HOME
*



picture info

Fano Plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. Homogeneous coordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fano Plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. Homogeneous coordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Desarguesian Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective plane, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cage (graph Theory)
In the mathematical area of graph theory, a cage is a regular graph that has as few vertices as possible for its girth. Formally, an is defined to be a graph in which each vertex has exactly neighbors, and in which the shortest cycle has length exactly . An is an with the smallest possible number of vertices, among all . A is often called a . It is known that an exists for any combination of and . It follows that all exist. If a Moore graph exists with degree and girth , it must be a cage. Moreover, the bounds on the sizes of Moore graphs generalize to cages: any cage with odd girth must have at least :1+r\sum_^(r-1)^i vertices, and any cage with even girth must have at least :2\sum_^(r-1)^i vertices. Any with exactly this many vertices is by definition a Moore graph and therefore automatically a cage. There may exist multiple cages for a given combination of and . For instance there are three nonisomorphic , each with 70 vertices: the Balaban 10-cage, the Ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heawood Graph
Heawood is a surname. Notable people with the surname include: * Jonathan Heawood, British journalist *Percy John Heawood (1861–1955), British mathematician **Heawood conjecture ** Heawood graph **Heawood number In mathematics, the Heawood number of a surface is an upper bound for the number of colors that suffice to color any graph embedded in the surface. In 1890 Heawood proved for all surfaces ''except'' the sphere that no more than : H(S)=\left\lfl ... See also * Heywood (surname) {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Girth (graph Theory)
In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free. Cages A cubic graph (all vertices have degree three) of girth that is as small as possible is known as a - cage (or as a -cage). The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. There may exist multiple cages for a given girth. For instance there are three nonisomorphic 10-cages, each with 70 vertices: the Balaban 10-cage, the Harries graph and the Harries–Wong graph. Image:Petersen1 tiny.svg, The Petersen graph has a girth of 5 Image:Heawood_Gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Graph
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. Symmetry In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census.. Many well-known individual graphs are cubic and symmetric, including the utility graph, the Petersen graph, the Heawood graph, the Möbius–Kantor graph, the Pappus graph, the Desargues graph, the Nauru graph, the Coxeter graph, the Tutte–Coxeter graph, the Dyck graph, the Foster graph and the Biggs–Smith graph. W. T. Tutte classified the symmetric cubic graphs by the smallest integer number ''s'' such that each two oriented paths of length ''s'' can be mapped to each other by exactly one symmetry of the graph. He showed that ''s'' is at most 5, and provided examples of graphs with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Incidence (geometry)
In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point ''lies on'' a line" or "a line is ''contained in'' a plane" are used. The most basic incidence relation is that between a point, , and a line, , sometimes denoted . If the pair is called a ''flag''. There are many expressions used in common language to describe incidence (for example, a line ''passes through'' a point, a point ''lies in'' a plane, etc.) but the term "incidence" is preferred because it does not have the additional connotations that these other terms have, and it can be used in a symmetric manner. Statements such as "line intersects line " are also statements about incidence relations, but in this case, it is because this is a shorthand way of saying that "there exists a point that is incident with both line and line ". When one type of object can be thought of as a set of the other type of object (''viz''., a plane is a set of points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets U and V may be thought of as a coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. One often writes G=(U,V,E) to denote a bipartite graph whose partition has the parts U and V, with E denot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Levi Graph
In combinatorial mathematics, a Levi graph or incidence graph is a bipartite graph associated with an incidence structure.. See in particulap. 181 From a collection of points and lines in an incidence geometry or a projective configuration, we form a graph with one vertex per point, one vertex per line, and an edge for every incidence between a point and a line. They are named for Friedrich Wilhelm Levi, who wrote about them in 1942. The Levi graph of a system of points and lines usually has girth at least six: Any 4- cycles would correspond to two lines through the same two points. Conversely any bipartite graph with girth at least six can be viewed as the Levi graph of an abstract incidence structure. Levi graphs of configurations are biregular, and every biregular graph with girth at least six can be viewed as the Levi graph of an abstract configuration.. Levi graphs may also be defined for other types of incidence structure, such as the incidences between points and planes i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Heawood Graph 2COL
Heawood is a surname. Notable people with the surname include: * Jonathan Heawood, British journalist *Percy John Heawood (1861–1955), British mathematician **Heawood conjecture **Heawood graph **Heawood number In mathematics, the Heawood number of a surface is an upper bound for the number of colors that suffice to color any graph embedded in the surface. In 1890 Heawood proved for all surfaces ''except'' the sphere that no more than : H(S)=\left\lfl ... See also * Heywood (surname) {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GL(3,2)
In mathematics, the projective special linear group , isomorphic to , is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to . Definition The general linear group consists of all invertible 2×2 matrices over F7, the finite field with 7 elements. These have nonzero determinant. The subgroup consists of all such matrices with unit determinant. Then is defined to be the quotient group :SL(2, 7) / obtained by identifying I and −I, where ''I'' is the identity matrix. In this article, we let ''G'' denote any group isomorphic to . Properties ''G'' = has 168 elements. This can be seen by counting the possible columns; there are possibilities for the first column, then possibilities for the second column. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In the context of abstract algebra, a mathematical object is an algebraic structure such as a group, ring, or vector space. An automorphism is simply a bijective homomorphism of an object with itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) The identity morphism ( identity mapping) is called the trivial automorphism in some contexts. Respectively, other (non-identity) automorphisms are called nontrivial automorphisms. The exact definition of an automorphism depends on the type of " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]