HOME
*





Computational Problem
In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring :"Given a positive integer ''n'', find a nontrivial prime factor of ''n''." is a computational problem. A computational problem can be viewed as a set of ''instances'' or ''cases'' together with a, possibly empty, set of ''solutions'' for every instance/case. For example, in the factoring problem, the instances are the integers ''n'', and solutions are prime numbers ''p'' that are the nontrivial prime factors of ''n''. Computational problems are one of the main objects of study in theoretical computer science. The field of computational complexity theory attempts to determine the amount of resources ( computational complexity) solving a given problem will require and explain why some problems are intractable or undecidable. Computational problems belong to complexity classes that define broadly the resources (e.g. time, space/memory, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Computer Science
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The Association for Computing Machinery, ACM's ACM SIGACT, Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of Hebbian learning, learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counting Problem (complexity)
In computational complexity theory and computability theory, a counting problem is a type of computational problem. If ''R'' is a search problem then :c_R(x)=\vert\\vert \, is the corresponding counting function and :\#R=\ denotes the corresponding decision problem. Note that ''cR'' is a search problem while #''R'' is a decision problem, however ''cR'' can be ''C'' Cook-reduced to #''R'' (for appropriate ''C'') using a binary search (the reason #''R'' is defined the way it is, rather than being the graph of ''cR'', is to make this binary search possible). Counting complexity class If ''NX'' is a complexity class associated with non-deterministic machines then ''#X'' = is the set of counting problems associated with each search problem in ''NX''. In particular, #P is the class of counting problems associated with NP search problems. Just as NP has NP-complete problems via many-one reductions, #P has complete problems via parsimonious reductions, problem transformations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Property Testing
In computer science, a property testing algorithm for a decision problem is an algorithm whose query complexity to its input is much smaller than the instance size of the problem. Typically property testing algorithms are used to distinguish if some combinatorial structure ''S'' (such as a graph or a boolean function) satisfies some property ''P'', or is "far" from having this property (meaning an ε-fraction of the representation of ''S'' need be modified in order to make ''S'' satisfy ''P''), using only a small number of "local" queries to the object. For example, the following promise problem admits an algorithm whose query complexity is independent of the instance size (for an arbitrary constant ε > 0): :"Given a graph ''G'' on ''n'' vertices, decide if ''G'' is bipartite, or ''G'' cannot be made bipartite even after removing an arbitrary subset of at most \epsilon\tbinom n2 edges of ''G''." Property testing algorithms are central to the definition of probabilistically ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardness Of Approximation
In computer science, hardness of approximation is a field that studies the algorithmic complexity of finding near-optimal solutions to optimization problems. Scope Hardness of approximation complements the study of approximation algorithms by proving, for certain problems, a limit on the factors with which their solution can be efficiently approximated. Typically such limits show a factor of approximation beyond which a problem becomes NP-hard, implying that finding a polynomial time approximation for the problem is impossible unless NP=P. Some hardness of approximation results, however, are based on other hypotheses, a notable one among which is the unique games conjecture. History Since the early 1970s it was known that many optimization problems could not be solved in polynomial time unless P = NP, but in many of these problems the optimal solution could be efficiently approximated to a certain degree. In the 1970s, Teofilo F. Gonzalez and Sartaj Sahni began the study of ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analysis Of Algorithms
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity) or the number of storage locations it uses (its space complexity). An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input. Different inputs of the same size may cause the algorithm to have different behavior, so best, worst and average case descriptions might all be of practical interest. When not otherwise specified, the function describing the performance of an algorithm is usually an upper bound, determined from the worst case inputs to the algorithm. The term "analysis of algorithms" was coined by Donald Knuth. Algorithm analysis is an important part of a broader ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Promise Problem
In computational complexity theory, a promise problem is a generalization of a decision problem where the input is promised to belong to a particular subset of all possible inputs. Unlike decision problems, the ''yes'' instances (the inputs for which an algorithm must return ''yes'') and ''no'' instances do not exhaust the set of all inputs. Intuitively, the algorithm has been ''promised'' that the input does indeed belong to set of ''yes'' instances or ''no'' instances. There may be inputs which are neither ''yes'' nor ''no''. If such an input is given to an algorithm for solving a promise problem, the algorithm is allowed to output anything, and may even not halt. Formal definition A decision problem can be associated with a language L \subseteq \^*, where the problem is to accept all inputs in L and reject all inputs not in L. For a promise problem, there are two languages, L_ and L_, which must be disjoint, which means L_ \cap L_ = \varnothing, such that all the inputs in L_ a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operations Research
Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decision-making. It is considered to be a subfield of mathematical sciences. The term management science is occasionally used as a synonym. Employing techniques from other mathematical sciences, such as modeling, statistics, and optimization, operations research arrives at optimal or near-optimal solutions to decision-making problems. Because of its emphasis on practical applications, operations research has overlap with many other disciplines, notably industrial engineering. Operations research is often concerned with determining the extreme values of some real-world objective: the maximum (of profit, performance, or yield) or minimum (of loss, risk, or cost). Originating in military efforts before World War II, its techniques have grown to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorial Optimization
Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead. Combinatorial optimization is related to operations research, algorithm theory, and computational complexity theory. It has important applications in several fields, including artificial intelligence, machine learning, auction theory, software engineering, VLSI, applied mathematics and theoretical computer science. Some research literature considers discrete o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-hard
In computational complexity theory, NP-hardness ( non-deterministic polynomial-time hardness) is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem. A more precise specification is: a problem ''H'' is NP-hard when every problem ''L'' in NP can be reduced in polynomial time to ''H''; that is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve any NP-hard problem would give polynomial time algorithms for all the problems in NP. As it is suspected that P≠NP, it is unlikely that such an algorithm exists. It is suspected that there are no polynomial-time algorithms for NP-hard problems, but that has not been proven. Moreover, the class P, in which all problems can be solved in polynomial time, is contained in the NP class. Defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Travelling Salesman Problem
The travelling salesman problem (also called the travelling salesperson problem or TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research. The travelling purchaser problem and the vehicle routing problem are both generalizations of TSP. In the theory of computational complexity, the decision version of the TSP (where given a length ''L'', the task is to decide whether the graph has a tour of at most ''L'') belongs to the class of NP-complete problems. Thus, it is possible that the worst-case running time for any algorithm for the TSP increases superpolynomially (but no more than exponentially) with the number of cities. The problem was first formulated in 1930 and is one of the most intensively studied p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly itself) to . The subset , that is, the domain of viewed as a function, is called the domain of definition of . If equals , that is, if is defined on every element in , then is said to be total. More technically, a partial function is a binary relation over two sets that associates every element of the first set to ''at most'' one element of the second set; it is thus a functional binary relation. It generalizes the concept of a (total) function by not requiring every element of the first set to be associated to ''exactly'' one element of the second set. A partial function is often used when its exact domain of definition is not known or difficult to specify. This is the case in calculus, where, for example, the quotient of two functions is a partial function whose domain of definition cannot contain the zeros of the denominator. For this reason, in calculus, and more ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Problem
In computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. Formal definition A functional problem P is defined as a relation R over strings of an arbitrary alphabet \Sigma: : R \subseteq \Sigma^* \times \Sigma^*. An algorithm solves P if for every input x such that there exists a y satisfying (x, y) \in R, the algorithm produces one such y. Examples A well-known function problem is given by the Functional Boolean Satisfiability Problem, FSAT for short. The problem, which is closely related to the SAT decision problem, can be formulated as follows: :Given a boolean formula \varphi with variables x_1, \ldots, x_n, find an assignment x_i \rightarrow \ such that \varphi evaluates to \text or decide that no such assignment exists. In this case the relation R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]