses stacks in a similar way to Graham scan.
* All nearest smaller values In computer science, the all nearest smaller values problem is the following task: for each position in a sequence of numbers, search among the previous positions for the last position that contains a smaller value. This problem can be solved effici ...
, the problem of finding, for each number in an array, the closest preceding number that is smaller than it. One algorithm for this problem uses a stack to maintain a collection of candidates for the nearest smaller value. For each position in the array, the stack is popped until a smaller value is found on its top, and then the value in the new position is pushed onto the stack.
* The nearest-neighbor chain algorithm
In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering. These are methods that take a collection of points as input, and create a hierar ...
, a method for agglomerative hierarchical clustering
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into tw ...
based on maintaining a stack of clusters, each of which is the nearest neighbor of its predecessor on the stack. When this method finds a pair of clusters that are mutual nearest neighbors, they are popped and merged.
Security
Some computing environments use stacks in ways that may make them vulnerable to security breaches
Security is protection from, or resilience against, potential harm (or other unwanted coercive change) caused by others, by restraining the freedom of others to act. Beneficiaries (technically referents) of security may be of persons and social ...
and attacks. Programmers working in such environments must take special care to avoid the pitfalls of these implementations.
For example, some programming languages use a common stack to store both data local to a called procedure and the linking information that allows the procedure to return to its caller. This means that the program moves data into and out of the same stack that contains critical return addresses for the procedure calls. If data is moved to the wrong location on the stack, or an oversized data item is moved to a stack location that is not large enough to contain it, return information for procedure calls may be corrupted, causing the program to fail.
Malicious parties may attempt a stack smashing
In software, a stack buffer overflow or stack buffer overrun occurs when a program writes to a memory address on the program's call stack outside of the intended data structure, which is usually a fixed-length buffer.
Stack buffer overflow bugs a ...
attack that takes advantage of this type of implementation by providing oversized data input to a program that does not check the length of input. Such a program may copy the data in its entirety to a location on the stack, and in so doing it may change the return addresses for procedures that have called it. An attacker can experiment to find a specific type of data that can be provided to such a program such that the return address of the current procedure is reset to point to an area within the stack itself (and within the data provided by the attacker), which in turn contains instructions that carry out unauthorized operations.
This type of attack is a variation on the buffer overflow
In information security and programming, a buffer overflow, or buffer overrun, is an anomaly whereby a program, while writing data to a buffer, overruns the buffer's boundary and overwrites adjacent memory locations.
Buffers are areas of memory ...
attack and is an extremely frequent source of security breaches in software, mainly because some of the most popular compilers use a shared stack for both data and procedure calls, and do not verify the length of data items. Frequently, programmers do not write code to verify the size of data items, either, and when an oversized or undersized data item is copied to the stack, a security breach may occur.
See also
* List of data structures
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
Data types
...
* Queue __NOTOC__
Queue () may refer to:
* Queue area, or queue, a line or area where people wait for goods or services
Arts, entertainment, and media
*''ACM Queue'', a computer magazine
* ''The Queue'' (Sorokin novel), a 1983 novel by Russian author ...
* Double-ended queue
In computer science, a double-ended queue (abbreviated to deque, pronounced ''deck'', like "cheque") is an abstract data type that generalizes a queue, for which elements can be added to or removed from either the front (head) or back (tail). I ...
* FIFO (computing and electronics)
Representation of a FIFO queue
In computing and in systems theory, FIFO is an acronym for first in, first out (the first in is the first out), a method for organizing the manipulation of a data structure (often, specifically a data buffer) where ...
* Stack-based memory allocation
Stack (abstract data type)#Hardware_stack, Stacks in computing architectures are regions of memory (computers), memory where data is added or removed in a LIFO (computing), last-in-first-out (LIFO) manner.
In most modern computer systems, each ...
* Stack overflow
In software, a stack overflow occurs if the call stack pointer exceeds the stack bound. The call stack may consist of a limited amount of address space, often determined at the start of the program. The size of the call stack depends on many fac ...
* Stack-oriented programming language
Notes
References
*
Further reading
* Donald Knuth
Donald Ervin Knuth ( ; born January 10, 1938) is an American computer scientist, mathematician, and professor emeritus at Stanford University. He is the 1974 recipient of the ACM Turing Award, informally considered the Nobel Prize of computer sc ...
. ''The Art of Computer Programming
''The Art of Computer Programming'' (''TAOCP'') is a comprehensive monograph written by the computer scientist Donald Knuth presenting programming algorithms and their analysis. Volumes 1–5 are intended to represent the central core of compu ...
'', Volume 1: ''Fundamental Algorithms'', Third Edition. Addison-Wesley, 1997. . Section 2.2.1: Stacks, Queues, and Deques, pp. 238–243.
* (11 pages) (NB. Published in .)
* (11 pages)
External links
Stack Machines - the new wave
Bounding stack depth
Stack Size Analysis for Interrupt-driven Programs
{{DEFAULTSORT:Stack (Data Structure)
Abstract data types
Articles with example pseudocode