Italian School Of Algebraic Geometry
   HOME
*





Italian School Of Algebraic Geometry
In relation to the history of mathematics, the Italian school of algebraic geometry refers to mathematicians and their work in birational geometry, particularly on algebraic surfaces, centered around Rome roughly from 1885 to 1935. There were 30 to 40 leading mathematicians who made major contributions, about half of those being Italian. The leadership fell to the group in Rome of Guido Castelnuovo, Federigo Enriques and Francesco Severi, who were involved in some of the deepest discoveries, as well as setting the style. Algebraic surfaces The emphasis on algebraic surfaces—algebraic varieties of dimension two—followed on from an essentially complete geometric theory of algebraic curves (dimension 1). The position in around 1870 was that the curve theory had incorporated with Brill–Noether theory the Riemann–Roch theorem in all its refinements (via the detailed geometry of the theta-divisor). The classification of algebraic surfaces was a bold and successful att ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Mathematics
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars. The earliest mathematical texts available are from Mesopotamia and Egypt – '' Plimpton 322'' ( Babylonian c. 2000 – 1900 BC), the ''Rhind Mathematical Papyrus'' ( Egyptian c. 1800 BC) and the '' Moscow Mathematical Papyrus'' (Egyptian c. 1890 BC). All of these texts mention the so-called Pythagorean triples, so, by inference, the Pythagorean theorem seems to be the most anci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. The main interest in Riemann surfaces is that holomorphic functions may be defined between them. Riemann surfaces are nowadays considered the natural setting for studying the global behavior of these functions, especially multi-valued functions such as the square root and other algebraic functions, or the logarithm. Every Riemann surface is a two-dimensional real analytic manifold (i.e., a surface), but it contains more structure (specifically a complex structure) which is needed for the unambiguous definitio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Luigi Cremona
Antonio Luigi Gaudenzio Giuseppe Cremona (7 December 1830 – 10 June 1903) was an Italian mathematician. His life was devoted to the study of geometry and reforming advanced mathematical teaching in Italy. He worked on algebraic curves and algebraic surfaces, particularly through his paper ''Introduzione ad una teoria geometrica delle curve piane'' ("Introduction to a geometrical theory of the plane curves"), and was a founder of the Italian school of algebraic geometry. Biography Luigi Cremona was born in Pavia (Lombardy), then part of the Austrian-controlled Kingdom of Lombardy–Venetia. His youngest brother was the painter Tranquillo Cremona. In 1848, when Milan and Venice rose against Austria, Cremona, then only seventeen, joined the ranks of the Italian volunteers. He remained with them, fighting on behalf of his country's freedom, until, in 1849, the capitulation of Venice put an end to the campaign. He then returned to Pavia, where he pursued his studies at the univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Line Bundle
In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a ''vector bundle'' of rank 1. Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex plane ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear System Of Divisors
In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a ''linear system'' of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors ''D'' on a general scheme or even a ringed space (''X'', ''O''''X''). Linear system of dimension 1, 2, or 3 are called a pencil, a net, or a web, respectively. A map determined by a linear system is sometimes called the Kodaira map. Definition Given the fundamental idea of a rational function on a general variety X, or in other words of a function f in the function field of X, f \in k(X), divisors D,E \in \text(X) are linearly equivalent divisors if :D = E + (f)\ where (f) denotes the divisor of zeroes and poles of the function f. Note that i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shafarevich
Igor Rostislavovich Shafarevich (russian: И́горь Ростисла́вович Шафаре́вич; 3 June 1923 – 19 February 2017) was a Soviet and Russian mathematician who contributed to algebraic number theory and algebraic geometry. Outside mathematics, he wrote books and articles that criticised socialism and other books which were (controversially) described as anti-semitic. Mathematics From his early years, Shafarevich made fundamental contributions to several parts of mathematics including algebraic number theory, algebraic geometry and arithmetic algebraic geometry. In particular, in algebraic number theory, the Shafarevich–Weil theorem extends the commutative reciprocity map to the case of Galois groups, which are central extensions of abelian groups by finite groups. Shafarevich was the first mathematician to give a completely self-contained formula for the Hilbert pairing, thus initiating an important branch of the study of explicit formulas in nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oscar Zariski
, birth_date = , birth_place = Kobrin, Russian Empire , death_date = , death_place = Brookline, Massachusetts, United States , nationality = American , field = Mathematics , work_institutions = Johns Hopkins UniversityUniversity of IllinoisHarvard University , alma_mater = University of Kyiv University of Rome , doctoral_advisor = Guido Castelnuovo , doctoral_students = S. S. AbhyankarMichael Artin Iacopo BarsottiIrvin CohenDaniel GorensteinRobin Hartshorne Heisuke Hironaka Steven KleimanJoseph LipmanDavid MumfordMaxwell RosenlichtPierre SamuelAbraham Seidenberg , known_for = Contributions to algebraic geometry , prizes = Cole Prize in Algebra (1944)National Medal of Science (1965)Wolf Prize (1981) Steele Prize (1981) , footnotes = Oscar Zariski (April 24, 1899 – July 4, 1986) was a Russian-born American mathematician and one of the most influential algebraic geometers of the 20th cent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kunihiko Kodaira
was a Japanese mathematician known for distinguished work in algebraic geometry and the theory of complex manifolds, and as the founder of the Japanese school of algebraic geometers. He was awarded a Fields Medal in 1954, being the first Japanese national to receive this honour. Early years Kodaira was born in Tokyo. He graduated from the University of Tokyo in 1938 with a degree in mathematics and also graduated from the physics department at the University of Tokyo in 1941. During the war years he worked in isolation, but was able to master Hodge theory as it then stood. He obtained his PhD from the University of Tokyo in 1949, with a thesis entitled ''Harmonic fields in Riemannian manifolds''. He was involved in cryptographic work from about 1944, while holding an academic post in Tokyo. Institute for Advanced Study and Princeton University In 1949 he travelled to the Institute for Advanced Study in Princeton, New Jersey at the invitation of Hermann Weyl. He was subseque ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]