Infinity
Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or magnitude and, if so, how this could be done. At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes. For example, if a line is viewed as the set of all ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Infinity (philosophy)
In philosophy and theology, infinity is explored in articles under headings such as the Absolute, God, and Zeno's paradoxes. In Greek philosophy, for example in Anaximander, 'the Boundless' is the origin of all that is. He took the beginning or first principle to be an endless, unlimited primordial mass (ἄπειρον, ''apeiron''). The Jain metaphysics and mathematics were the first to define and delineate different "types" of infinities. The work of the mathematician Georg Cantor first placed infinity into a coherent mathematical framework. Keenly aware of his departure from traditional wisdom, Cantor also presented a comprehensive historical and philosophical discussion of infinity. In Christian theology, for example in the work of Duns Scotus, the infinite nature of God invokes a sense of being without constraint, rather than a sense of being unlimited in quantity. Early thinking Egyptian Greek Anaximander An early engagement with the idea of infinity was made by Ana ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Infinity Symbol
The infinity symbol (\infty) is a mathematical symbol representing the concept of infinity. This symbol is also called a lemniscate, after the lemniscate curves of a similar shape studied in algebraic geometry, or "lazy eight", in the terminology of livestock branding. This symbol was first used mathematically by John Wallis in the 17th century, although it has a longer history of other uses. In mathematics, it often refers to infinite processes (potential infinity) rather than infinite values ( actual infinity). It has other related technical meanings, such as the use of longlasting paper in bookbinding, and has been used for its symbolic value of the infinite in modern mysticism and literature. It is a common element of graphic design, for instance in corporate logos as well as in older designs such as the Métis flag. Both the infinity symbol itself and several variations of the symbol are available in various character encodings. History The lemniscate has been a comm ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Axiom Of Infinity
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.Zermelo: ''Untersuchungen über die Grundlagen der Mengenlehre'', 1907, in: Mathematische Annalen 65 (1908), 261281; Axiom des Unendlichen p. 266f. Formal statement In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\exists \mathbf \, ( \empty \in \mathbf \, \land \, \forall x \in \mathbf \, ( \, ( x \cup \ ) \in \mathbf ) ) . In words, there is a set I (the set which is postulated to be infinite), such that the empty set is in I, and such that whenever any ''x'' is a member of I, the set formed by taking the union of ''x'' with its singleton is also a member of I. Such a set is sometimes called an inductive set. I ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( , ; – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of onetoone correspondence between the members of two sets, defined infinite and wellordered sets, and proved that the real numbers are more numerous than the natural numbers. In fact, Cantor's method of proof of this theorem implies the existence of an infinity of infinities. He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact he was well aware of. Originally, Cantor's theory of transfinite numbers was regarded as counterintuitive – even shocking. This caused it to encounter resistance from mathematical contemporaries such as Leopold Kronecker and Henri Poincaré and later from Hermann Weyl and L. E. J. Brouwer, while Ludwig Wittgenstein raised ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Actual Infinity
In the philosophy of mathematics, the abstraction of actual infinity involves the acceptance (if the axiom of infinity is included) of infinite entities as given, actual and completed objects. These might include the set of natural numbers, extended real numbers, transfinite numbers, or even an infinite sequence of rational numbers. Actual infinity is to be contrasted with potential infinity, in which a nonterminating process (such as "add 1 to the previous number") produces a sequence with no last element, and where each individual result is finite and is achieved in a finite number of steps. As a result, potential infinity is often formalized using the concept of limit. Anaximander The ancient Greek term for the potential or improper infinite was ''apeiron'' (unlimited or indefinite), in contrast to the actual or proper infinite ''aphorismenon''. ''Apeiron'' stands opposed to that which has a ''peras'' (limit). These notions are today denoted by ''potentially infinite'' an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Infinitesimal Calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. It has two major branches, differential calculus and integral calculus; the former concerns instantaneous rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a welldefined limit. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including codifying the idea of limits, put these developments on a more solid conceptual footing. Today, calculus has widespread uses in scien ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Transfinite Number
In mathematics, transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term ''transfinite'' was coined by Georg Cantor in 1895, who wished to avoid some of the implications of the word ''infinite'' in connection with these objects, which were, nevertheless, not ''finite''. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term "transfinite" also remains in use. Definition Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Apeiron (cosmology)
''Apeiron'' (; ) is a Greek word meaning "(that which is) unlimited," "boundless", "infinite", or "indefinite" from ''a'', "without" and ''peirar'', "end, limit", "boundary", the Ionic Greek form of ''peras'', "end, limit, boundary". Origin of everything The ''apeiron'' is central to the cosmological theory created by Anaximander, a 6thcentury BC preSocratic Greek philosopher whose work is mostly lost. From the few existing fragments, we learn that he believed the beginning or ultimate reality ('' arche'') is eternal and infinite, or boundless (''apeiron''), subject to neither old age nor decay, which perpetually yields fresh materials from which everything we can perceive is derived. ''Apeiron'' generated the opposites (hot–cold, wet–dry, etc.) which acted on the creation of the world (cf. Heraclitus). Everything is generated from ''apeiron'' and then it is destroyed by going back to ''apeiron'', according to necessity. He believed that infinite worlds are generated f ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Infinite Set
In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers. A set is infinite if and only if for every natural number, the set has a subset whose cardinality is that natural number. If the axiom of choice holds, then a set is infinite if and only if it includes a countable infinite subset. If a set of sets is infinite or contains an infinite element, then its union is infinite. The power set of an infinite set is infinite. Any superset of an infinite set is infinite. If an infinite set is partitioned into finitely many subsets, then at least one of them must be infinite. A ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other gr ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Zermelo–Fraenkel Set Theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded. Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary wellfounded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from contai ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

PreSocratic Philosophy
PreSocratic philosophy, also known as early Greek philosophy, is ancient Greek philosophy before Socrates. PreSocratic philosophers were mostly interested in cosmology, the beginning and the substance of the universe, but the inquiries of these early philosophers spanned the workings of the natural world as well as human society, ethics, and religion. They sought explanations based on natural law rather than the actions of gods. Their work and writing has been almost entirely lost. Knowledge of their views comes from ''testimonia'', i.e. later authors' discussions of the work of preSocratics. Philosophy found fertile ground in the ancient Greek world because of the close ties with neighboring civilizations and the rise of autonomous civil entities, ''poleis''. PreSocratic philosophy began in the 6th century BCE with the three Milesians: Thales, Anaximander, and Anaximenes. They all attributed the '' arche'' (a word that could take the meaning of "origin," "substance" or ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 