Projective geometry
   HOME

TheInfoList



OR:

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to
projective transformation In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
s. This means that, compared to elementary
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
, for a given dimension, and that
geometric transformation In mathematics, a geometric transformation is any bijection of a set to itself (or to another such set) with some salient geometrical underpinning. More specifically, it is a function whose domain and range are sets of points — most often b ...
s are permitted that transform the extra points (called "
points at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Ad ...
") to Euclidean points, and vice-versa. Properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a
transformation matrix In linear algebra, linear transformations can be represented by matrices. If T is a linear transformation mapping \mathbb^n to \mathbb^m and \mathbf x is a column vector with n entries, then T( \mathbf x ) = A \mathbf x for some m \times n matrix ...
and
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
s (the affine transformations). The first issue for geometers is what kind of geometry is adequate for a novel situation. It is not possible to refer to
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
s in projective geometry as it is in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, because angle is an example of a concept not invariant with respect to projective transformations, as is seen in perspective drawing. One source for projective geometry was indeed the theory of perspective. Another difference from elementary geometry is the way in which
parallel lines In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or int ...
can be said to meet in a
point at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Ad ...
, once the concept is translated into projective geometry's terms. Again this notion has an intuitive basis, such as railway tracks meeting at the horizon in a perspective drawing. See
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that d ...
for the basics of projective geometry in two dimensions. While the ideas were available earlier, projective geometry was mainly a development of the 19th century. This included the theory of
complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
, the coordinates used ( homogeneous coordinates) being complex numbers. Several major types of more abstract mathematics (including
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
, the Italian school of algebraic geometry, and
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
's
Erlangen programme In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is na ...
resulting in the study of the
classical groups In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or ...
) were motivated by projective geometry. It was also a subject with many practitioners for its own sake, as
synthetic geometry Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is the study of geometry without the use of coordinates or formulae. It relies on the axiomatic method and the tools directly related to them, that is, compass ...
. Another topic that developed from axiomatic studies of projective geometry is
finite geometry Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
. The topic of projective geometry is itself now divided into many research subtopics, two examples of which are projective algebraic geometry (the study of
projective varieties In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables wi ...
) and
projective differential geometry In mathematics, projective differential geometry is the study of differential geometry, from the point of view of properties of mathematical objects such as functions, diffeomorphisms, and submanifolds, that are invariant under transformations of ...
(the study of differential invariants of the projective transformations).


