Model Theory
In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mathematical logic), mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be definable set, defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stable theory, stability theory. Compared to other areas of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Theory (mathematical Logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A firstorder theory is a set of firstorder sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal settheoretic language may not be appropriate. The construction of a theory begins by specifying a definite nonempty ''conceptual class'' \mathcal, the eleme ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Mathematical Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory sho ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Structure (mathematical Logic)
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces. The term universal algebra is used for structures with no relation symbols. Model theory has a different scope that encompasses more arbitrary theories, including foundational structures such as models of set theory. From the modeltheoretic point of view, structures are the objects used to define the semantics of firstorder logic. For a given theory in model theory, a structure is called a model if it satisfies the defining axioms of that theory, although it is sometimes disambiguated as a ''semantic model'' when one discusses the notion in the more general setting of mathematical models. Logicians sometimes refer to structures as "interpretations", whereas the term "interpretation" generally ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Arity
Arity () is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, and computer science. In mathematics, arity may also be named ''rank'', but this word can have many other meanings in mathematics. In logic and philosophy, it is also called adicity and degree. In linguistics, it is usually named valency. Examples The term "arity" is rarely employed in everyday usage. For example, rather than saying "the arity of the addition operation is 2" or "addition is an operation of arity 2" one usually says "addition is a binary operation". In general, the naming of functions or operators with a given arity follows a convention similar to the one used for ''n''based numeral systems such as binary and hexadecimal. One combines a Latin prefix with the ary ending; for example: * A nullary function takes no arguments. ** Example: f()=2 * A unary function takes one argument. ** Example: f(x)=2x * A binary function takes two arguments. ** E ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Nonlogical Symbols
In logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and nonlogical symbols (sometimes also called logical and nonlogical constants). The nonlogical symbols of a language of firstorder logic consist of predicates and individual constants. These include symbols that, in an interpretation, may stand for individual constants, variables, functions, or predicates. A language of firstorder logic is a formal language over the alphabet consisting of its nonlogical symbols and its logical symbols. The latter include logical connectives, quantifiers, and variables that stand for statements. A nonlogical symbol only has meaning or semantic content when one is assigned to it by means of an interpretation. Consequently, a sentence containing a nonlogical symbol lacks meaning except under an interpretation, so a sentence i ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Signature (logic)
In logic, especially mathematical logic, a signature lists and describes the nonlogical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (singlesorted) signature can be defined as a 4tuple , where ''S''func and ''S''rel are disjoint sets not containing any other basic logical symbols, called respectively * ''function symbols'' (examples: +, ×, 0, 1), * ''relation symbols'' or ''predicates'' (examples: ≤, ∈), * ''constant symbols'' (examples: 0, 1), and a function ar: ''S''func \cup ''S''rel → \mathbb N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called ''n''ary if its arity is ''n''. Some authors define a nullary (0ary) function symbol as ''constant ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Consistency
In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term ''satisfiable'' is used instead. The syntactic definition states a theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when \varphi, \lnot \varphi \in \langle A \rangle for no formula \varphi. If there e ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Gödel's Incompleteness Theorems
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (i.e., an algorithm) is capable of proving all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always be statements about natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem, an extension of the first, shows that the system cannot demonstrate its own consistency. Employing a diagonal argument, Gödel's in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Completeness Theorem
Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies that there are no "holes" in the real numbers * Complete metric space, a metric space in which every Cauchy sequence converges * Complete uniform space, a uniform space where every Cauchy net in converges (or equivalently every Cauchy filter converges) * Complete measure, a measure space where every subset of every null set is measurable * Completion (algebra), at an ideal * Completeness (cryptography) * Completeness (statistics), a statistic that does not allow an unbiased estimator of zero * Complete graph, an undirected graph in which every pair of vertices has exactly one edge connecting them * Complete category, a category ''C'' where every diagram from a small category to ''C'' has a limit; it is ''cocomplete'' if every such functor ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Sentence (mathematical Logic)
:''This article is a technical mathematical article in the area of predicate logic. For the ordinary English language meaning see Sentence (linguistics), for a less technical introductory article see Statement (logic).'' In mathematical logic, a sentence (or closed formula)Edgar Morscher, "Logical Truth and Logical Form", ''Grazer Philosophische Studien'' 82(1), pp. 77–90. of a predicate logic is a Booleanvalued wellformed formula with no free variables. A sentence can be viewed as expressing a proposition, something that ''must'' be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: As the free variables of a (general) formula can range over several values, the truth value of such a formula may vary. Sentences without any logical connectives or quantifiers in them are known as atomic sentences; by analogy to atomic formula. Sentences are then built up out of atomic formulas by applying ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Tschema
The Tschema ("truth schema", not to be confused with " Convention T") is used to check if an inductive definition of truth is valid, which lies at the heart of any realisation of Alfred Tarski's semantic theory of truth. Some authors refer to it as the "Equivalence Schema", a synonym introduced by Michael Dummett. The Tschema is often expressed in natural language, but it can be formalized in manysorted predicate logic or modal logic; such a formalisation is called a "Ttheory." Ttheories form the basis of much fundamental work in philosophical logic, where they are applied in several important controversies in analytic philosophy. As expressed in seminatural language (where 'S' is the name of the sentence abbreviated to S): 'S' is true if and only if S. Example: 'snow is white' is true if and only if snow is white. The inductive definition By using the schema one can give an inductive definition for the truth of compound sentences. Atomic sentences are assigned truth va ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Irreducible Element
In algebra, an irreducible element of a domain is a nonzero element that is not invertible (that is, is not a unit), and is not the product of two noninvertible elements. Relationship with prime elements Irreducible elements should not be confused with prime elements. (A nonzero nonunit element a in a commutative ring R is called prime if, whenever a \mid bc for some b and c in R, then a \mid b or a \mid c.) In an integral domain, every prime element is irreducible,Sharpe (1987) p.54 but the converse is not true in general. The converse is true for unique factorization domains (or, more generally, GCD domains). Moreover, while an ideal generated by a prime element is a prime ideal, it is not true in general that an ideal generated by an irreducible element is an irreducible ideal. However, if D is a GCD domain and x is an irreducible element of D, then as noted above x is prime, and so the ideal generated by x is a prime (hence irreducible) ideal of D. Example In the quad ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 