Relation (mathematics)
In mathematics, a relation on a set may, or may not, hold between two given set members. For example, ''"is less than"'' is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1 is an asymmetric relation, but ≥ is not. Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation defined by is neither symmetric nor antisymmetric, let alone asymmetric. ; : for all , if and then . A transitive relation is irreflexive if and only if it is asymmetric. For example, "is ancestor of" is a transitive relation, while "is parent of" is not. ; : for all , if then or . This property is sometimes called "total", which is distinct from the definitions of "total" given in the section . ; : for all , or . This property is sometimes called "total", which is distinct from the definitions of "total" given in the section . ; : every nonempty subset of contains a minimal element with respect to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relación Binaria 01
"Relación" is a song recorded by Panamanian singer and songwriter Sech (singer), Sech. The song was released on April 1, 2020 as the second single from his sophomore studio album ''1 of 1 (Sech album), 1 of 1,'' released a month later. It was written by the performer alongside its producers and Joshua Méndez and Ramses Herrera. The track was produced by Jorge Valdes and Miguel Andrés Martínez, better known as Dímelo Flow and Slow Mike. "Relación" became a top ten hit in Panama, Argentina and Spain as well as a very popular song on TikTok. In the United States, the track made it to the twenty-second position on the Bubbling Under Hot 100 Singles chart. A remixed version of the song featuring vocals by Daddy Yankee, J Balvin, Rosalía (singer), Rosalía and Farruko, was released on September 4, 2020. It achieved great commercial success, surpassing the chart success of the original song, reaching the top ten position in Argentina, Panama and Spain, among others, and peaked at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Composition Of Relations
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation from two given binary relations ''R'' and ''S''. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent. In algebraic logic it is said that the relation of Uncle (x U z) is the composition of relations "is a brother of" (x B y) and "is a parent of" (y P z). U = BP \quad \text \quad xByPz \text xUz. Beginning with Augustus De Morgan, the traditional form of reasoning by syllogism has been subsumed by relational logical expressions and their composition. Definition If R \subseteq X \times Y and S \subseteq Y \times Z are two binary relations, then their composition R; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Matrix
In mathematics, a Boolean matrix is a matrix with entries from a Boolean algebra. When the two-element Boolean algebra is used, the Boolean matrix is called a logical matrix. (In some contexts, particularly computer science, the term "Boolean matrix" implies this restriction.) Let ''U'' be a non-trivial Boolean algebra (i.e. with at least two elements). Intersection, union, complementation, and containment of elements is expressed in ''U''. Let ''V'' be the collection of ''n'' × ''n'' matrices that have entries taken from ''U''. Complementation of such a matrix is obtained by complementing each element. The intersection or union of two such matrices is obtained by applying the operation to entries of each pair of elements to obtain the corresponding matrix intersection or union. A matrix is contained in another if each entry of the first is contained in the corresponding entry of the second. The product of two Boolean matrices is expressed as follows: :(AB)_ = \bigcup_^n (A_ \ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Directed Graph
In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pair where * ''V'' is a set whose elements are called '' vertices'', ''nodes'', or ''points''; * ''A'' is a set of ordered pairs of vertices, called ''arcs'', ''directed edges'' (sometimes simply ''edges'' with the corresponding set named ''E'' instead of ''A''), ''arrows'', or ''directed lines''. It differs from an ordinary or undirected graph, in that the latter is defined in terms of unordered pairs of vertices, which are usually called ''edges'', ''links'' or ''lines''. The aforementioned definition does not allow a directed graph to have multiple arrows with the same source and target nodes, but some authors consider a broader definition that allows directed graphs to have such multiple arcs (namely, they allow the arc set to be a m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hasse Diagram
In order theory, a Hasse diagram (; ) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set ''(S, ≤)'' one represents each element of ''S'' as a vertex in the plane and draws a line segment or curve that goes ''upward'' from ''x'' to ''y'' whenever ''y'' ≠ ''x'' and ''y'' covers ''x'' (that is, whenever ''x'' ≤ ''y'' and there is no ''z'' such that ''x'' ≤ ''z'' ≤ ''y''). These curves may cross each other but must not touch any vertices other than their endpoints. Such a diagram, with labeled vertices, uniquely determines its partial order. The diagrams are named after Helmut Hasse (1898–1979); according to , they are so called because of the effective use Hasse made of them. However, Hasse was not the first to use these diagrams. One example that predates Hasse can be found in . Although Hasse diagrams were originally devised as a technique for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relation Repr 12div Svg