Overview

Projective geometry is an elementary non- metrical form of geometry, meaning that it is not based on a concept of distance. In two dimensions it begins with the study of configurations of points and lines. That there is indeed some geometric interest in this sparse setting was first established by Desargues and others in their exploration of the principles of perspective art. In
higher dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordin ...
al spaces there are considered hyperplanes (that always meet), and other linear subspaces, which exhibit the principle of duality. The simplest illustration of duality is in the projective plane, where the statements "two distinct points determine a unique line" (i.e. the line through them) and "two distinct lines determine a unique point" (i.e. their point of intersection) show the same structure as propositions. Projective geometry can also be seen as a geometry of constructions with a
straight-edge Straight edge (sometimes abbreviated sXe or signified by XXX or X) is a subculture of hardcore punk whose adherents refrain from using alcohol, tobacco, and other recreational drugs, in reaction to the excesses of punk subculture. For some, thi ...
alone. Since projective geometry excludes
compass A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It commonly consists of a magnetized needle or other element, such as a compass card or compass rose, which can pivot to align itself wit ...
constructions, there are no circles, no angles, no measurements, no parallels, and no concept of intermediacy. It was realised that the theorems that do apply to projective geometry are simpler statements. For example, the different
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a spe ...
s are all equivalent in (complex) projective geometry, and some theorems about circles can be considered as special cases of these general theorems. During the early 19th century the work of
Jean-Victor Poncelet Jean-Victor Poncelet (; 1 July 1788 – 22 December 1867) was a French engineer and mathematician who served most notably as the Commanding General of the École Polytechnique. He is considered a reviver of projective geometry, and his work ''Tr ...
, Lazare Carnot and others established projective geometry as an independent field of mathematics . Its rigorous foundations were addressed by
Karl von Staudt Karl Georg Christian von Staudt (24 January 1798 – 1 June 1867) was a German mathematician who used synthetic geometry to provide a foundation for arithmetic. Life and influence Karl was born in the Free Imperial City of Rothenburg, which is n ...
and perfected by Italians
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much notation. The sta ...
,
Mario Pieri Mario Pieri (22 June 1860 – 1 March 1913) was an Italian mathematician who is known for his work on foundations of geometry. Biography Pieri was born in Lucca, Italy, the son of Pellegrino Pieri and Ermina Luporini. Pellegrino was a lawyer. Pie ...
, Alessandro Padoa and
Gino Fano Gino Fano (5 January 18718 November 1952) was an Italian mathematician, best known as the founder of finite geometry. He was born to a wealthy Jewish family in Mantua, in Italy and died in Verona, also in Italy. Fano made various contributions ...
during the late 19th century. Projective geometry, like
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine comb ...
and
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, can also be developed from the
Erlangen program In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is nam ...
of Felix Klein; projective geometry is characterized by invariants under transformations of the projective group. After much work on the very large number of theorems in the subject, therefore, the basics of projective geometry became understood. The
incidence structure In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the points and lines of the Euclidean plane as the two types of objects and ignore al ...
and the
cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, th ...
are fundamental invariants under projective transformations. Projective geometry can be modeled by the
affine plane In geometry, an affine plane is a two-dimensional affine space. Examples Typical examples of affine planes are *Euclidean planes, which are affine planes over the real number, reals equipped with a metric (mathematics), metric, the Euclidean dista ...
(or affine space) plus a line (hyperplane) "at infinity" and then treating that line (or hyperplane) as "ordinary". An algebraic model for doing projective geometry in the style of analytic geometry is given by homogeneous coordinates. On the other hand, axiomatic studies revealed the existence of
non-Desarguesian plane In mathematics, a non-Desarguesian plane is a projective plane that does not satisfy Desargues' theorem (named after Girard Desargues), or in other words a plane that is not a Desarguesian plane. The theorem of Desargues is true in all projective ...
s, examples to show that the axioms of incidence can be modelled (in two dimensions only) by structures not accessible to reasoning through homogeneous coordinate systems. In a foundational sense, projective geometry and
ordered geometry Ordered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affi ...
are elementary since they involve a minimum of
axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
and either can be used as the foundation for
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine comb ...
and
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
. Projective geometry is not "ordered" and so it is a distinct foundation for geometry.


History

The first geometrical properties of a projective nature were discovered during the 3rd century by
Pappus of Alexandria Pappus of Alexandria (; grc-gre, Πάππος ὁ Ἀλεξανδρεύς; AD) was one of the last great Greek mathematicians of antiquity known for his ''Synagoge'' (Συναγωγή) or ''Collection'' (), and for Pappus's hexagon theorem i ...
. Filippo Brunelleschi (1404–1472) started investigating the geometry of perspective during 1425 (see the history of perspective for a more thorough discussion of the work in the fine arts that motivated much of the development of projective geometry). Johannes Kepler (1571–1630) and Gérard Desargues (1591–1661) independently developed the concept of the "point at infinity". Desargues developed an alternative way of constructing perspective drawings by generalizing the use of vanishing points to include the case when these are infinitely far away. He made
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, where parallel lines are truly parallel, into a special case of an all-encompassing geometric system. Desargues's study on conic sections drew the attention of 16-year-old Blaise Pascal and helped him formulate
Pascal's theorem In projective geometry, Pascal's theorem (also known as the ''hexagrammum mysticum theorem'') states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined ...
. The works of
Gaspard Monge Gaspard Monge, Comte de Péluse (9 May 1746 – 28 July 1818) was a French mathematician, commonly presented as the inventor of descriptive geometry, (the mathematical basis of) technical drawing, and the father of differential geometry. During ...
at the end of 18th and beginning of 19th century were important for the subsequent development of projective geometry. The work of Desargues was ignored until
Michel Chasles Michel Floréal Chasles (; 15 November 1793 – 18 December 1880) was a French mathematician. Biography He was born at Épernon in France and studied at the École Polytechnique in Paris under Siméon Denis Poisson. In the War of the Sixth Coal ...
chanced upon a handwritten copy during 1845. Meanwhile,
Jean-Victor Poncelet Jean-Victor Poncelet (; 1 July 1788 – 22 December 1867) was a French engineer and mathematician who served most notably as the Commanding General of the École Polytechnique. He is considered a reviver of projective geometry, and his work ''Tr ...
had published the foundational treatise on projective geometry during 1822. Poncelet examined the projective properties of objects (those invariant under central projection) and, by basing his theory on the concrete pole and polar relation with respect to a circle, established a relationship between metric and projective properties. The
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
discovered soon thereafter were eventually demonstrated to have models, such as the
Klein model Klein may refer to: People * Klein (surname) *Klein (musician) Places * Klein (crater), a lunar feature * Klein, Montana, United States *Klein, Texas, United States *Klein (Ohm), a river of Hesse, Germany, tributary of the Ohm *Klein River, a ri ...
of
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
, relating to projective geometry. In 1855 A. F. Möbius wrote an article about permutations, now called Möbius transformations, of
generalised circle In geometry, a generalized circle, also referred to as a "cline" or "circline", is a straight line or a circle. The concept is mainly used in inversive geometry, because straight lines and circles have very similar properties in that geometry and ...
s in the complex plane. These transformations represent projectivities of the
complex projective line In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers p ...
. In the study of lines in space,
Julius Plücker Julius Plücker (16 June 1801 – 22 May 1868) was a German mathematician and physicist. He made fundamental contributions to the field of analytical geometry and was a pioneer in the investigations of cathode rays that led eventually to the dis ...
used homogeneous coordinates in his description, and the set of lines was viewed on the Klein quadric, one of the early contributions of projective geometry to a new field called algebraic geometry, an offshoot of analytic geometry with projective ideas. Projective geometry was instrumental in the validation of speculations of Lobachevski and Bolyai concerning
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
by providing
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
s for the hyperbolic plane: for example, the
Poincaré disc model Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré (1854–1912), French physicist, mathematician and philosopher of science * Henriette Poincaré (1858-1943), wife of Prime Minister Raymond Poincaré * Luci ...
where generalised circles perpendicular to the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
correspond to "hyperbolic lines" ( geodesics), and the "translations" of this model are described by Möbius transformations that map the
unit disc In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose d ...
to itself. The distance between points is given by a Cayley-Klein metric, known to be invariant under the translations since it depends on
cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, th ...
, a key projective invariant. The translations are described variously as
isometries In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
in
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
theory, as
linear fractional transformation In mathematics, a linear fractional transformation is, roughly speaking, a transformation of the form :z \mapsto \frac , which has an inverse. The precise definition depends on the nature of , and . In other words, a linear fractional transf ...
s formally, and as projective linear transformations of the
projective linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associate ...
, in this case SU(1, 1). The work of
Poncelet The poncelet (symbol p) is an obsolete unit of power, once used in France and replaced by (ch, metric horsepower). The unit was named after Jean-Victor Poncelet.François Cardarelli, ''Encyclopaedia of Scientific Units, Weights and Measures: The ...
,
Jakob Steiner Jakob Steiner (18 March 1796 – 1 April 1863) was a Swiss mathematician who worked primarily in geometry. Life Steiner was born in the village of Utzenstorf, Canton of Bern. At 18, he became a pupil of Heinrich Pestalozzi and afterwards st ...
and others was not intended to extend analytic geometry. Techniques were supposed to be '' synthetic'': in effect projective space as now understood was to be introduced axiomatically. As a result, reformulating early work in projective geometry so that it satisfies current standards of rigor can be somewhat difficult. Even in the case of the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that d ...
alone, the axiomatic approach can result in
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
s not describable via
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices ...
. This period in geometry was overtaken by research on the general
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
by Clebsch,
Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
,
Max Noether Max Noether (24 September 1844 – 13 December 1921) was a German mathematician who worked on algebraic geometry and the theory of algebraic functions. He has been called "one of the finest mathematicians of the nineteenth century". He was the f ...
and others, which stretched existing techniques, and then by
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
. Towards the end of the century, the Italian school of algebraic geometry ( Enriques, Segre, Severi) broke out of the traditional subject matter into an area demanding deeper techniques. During the later part of the 19th century, the detailed study of projective geometry became less fashionable, although the literature is voluminous. Some important work was done in
enumerative geometry In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory. History The problem of Apollonius is one of the earliest examp ...
in particular, by Schubert, that is now considered as anticipating the theory of
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau ...
es, taken as representing the
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
of
Grassmannian In mathematics, the Grassmannian is a space that parameterizes all -dimensional linear subspaces of the -dimensional vector space . For example, the Grassmannian is the space of lines through the origin in , so it is the same as the projective ...
s. Projective geometry later proved key to
Paul Dirac Paul Adrien Maurice Dirac (; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. He was the Lucasian Professor of Mathematics at the Univer ...
's invention of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
. At a foundational level, the discovery that quantum measures could fail to commute had disturbed and dissuaded Heisenberg, but past study of projective planes over noncommutative rings had likely desensitized Dirac. In more advanced work, Dirac used extensive drawings in projective geometry to understand the intuitive meaning of his equations, before writing up his work in an exclusively algebraic formalism.


Description

Projective geometry is less restrictive than either
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
or
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is ...
. It is an intrinsically non- metrical geometry, meaning that facts are independent of any metric structure. Under the projective transformations, the
incidence structure In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the points and lines of the Euclidean plane as the two types of objects and ignore al ...
and the relation of
projective harmonic conjugate In projective geometry, the harmonic conjugate point of an ordered triple of points on the real projective line is defined by the following construction: :Given three collinear points , let be a point not lying on their join and let any line t ...
s are preserved. A projective range is the one-dimensional foundation. Projective geometry formalizes one of the central principles of perspective art: that parallel lines meet at infinity, and therefore are drawn that way. In essence, a projective geometry may be thought of as an extension of Euclidean geometry in which the "direction" of each line is subsumed within the line as an extra "point", and in which a "horizon" of directions corresponding to coplanar lines is regarded as a "line". Thus, two parallel lines meet on a horizon line by virtue of their incorporating the same direction. Idealized directions are referred to as points at infinity, while idealized horizons are referred to as lines at infinity. In turn, all these lines lie in the plane at infinity. However, infinity is a metric concept, so a purely projective geometry does not single out any points, lines or planes in this regard—those at infinity are treated just like any others. Because a
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
is contained within a projective geometry—with projective geometry having a simpler foundation—general results in Euclidean geometry may be derived in a more transparent manner, where separate but similar theorems of Euclidean geometry may be handled collectively within the framework of projective geometry. For example, parallel and nonparallel lines need not be treated as separate cases; rather an arbitrary projective plane is singled out as the ideal plane and located "at infinity" using homogeneous coordinates. Additional properties of fundamental importance include Desargues' Theorem and the Theorem of Pappus. In projective spaces of dimension 3 or greater there is a construction that allows one to prove Desargues' Theorem. But for dimension 2, it must be separately postulated. Using Desargues' Theorem, combined with the other axioms, it is possible to define the basic operations of arithmetic, geometrically. The resulting operations satisfy the axioms of a field — except that the commutativity of multiplication requires
Pappus's hexagon theorem In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that *given one set of collinear points A, B, C, and another set of collinear points a,b,c, then the intersection points X,Y,Z of line pairs Ab and aB, Ac and ...
. As a result, the points of each line are in one-to-one correspondence with a given field, , supplemented by an additional element, ∞, such that , , , , , , except that , , , , and remain undefined. Projective geometry also includes a full theory of conic sections, a subject also extensively developed in Euclidean geometry. There are advantages to being able to think of a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca ...
and an ellipse as distinguished only by the way the hyperbola ''lies across the line at infinity''; and that a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exact ...
is distinguished only by being tangent to the same line. The whole family of circles can be considered as ''conics passing through two given points on the line at infinity'' — at the cost of requiring
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
coordinates. Since coordinates are not "synthetic", one replaces them by fixing a line and two points on it, and considering the ''linear system'' of all conics passing through those points as the basic object of study. This method proved very attractive to talented geometers, and the topic was studied thoroughly. An example of this method is the multi-volume treatise by H. F. Baker. There are many projective geometries, which may be divided into discrete and continuous: a ''discrete'' geometry comprises a set of points, which may or may not be ''finite'' in number, while a ''continuous'' geometry has infinitely many points with no gaps in between. The only projective geometry of dimension 0 is a single point. A projective geometry of dimension 1 consists of a single line containing at least 3 points. The geometric construction of arithmetic operations cannot be performed in either of these cases. For dimension 2, there is a rich structure in virtue of the absence of Desargues' Theorem. The smallest 2-dimensional projective geometry (that with the fewest points) is the
Fano plane In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines ...
, which has 3 points on every line, with 7 points and 7 lines in all, having the following collinearities: * BC* DE* FG* DG* EF* DF* EG with homogeneous coordinates , , , , , , , or, in affine coordinates, , , , , , and . The affine coordinates in a Desarguesian plane for the points designated to be the points at infinity (in this example: C, E and G) can be defined in several other ways. In standard notation, a finite projective geometry is written where: : is the projective (or geometric) dimension, and : is one less than the number of points on a line (called the ''order'' of the geometry). Thus, the example having only 7 points is written . The term "projective geometry" is used sometimes to indicate the generalised underlying abstract geometry, and sometimes to indicate a particular geometry of wide interest, such as the metric geometry of flat space which we analyse through the use of homogeneous coordinates, and in which
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
may be embedded (hence its name, Extended Euclidean plane). The fundamental property that singles out all projective geometries is the ''elliptic'' incidence property that any two distinct lines and in the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that d ...
intersect at exactly one point . The special case in analytic geometry of ''parallel'' lines is subsumed in the smoother form of a line ''at infinity'' on which lies. The ''line at infinity'' is thus a line like any other in the theory: it is in no way special or distinguished. (In the later spirit of the
Erlangen programme In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is na ...
one could point to the way the
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
of transformations can move any line to the ''line at infinity''). The parallel properties of elliptic, Euclidean and hyperbolic geometries contrast as follows: : Given a line and a point not on the line, ::; ''
Elliptic In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
'' : there exists no line through that does not meet ::; '' Euclidean'' : there exists exactly one line through that does not meet ::; ''
Hyperbolic Hyperbolic is an adjective describing something that resembles or pertains to a hyperbola (a curve), to hyperbole (an overstatement or exaggeration), or to hyperbolic geometry. The following phenomena are described as ''hyperbolic'' because they ...
'' : there exists more than one line through that does not meet The parallel property of elliptic geometry is the key idea that leads to the principle of projective duality, possibly the most important property that all projective geometries have in common.


Duality

In 1825, Joseph Gergonne noted the principle of duality characterizing projective plane geometry: given any theorem or definition of that geometry, substituting ''point'' for ''line'', ''lie on'' for ''pass through'', ''collinear'' for ''concurrent'', ''intersection'' for ''join'', or vice versa, results in another theorem or valid definition, the "dual" of the first. Similarly in 3 dimensions, the duality relation holds between points and planes, allowing any theorem to be transformed by swapping ''point'' and ''plane,'' ''is contained by'' and ''contains.'' More generally, for projective spaces of dimension N, there is a duality between the subspaces of dimension R and dimension N−R−1. For N = 2, this specializes to the most commonly known form of duality—that between points and lines. The duality principle was also discovered independently by
Jean-Victor Poncelet Jean-Victor Poncelet (; 1 July 1788 – 22 December 1867) was a French engineer and mathematician who served most notably as the Commanding General of the École Polytechnique. He is considered a reviver of projective geometry, and his work ''Tr ...
. To establish duality only requires establishing theorems which are the dual versions of the axioms for the dimension in question. Thus, for 3-dimensional spaces, one needs to show that (1*) every point lies in 3 distinct planes, (2*) every two planes intersect in a unique line and a dual version of (3*) to the effect: if the intersection of plane P and Q is coplanar with the intersection of plane R and S, then so are the respective intersections of planes P and R, Q and S (assuming planes P and S are distinct from Q and R). In practice, the principle of duality allows us to set up a ''dual correspondence'' between two geometric constructions. The most famous of these is the polarity or reciprocity of two figures in a
conic In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
curve (in 2 dimensions) or a quadric surface (in 3 dimensions). A commonplace example is found in the reciprocation of a symmetrical
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
in a concentric sphere to obtain the dual polyhedron. Another example is Brianchon's theorem, the dual of the already mentioned
Pascal's theorem In projective geometry, Pascal's theorem (also known as the ''hexagrammum mysticum theorem'') states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined ...
, and one of whose proofs simply consists of applying the principle of duality to Pascal's. Here are comparative statements of these two theorems (in both cases within the framework of the projective plane): * Pascal: If all six vertices of a hexagon lie on a
conic In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
, then the intersections of its opposite sides ''(regarded as full lines, since in the projective plane there is no such thing as a "line segment")'' are three collinear points. The line joining them is then called the Pascal line of the hexagon. * Brianchon: If all six sides of a hexagon are tangent to a conic, then its diagonals (i.e. the lines joining opposite vertices) are three concurrent lines. Their point of intersection is then called the Brianchon point of the hexagon. : (If the conic degenerates into two straight lines, Pascal's becomes Pappus's theorem, which has no interesting dual, since the Brianchon point trivially becomes the two lines' intersection point.)


Axioms of projective geometry

Any given geometry may be deduced from an appropriate set of axioms. Projective geometries are characterised by the "elliptic parallel" axiom, that ''any two planes always meet in just one line'', or in the plane, ''any two lines always meet in just one point.'' In other words, there are no such things as parallel lines or planes in projective geometry. Many alternative sets of axioms for projective geometry have been proposed (see for example Coxeter 2003, Hilbert & Cohn-Vossen 1999, Greenberg 1980).


Whitehead's axioms

These axioms are based on Whitehead, "The Axioms of Projective Geometry". There are two types, points and lines, and one "incidence" relation between points and lines. The three axioms are: * G1: Every line contains at least 3 points * G2: Every two distinct points, A and B, lie on a unique line, AB. * G3: If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A and D are distinct from B and C). The reason each line is assumed to contain at least 3 points is to eliminate some degenerate cases. The spaces satisfying these three axioms either have at most one line, or are projective spaces of some dimension over a
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
, or are
non-Desarguesian plane In mathematics, a non-Desarguesian plane is a projective plane that does not satisfy Desargues' theorem (named after Girard Desargues), or in other words a plane that is not a Desarguesian plane. The theorem of Desargues is true in all projective ...
s.


Additional axioms

One can add further axioms restricting the dimension or the coordinate ring. For example, Coxeter's ''Projective Geometry'', references Veblen in the three axioms above, together with a further 5 axioms that make the dimension 3 and the coordinate ring a commutative field of characteristic not 2.


Axioms using a ternary relation

One can pursue axiomatization by postulating a ternary relation, BCto denote when three points (not all necessarily distinct) are collinear. An axiomatization may be written down in terms of this relation as well: * C0: BA* C1: If A and B are two points such that BCand BDthen DC* C2: If A and B are two points then there is a third point C such that BC* C3: If A and C are two points, B and D also, with CE DEbut not BEthen there is a point F such that CFand DF For two different points, A and B, the line AB is defined as consisting of all points C for which BC The axioms C0 and C1 then provide a formalization of G2; C2 for G1 and C3 for G3. The concept of line generalizes to planes and higher-dimensional subspaces. A subspace, AB...XY may thus be recursively defined in terms of the subspace AB...X as that containing all the points of all lines YZ, as Z ranges over AB...X. Collinearity then generalizes to the relation of "independence". A set of points is independent, B...Zif is a minimal generating subset for the subspace AB...Z. The projective axioms may be supplemented by further axioms postulating limits on the dimension of the space. The minimum dimension is determined by the existence of an independent set of the required size. For the lowest dimensions, the relevant conditions may be stated in equivalent form as follows. A projective space is of: * (L1) at least dimension 0 if it has at least 1 point, * (L2) at least dimension 1 if it has at least 2 distinct points (and therefore a line), * (L3) at least dimension 2 if it has at least 3 non-collinear points (or two lines, or a line and a point not on the line), * (L4) at least dimension 3 if it has at least 4 non-coplanar points. The maximum dimension may also be determined in a similar fashion. For the lowest dimensions, they take on the following forms. A projective space is of: * (M1) at most dimension 0 if it has no more than 1 point, * (M2) at most dimension 1 if it has no more than 1 line, * (M3) at most dimension 2 if it has no more than 1 plane, and so on. It is a general theorem (a consequence of axiom (3)) that all coplanar lines intersect—the very principle Projective Geometry was originally intended to embody. Therefore, property (M3) may be equivalently stated that all lines intersect one another. It is generally assumed that projective spaces are of at least dimension 2. In some cases, if the focus is on projective planes, a variant of M3 may be postulated. The axioms of (Eves 1997: 111), for instance, include (1), (2), (L3) and (M3). Axiom (3) becomes vacuously true under (M3) and is therefore not needed in this context.


Axioms for projective planes

In
incidence geometry In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incide ...
, most authors, , , , , , , and among the references given. give a treatment that embraces the
Fano plane In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines ...
PG(2, 2) as the smallest finite projective plane. An axiom system that achieves this is as follows: * (P1) Any two distinct points lie on a unique line. * (P2) Any two distinct lines meet in a unique point. * (P3) There exist at least four points of which no three are collinear. Coxeter's ''Introduction to Geometry'' gives a list of five axioms for a more restrictive concept of a projective plane attributed to Bachmann, adding Pappus's theorem to the list of axioms above (which eliminates
non-Desarguesian plane In mathematics, a non-Desarguesian plane is a projective plane that does not satisfy Desargues' theorem (named after Girard Desargues), or in other words a plane that is not a Desarguesian plane. The theorem of Desargues is true in all projective ...
s) and excluding projective planes over fields of characteristic 2 (those that don't satisfy Fano's axiom). The restricted planes given in this manner more closely resemble the
real projective plane In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has b ...
.


Perspectivity and projectivity

Given three non-
collinear In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned o ...
points, there are three lines connecting them, but with four points, no three collinear, there are six connecting lines and three additional "diagonal points" determined by their intersections. The science of projective geometry captures this surplus determined by four points through a quaternary relation and the projectivities which preserve the
complete quadrangle In mathematics, specifically in incidence geometry and especially in projective geometry, a complete quadrangle is a system of geometric objects consisting of any four points in a plane, no three of which are on a common line, and of the six l ...
configuration. An harmonic quadruple of points on a line occurs when there is a complete quadrangle two of whose diagonal points are in the first and third position of the quadruple, and the other two positions are points on the lines joining two quadrangle points through the third diagonal point. A spacial
perspectivity In geometry and in its applications to drawing, a perspectivity is the formation of an image in a picture plane of a scene viewed from a fixed point. Graphics The science of graphical perspective uses perspectivities to make realistic images ...
of a
projective configuration In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the sa ...
in one plane yields such a configuration in another, and this applies to the configuration of the complete quadrangle. Thus harmonic quadruples are preserved by perspectivity. If one perspectivity follows another the configurations follow along. The composition of two perspectivities is no longer a perspectivity, but a projectivity. While corresponding points of a perspectivity all converge at a point, this convergence is ''not'' true for a projectivity that is ''not'' a perspectivity. In projective geometry the intersection of lines formed by corresponding points of a projectivity in a plane are of particular interest. The set of such intersections is called a projective conic, and in acknowledgement of the work of
Jakob Steiner Jakob Steiner (18 March 1796 – 1 April 1863) was a Swiss mathematician who worked primarily in geometry. Life Steiner was born in the village of Utzenstorf, Canton of Bern. At 18, he became a pupil of Heinrich Pestalozzi and afterwards st ...
, it is referred to as a
Steiner conic The Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field. The usual d ...
. Suppose a projectivity is formed by two perspectivities centered on points ''A'' and ''B'', relating ''x'' to ''X'' by an intermediary ''p'': :x \ \overset\ p \ \overset \ X. The projectivity is then x \ \barwedge \ X . Then given the projectivity \barwedge the induced conic is :C(\barwedge) \ = \ \bigcup\ . Given a conic ''C'' and a point ''P'' not on it, two distinct
secant line Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety, in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or recipr ...
s through ''P'' intersect ''C'' in four points. These four points determine a quadrangle of which ''P'' is a diagonal point. The line through the other two diagonal points is called the polar of ''P'' and ''P ''is the pole of this line. Alternatively, the polar line of ''P'' is the set of
projective harmonic conjugate In projective geometry, the harmonic conjugate point of an ordered triple of points on the real projective line is defined by the following construction: :Given three collinear points , let be a point not lying on their join and let any line t ...
s of ''P'' on a variable secant line passing through ''P'' and ''C''.


See also

*
Projective line In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a ''point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; ...
*
Projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that d ...
* Incidence *
Fundamental theorem of projective geometry In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
* Desargues' theorem *
Pappus's hexagon theorem In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that *given one set of collinear points A, B, C, and another set of collinear points a,b,c, then the intersection points X,Y,Z of line pairs Ab and aB, Ac and ...
*
Pascal's theorem In projective geometry, Pascal's theorem (also known as the ''hexagrammum mysticum theorem'') states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined ...
*
Projective line over a ring In mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring ''A'' with 1, the projective line P(''A'') over ''A'' consists of points identified by projective coordinates. Let ''U ...
*
Joseph Wedderburn Joseph Henry Maclagan Wedderburn FRSE FRS (2 February 1882 – 9 October 1948) was a Scottish mathematician, who taught at Princeton University for most of his career. A significant algebraist, he proved that a finite division algebra is a fi ...
* Grassmann–Cayley algebra


Notes


References

* * * * * * * * * * * * * * * * * * * * * * * * Santaló, Luis (1966) ''Geometría proyectiva'', Editorial Universitaria de Buenos Aires *


External links


Projective Geometry for Machine Vision
— tutorial by Joe Mundy and Andrew Zisserman.

based on Coxeter's ''The Real Projective Plane''.

— free tutorial by Roger Mohr and Bill Triggs.
Projective Geometry.
— free tutorial by Tom Davis.
The Grassmann method in projective geometry
A compilation of three notes by Cesare Burali-Forti on the application of exterior algebra to projective geometry
C. Burali-Forti, "Introduction to Differential Geometry, following the method of H. Grassmann"
(English translation of book)
E. Kummer, "General theory of rectilinear ray systems"
(English translation)
M. Pasch, "On the focal surfaces of ray systems and the singularity surfaces of complexes"
(English translation) {{DEFAULTSORT:Projective Geometry