Relation or relations may refer to: General uses *International relations, the study of interconnection of politics, economics, and law on a global level *Interpersonal relationship, association or acquaintance between two or more people *Public relations, managing the spread of information to the public *Sexual relations, or human sexual activity *Social relation, in social science, any social interaction between two or more individuals Logic and philosophy *Relation (philosophy), links between properties of an object *Relational theory, framework to understand reality or a physical system Mathematics A finitary or ''n''-ary relation is a set of ''n''-tuples. Specific types of relations include: *Relation (mathematics) *Binary relation (or correspondence, dyadic relation, or 2-place relation) *Equivalence relation *Homogeneous relation *Reflexive relation *Serial relation *Ternary relation (or triadic, 3-adic, 3-ary, 3-dimensional, or 3-place relation) Relation may also ref ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infix Notation
Infix notation is the notation commonly used in arithmetical and logical formulae and statements. It is characterized by the placement of operators between operands—" infixed operators"—such as the plus sign in . Usage Binary relations are often denoted by an infix symbol such as set membership ''a'' ∈ ''A'' when the set ''A'' has ''a'' for an element. In geometry, perpendicular lines ''a'' and ''b'' are denoted a \perp b \ , and in projective geometry two points ''b'' and ''c'' are in perspective when b \ \doublebarwedge \ c while they are connected by a projectivity when b \ \barwedge \ c . Infix notation is more difficult to parse by computers than prefix notation (e.g. + 2 2) or postfix notation (e.g. 2 2 +). However many programming languages use it due to its familiarity. It is more used in arithmetic, e.g. 5 × 6. Further notations Infix notation may also be distinguished from function notation, where the name of a function suggests a particular operation, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Class (mathematics)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox (see ). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate class" is often used ins ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finitary Relation
In mathematics, a finitary relation over sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples consisting of elements ''x''''i'' in ''X''''i''. Typically, the relation describes a possible connection between the elements of an ''n''-tuple. For example, the relation "''x'' is divisible by ''y'' and ''z''" consists of the set of 3-tuples such that when substituted to ''x'', ''y'' and ''z'', respectively, make the sentence true. The non-negative integer ''n'' giving the number of "places" in the relation is called the ''arity'', ''adicity'' or ''degree'' of the relation. A relation with ''n'' "places" is variously called an ''n''-ary relation, an ''n''-adic relation or a relation of degree ''n''. Relations with a finite number of places are called ''finitary relations'' (or simply ''relations'' if the context is clear). It is also possible to generalize the concept to ''infinitary relations'' with infinite sequences. An ''n''-ary relation over sets is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line (geometry)
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and affine geometry). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Point (geometry)
In classical Euclidean geometry, a point is a primitive notion that models an exact location in space, and has no length, width, or thickness. In modern mathematics, a point refers more generally to an element of some set called a space. Being a primitive notion means that a point cannot be defined in terms of previously defined objects. That is, a point is defined only by some properties, called axioms, that it must satisfy; for example, ''"there is exactly one line that passes through two different points"''. Points in Euclidean geometry Points, considered within the framework of Euclidean geometry, are one of the most fundamental objects. Euclid originally defined the point as "that which has no part". In two-dimensional Euclidean space, a point is represented by an ordered pair (, ) of numbers, where the first number conventionally represents the horizontal and is often denoted by , and the second number conventionally represents the vertical and is often denoted by . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heterogeneous Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a multiple of , but not to an integer that is not a multiple of . In this relation, for instance, the prime number 2 is related to number ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |