In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, such as
navigation
Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navigation, ...
celestial mechanics
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
,
geodesy
Geodesy ( ) is the Earth science of accurately measuring and understanding Earth's figure (geometric shape and size), Earth rotation, orientation in space, and Earth's gravity, gravity. The field also incorporates studies of how these properti ...
, and many others. They are among the simplest
periodic function
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to d ...
s, and as such are also widely used for studying periodic phenomena through Fourier analysis.
The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used. Each of these six trigonometric functions has a corresponding
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
, and an analog among the
hyperbolic functions
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the ...
.
The oldest definitions of trigonometric functions, related to right-angle triangles, define them only for acute angles. To extend the sine and cosine functions to functions whose domain is the whole
real line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
, geometrical definitions using the standard
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
(i.e., a circle with
radius
In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
1 unit) are often used; then the domain of the other functions is the real line with some isolated points removed. Modern definitions express trigonometric functions as infinite series or as solutions of differential equations. This allows extending the domain of sine and cosine functions to the whole complex plane, and the domain of the other trigonometric functions to the complex plane with some isolated points removed.
Notation
Conventionally, an abbreviation of each trigonometric function's name is used as its symbol in formulas. Today, the most common versions of these abbreviations are "sin" for sine, "cos" for cosine, "tan" or "tg" for tangent, "sec" for secant, "csc" or "cosec" for cosecant, and "cot" or "ctg" for cotangent. Historically, these abbreviations were first used in prose sentences to indicate particular
line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
s or their lengths related to an arc of an arbitrary circle, and later to indicate ratios of lengths, but as the function concept developed in the 17th–18th century, they began to be considered as functions of real-number-valued angle measures, and written with functional notation, for example . Parentheses are still often omitted to reduce clutter, but are sometimes necessary; for example the expression would typically be interpreted to mean so parentheses are required to express
A positive integer appearing as a superscript after the symbol of the function denotes exponentiation, not
function composition
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
. For example and denote not This differs from the (historically later) general functional notation in which
However, the exponent is commonly used to denote the
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
, not the reciprocal. For example and denote the inverse trigonometric function alternatively written The equation implies not In this case, the superscript ''could'' be considered as denoting a composed or iterated function, but negative superscripts other than are not in common use.
Right-angled triangle definitions
If the acute angle is given, then any right triangles that have an angle of are similar to each other. This means that the ratio of any two side lengths depends only on . Thus these six ratios define six functions of , which are the trigonometric functions. In the following definitions, the hypotenuse is the length of the side opposite the right angle, ''opposite'' represents the side opposite the given angle , and ''adjacent'' represents the side between the angle and the right angle.
In a right-angled triangle, the sum of the two acute angles is a right angle, that is, or . Therefore and represent the same ratio, and thus are equal. This identity and analogous relationships between the other trigonometric functions are summarized in the following table.
Radians versus degrees
In geometric applications, the argument of a trigonometric function is generally the measure of an
angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles ...
. For this purpose, any angular unit is convenient, and angles are most commonly measured in conventional units of degrees in which a right angle is 90° and a complete turn is 360° (particularly in elementary mathematics).
However, in
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
and
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, the trigonometric functions are generally regarded more abstractly as functions of real or
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s, rather than angles. In fact, the functions sin and cos can be defined for all complex numbers in terms of the
exponential function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
via power series or as solutions to differential equations given particular initial values (''see below''), without reference to any geometric notions. The other four trigonometric functions (tan, cot, sec, csc) can be defined as quotients and reciprocals of sin and cos, except where zero occurs in the denominator. It can be proved, for real arguments, that these definitions coincide with elementary geometric definitions ''if'' ''the argument is regarded as an angle given in radians''. Moreover, these definitions result in simple expressions for the
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
s and
indefinite integrals
In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
for the trigonometric functions. Thus, in settings beyond elementary geometry, radians are regarded as the mathematically natural unit for describing angle measures.
When radians (rad) are employed, the angle is given as the length of the arc of the
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete
turn
Turn may refer to:
Arts and entertainment
Dance and sports
* Turn (dance and gymnastics), rotation of the body
* Turn (swimming), reversing direction at the end of a pool
* Turn (professional wrestling), a transition between face and heel
* Turn, ...
(360°) is an angle of 2 (≈ 6.28) rad. For real number ''x'', the notations sin ''x'', cos ''x'', etc. refer to the value of the trigonometric functions evaluated at an angle of ''x'' rad. If units of degrees are intended, the degree sign must be explicitly shown (e.g., sin ''x°'', cos ''x°'', etc.). Using this standard notation, the argument ''x'' for the trigonometric functions satisfies the relationship ''x'' = (180''x''/)°, so that, for example, sin = sin 180° when we take ''x'' = . In this way, the degree symbol can be regarded as a mathematical constant such that 1° = /180 ≈ 0.0175.
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, which is the
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
of radius one centered at the origin of this coordinate system. While right-angled triangle definitions allow for the definition of the trigonometric functions for angles between and radians the unit circle definitions allow the domain of trigonometric functions to be extended to all positive and negative real numbers.
Let be the
ray
Ray may refer to:
Fish
* Ray (fish), any cartilaginous fish of the superorder Batoidea
* Ray (fish fin anatomy), a bony or horny spine on a fin
Science and mathematics
* Ray (geometry), half of a line proceeding from an initial point
* Ray (g ...
obtained by rotating by an angle the positive half of the -axis (
counterclockwise
Two-dimensional rotation can occur in two possible directions. Clockwise motion (abbreviated CW) proceeds in the same direction as a clock's hands: from the top to the right, then down and then to the left, and back up to the top. The opposite s ...
rotation for and clockwise rotation for ). This ray intersects the unit circle at the point The ray extended to a line if necessary, intersects the line of equation at point and the line of equation at point The
tangent line
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
to the unit circle at the point , is
perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to and intersects the - and -axes at points and The
coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is si ...
of these points give the values of all trigonometric functions for any arbitrary real value of in the following manner.
The trigonometric functions and are defined, respectively, as the ''x''- and ''y''-coordinate values of point . That is,
: and
In the range , this definition coincides with the right-angled triangle definition, by taking the right-angled triangle to have the unit radius as hypotenuse. And since the equation holds for all points on the unit circle, this definition of cosine and sine also satisfies the
Pythagorean identity
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations be ...
.
:
The other trigonometric functions can be found along the unit circle as
: and
: and
By applying the Pythagorean identity and geometric proof methods, these definitions can readily be shown to coincide with the definitions of tangent, cotangent, secant and cosecant in terms of sine and cosine, that is
:
Since a rotation of an angle of does not change the position or size of a shape, the points , , , , and are the same for two angles whose difference is an integer multiple of . Thus trigonometric functions are
periodic function
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to d ...
s with period . That is, the equalities
: and
hold for any angle and any
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
. The same is true for the four other trigonometric functions. By observing the sign and the monotonicity of the functions sine, cosine, cosecant, and secant in the four quadrants, one can show that is the smallest value for which they are periodic (i.e., is the fundamental period of these functions). However, after a rotation by an angle , the points and already return to their original position, so that the tangent function and the cotangent function have a fundamental period of . That is, the equalities
: and
hold for any angle and any integer .
Algebraic values
The
algebraic expression In mathematics, an algebraic expression is an expression built up from integer constants, variables, and the algebraic operations ( addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). ...
s for the most important angles are as follows:
: ( zero angle)
:
:
:
: ( right angle)
Writing the numerators as square roots of consecutive non-negative integers, with a denominator of 2, provides an easy way to remember the values.
Such simple expressions generally do not exist for other angles which are rational multiples of a right angle.
*For an angle which, measured in degrees, is a multiple of three, the exact trigonometric values of the sine and the cosine may be expressed in terms of square roots. These values of the sine and the cosine may thus be constructed by ruler and compass.
*For an angle of an integer number of degrees, the sine and the cosine may be expressed in terms of square roots and the cube root of a non-real
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
.
Galois theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory t ...
allows a proof that, if the angle is not a multiple of 3°, non-real cube roots are unavoidable.
*For an angle which, expressed in degrees, is a
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
The following table lists the sines, cosines, and tangents of multiples of 15 degrees from 0 to 90 degrees.
In calculus
Graphs of sine, cosine and tangent
The modern trend in mathematics is to build
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
from
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
rather than the converse. Therefore, except at a very elementary level, trigonometric functions are defined using the methods of calculus.
Trigonometric functions are differentiable and analytic at every point where they are defined; that is, everywhere for the sine and the cosine, and, for the tangent, everywhere except at for every integer .
The trigonometric function are
periodic function
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to d ...
s, and their primitive period is for the sine and the cosine, and for the tangent, which is increasing in each open interval . At each end point of these intervals, the tangent function has a vertical
asymptote
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related contexts, ...
.
In calculus, there are two equivalent definitions of trigonometric functions, either using power series or differential equations. These definitions are equivalent, as starting from one of them, it is easy to retrieve the other as a property. However the definition through differential equations is somehow more natural, since, for example, the choice of the coefficients of the power series may appear as quite arbitrary, and the Pythagorean identity is much easier to deduce from the differential equations.
Definition by differential equations
Sine and cosine can be defined as the unique solution to the initial value problem:
:
Differentiating again, and , so both sine and cosine are solutions of the
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contras ...
:
Applying the quotient rule to the tangent , we derive
:
Power series expansion
Applying the differential equations to power series with indeterminate coefficients, one may deduce recurrence relations for the coefficients of the Taylor series of the sine and cosine functions. These recurrence relations are easy to solve, and give the series expansions
:
The radius of convergence of these series is infinite. Therefore, the sine and the cosine can be extended to entire functions (also called "sine" and "cosine"), which are (by definition) complex-valued functions that are defined and holomorphic on the whole complex plane.
Being defined as fractions of entire functions, the other trigonometric functions may be extended to
meromorphic function
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are poles of the function. ...
s, that is functions that are holomorphic in the whole complex plane, except some isolated points called poles. Here, the poles are the numbers of the form for the tangent and the secant, or for the cotangent and the cosecant, where is an arbitrary integer.
Recurrences relations may also be computed for the coefficients of the Taylor series of the other trigonometric functions. These series have a finite radius of convergence. Their coefficients have a combinatorial interpretation: they enumerate alternating permutations of finite sets.
More precisely, defining
: , the th up/down number,
: , the th Bernoulli number, and
: , is the th Euler number,
one has the following series expansions:
:
:
:
:
Continued fraction expansion
The following expansions are valid in the whole complex plane:
:
:
:
The last one was used in the historically first proof that π is irrational.
Partial fraction expansion
There is a series representation as partial fraction expansion where just translated reciprocal functions are summed up, such that the poles of the cotangent function and the reciprocal functions match:
:
This identity can be proved with the Herglotz trick.
Combining the th with the th term lead to absolutely convergent series:
:
Similarly, one can find a partial fraction expansion for the secant, cosecant and tangent functions:
:
:
:
:
Infinite product expansion
The following infinite product for the sine is of great importance in complex analysis:
:
For the proof of this expansion, see Sine. From this, it can be deduced that
:
Relationship to exponential function (Euler's formula)
exponential function
The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
:
:
This formula is commonly considered for real values of , but it remains true for all complex values.
''Proof'': Let and One has for . The quotient rule implies thus that . Therefore, is a constant function, which equals , as This proves the formula.
One has
:
Solving this linear system in sine and cosine, one can express them in terms of the exponential function:
:
When is real, this may be rewritten as
:
Most trigonometric identities can be proved by expressing trigonometric functions in terms of the complex exponential function by using above formulas, and then using the identity for simplifying the result.
Definitions using functional equations
One can also define the trigonometric functions using various functional equations.
For example, the sine and the cosine form the unique pair of continuous functions that satisfy the difference formula
:
and the added condition
:
In the complex plane
The sine and cosine of a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
can be expressed in terms of real sines, cosines, and hyperbolic functions as follows:
:
By taking advantage of domain coloring, it is possible to graph the trigonometric functions as complex-valued functions. Various features unique to the complex functions can be seen from the graph; for example, the sine and cosine functions can be seen to be unbounded as the imaginary part of becomes larger (since the color white represents infinity), and the fact that the functions contain simple zeros or poles is apparent from the fact that the hue cycles around each zero or pole exactly once. Comparing these graphs with those of the corresponding Hyperbolic functions highlights the relationships between the two.
Basic identities
Many identities interrelate the trigonometric functions. This section contains the most basic ones; for more identities, see List of trigonometric identities. These identities may be proved geometrically from the unit-circle definitions or the right-angled-triangle definitions (although, for the latter definitions, care must be taken for angles that are not in the interval , see Proofs of trigonometric identities). For non-geometrical proofs using only tools of
calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
, one may use directly the differential equations, in a way that is similar to that of the above proof of Euler's identity. One can also use Euler's identity for expressing all trigonometric functions in terms of complex exponentials and using properties of the exponential function.
Parity
The cosine and the secant are even functions; the other trigonometric functions are odd functions. That is:
:
Periods
All trigonometric functions are
periodic function
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to d ...
s of period . This is the smallest period, except for the tangent and the cotangent, which have as smallest period. This means that, for every integer , one has
:
Pythagorean identity
The Pythagorean identity, is the expression of the
Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
in terms of trigonometric functions. It is
:.
Dividing through by either or gives
:
and
:.
Sum and difference formulas
The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to
Ptolemy
Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of import ...
. One can also produce them algebraically using Euler's formula.
; Sum
:
; Difference
:
When the two angles are equal, the sum formulas reduce to simpler equations known as the double-angle formulae.
:
These identities can be used to derive the
product-to-sum identities
In trigonometry, trigonometric identities are Equality (mathematics), equalities that involve trigonometric functions and are true for every value of the occurring Variable (mathematics), variables for which both sides of the equality are defined. ...
integral
In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
s and
antiderivative
In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
s of trigonometric functions to that of rational fractions.
Derivatives and antiderivatives
The
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
s of trigonometric functions result from those of sine and cosine by applying quotient rule. The values given for the
antiderivative
In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
s in the following table can be verified by differentiating them. The number is a
constant of integration
In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connect ...
.
Alternatively, the derivatives of the 'co-functions' can be obtained using trigonometric identities and the chain rule:
:
Inverse functions
The trigonometric functions are periodic, and hence not injective, so strictly speaking, they do not have an
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
. However, on each interval on which a trigonometric function is monotonic, one can define an inverse function, and this defines inverse trigonometric functions as
multivalued function
In mathematics, a multivalued function, also called multifunction, many-valued function, set-valued function, is similar to a function, but may associate several values to each input. More precisely, a multivalued function from a domain to ...
s. To define a true inverse function, one must restrict the domain to an interval where the function is monotonic, and is thus bijective from this interval to its image by the function. The common choice for this interval, called the set of principal values, is given in the following table. As usual, the inverse trigonometric functions are denoted with the prefix "arc" before the name or its abbreviation of the function.
The notations , , etc. are often used for and , etc. When this notation is used, inverse functions could be confused with multiplicative inverses. The notation with the "arc" prefix avoids such a confusion, though "arcsec" for arcsecant can be confused with "
arcsecond
A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The na ...
".
Just like the sine and cosine, the inverse trigonometric functions can also be expressed in terms of infinite series. They can also be expressed in terms of complex logarithms.
Applications
Angles and sides of a triangle
In this section , , denote the three (interior) angles of a triangle, and , , denote the lengths of the respective opposite edges. They are related by various formulas, which are named by the trigonometric functions they involve.
Law of sines
The law of sines states that for an arbitrary triangle with sides , , and and angles opposite those sides , and :
where is the area of the triangle,
or, equivalently,
where is the triangle's circumradius.
It can be proved by dividing the triangle into two right ones and using the above definition of sine. The law of sines is useful for computing the lengths of the unknown sides in a triangle if two angles and one side are known. This is a common situation occurring in ''
triangulation
In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points.
Applications
In surveying
Specifically in surveying, triangulation involves only angle ...
'', a technique to determine unknown distances by measuring two angles and an accessible enclosed distance.
Law of cosines
The law of cosines (also known as the cosine formula or cosine rule) is an extension of the
Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
:
or equivalently,
In this formula the angle at is opposite to the side . This theorem can be proved by dividing the triangle into two right ones and using the
Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
.
The law of cosines can be used to determine a side of a triangle if two sides and the angle between them are known. It can also be used to find the cosines of an angle (and consequently the angles themselves) if the lengths of all the sides are known.
Law of tangents
The law of tangents says that:
:.
Law of cotangents
If ''s'' is the triangle's semiperimeter, (''a'' + ''b'' + ''c'')/2, and ''r'' is the radius of the triangle's incircle, then ''rs'' is the triangle's area. Therefore Heron's formula implies that:
:.
The law of cotangents says that:
:
It follows that
:
Periodic functions
The trigonometric functions are also important in physics. The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.
Trigonometric functions also prove to be useful in the study of general
periodic function
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to d ...
s. The characteristic wave patterns of periodic functions are useful for modeling recurring phenomena such as sound or light
wave
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (r ...
s.
Under rather general conditions, a periodic function can be expressed as a sum of sine waves or cosine waves in a
Fourier series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
. Denoting the sine or cosine basis functions by , the expansion of the periodic function takes the form:
For example, the square wave can be written as the
Fourier series
A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or '' ...
In the animation of a square wave at top right it can be seen that just a few terms already produce a fairly good approximation. The superposition of several terms in the expansion of a sawtooth wave are shown underneath.
History
While the early study of trigonometry can be traced to antiquity, the trigonometric functions as they are in use today were developed in the medieval period. The
chord
Chord may refer to:
* Chord (music), an aggregate of musical pitches sounded simultaneously
** Guitar chord a chord played on a guitar, which has a particular tuning
* Chord (geometry), a line segment joining two points on a curve
* Chord ( ...
function was discovered by
Hipparchus
Hipparchus (; el, Ἵππαρχος, ''Hipparkhos''; BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equ ...
Ptolemy
Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of import ...
Indian astronomy
Astronomy has long history in Indian subcontinent stretching from pre-historic to modern times. Some of the earliest roots of Indian astronomy can be dated to the period of Indus Valley civilisation or earlier. Astronomy later developed as a di ...
solving triangles Solution of triangles ( la, solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Appl ...
. With the exception of the sine (which was adopted from Indian mathematics), the other five modern trigonometric functions were discovered by Persian and Arab mathematicians, including the cosine, tangent, cotangent, secant and cosecant.Al-Khwārizmī (c. 780–850) produced tables of sines, cosines and tangents. Circa 830, Habash al-Hasib al-Marwazi discovered the cotangent, and produced tables of tangents and cotangents.Jacques Sesiano, "Islamic mathematics", p. 157, in Muhammad ibn Jābir al-Harrānī al-Battānī (853–929) discovered the reciprocal functions of secant and cosecant, and produced the first table of cosecants for each degree from 1° to 90°. The trigonometric functions were later studied by mathematicians including Omar Khayyám, Bhāskara II, Nasir al-Din al-Tusi, Jamshīd al-Kāshī (14th century),
Ulugh Beg
Mīrzā Muhammad Tāraghay bin Shāhrukh ( chg, میرزا محمد طارق بن شاہ رخ, fa, میرزا محمد تراغای بن شاہ رخ), better known as Ulugh Beg () (22 March 1394 – 27 October 1449), was a Timurid sultan, as ...
Valentinus Otho
Valentinus Otho (also Valentin Otto; born around 1545–46 possibly in Magdeburg – 8 April 1603 in Heidelberg) was a German mathematician and astronomer.
Life
In 1573 he came to Wittenberg, proposing to Johannes Praetorius an approximati ...
analysis
Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
of trigonometric functions in terms of infinite series. (See Madhava series and Madhava's sine table.)
The tangent function was brought to Europe by Giovanni Bianchini in 1467 in trigonometry tables he created to support the calculation of stellar coordinates.
The terms ''tangent'' and ''secant'' were first introduced by the Danish mathematician Thomas Fincke in his book ''Geometria rotundi'' (1583).
The 17th century French mathematician Albert Girard made the first published use of the abbreviations ''sin'', ''cos'', and ''tan'' in his book ''Trigonométrie''.
In a paper published in 1682,
Gottfried Leibniz
Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mat ...
proved that is not an algebraic function of . Though introduced as ratios of sides of a right triangle, and thus appearing to be rational functions, Leibnitz result established that they are actually transcendental functions of their argument. The task of assimilating circular functions into algebraic expressions was accomplished by Euler in his '' Introduction to the Analysis of the Infinite'' (1748). His method was to show that the sine and cosine functions are
alternating series
In mathematics, an alternating series is an infinite series of the form
\sum_^\infty (-1)^n a_n or \sum_^\infty (-1)^ a_n
with for all . The signs of the general terms alternate between positive and negative. Like any series, an alternat ...
formed from the even and odd terms respectively of the exponential series. He presented " Euler's formula", as well as near-modern abbreviations (''sin.'', ''cos.'', ''tang.'', ''cot.'', ''sec.'', and ''cosec.'').
A few functions were common historically, but are now seldom used, such as the
chord
Chord may refer to:
* Chord (music), an aggregate of musical pitches sounded simultaneously
** Guitar chord a chord played on a guitar, which has a particular tuning
* Chord (geometry), a line segment joining two points on a curve
* Chord ( ...
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power ...
'' sinus'', meaning "bend; bay", and more specifically "the hanging fold of the upper part of a
toga
The toga (, ), a distinctive garment of ancient Rome, was a roughly semicircular cloth, between in length, draped over the shoulders and around the body. It was usually woven from white wool, and was worn over a tunic. In Roman historical tr ...
", "the bosom of a garment", which was chosen as the translation of what was interpreted as the Arabic word ''jaib'', meaning "pocket" or "fold" in the twelfth-century translations of works by Al-Battani and al-Khwārizmī into
Medieval Latin
Medieval Latin was the form of Literary Latin
Classical Latin is the form of Literary Latin recognized as a Literary language, literary standard language, standard by writers of the late Roman Republic and early Roman Empire. It was used f ...
.
The choice was based on a misreading of the Arabic written form ''j-y-b'' (), which itself originated as a
transliteration
Transliteration is a type of conversion of a text from one script to another that involves swapping letters (thus ''trans-'' + '' liter-'') in predictable ways, such as Greek → , Cyrillic → , Greek → the digraph , Armenian → or ...
from Sanskrit ', which along with its synonym ' (the standard Sanskrit term for the sine) translates to "bowstring", being in turn adopted from
Ancient Greek
Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic p ...
"string".
The word ''tangent'' comes from Latin ''tangens'' meaning "touching", since the line ''touches'' the circle of unit radius, whereas ''secant'' stems from Latin ''secans''—"cutting"—since the line ''cuts'' the circle.Oxford English Dictionary
The prefix " co-" (in "cosine", "cotangent", "cosecant") is found in Edmund Gunter's ''Canon triangulorum'' (1620), which defines the ''cosinus'' as an abbreviation for the ''sinus complementi'' (sine of the complementary angle) and proceeds to define the ''cotangens'' similarly.
*
* Lars Ahlfors, ''Complex Analysis: an introduction to the theory of analytic functions of one complex variable'', second edition, McGraw-Hill Book Company, New York, 1966.
* Boyer, Carl B., ''A History of Mathematics'', John Wiley & Sons, Inc., 2nd edition. (1991). .
*
* Gal, Shmuel and Bachelis, Boris. An accurate elementary mathematical library for the IEEE floating point standard, ACM Transactions on Mathematical Software (1991).
* Joseph, George G., ''The Crest of the Peacock: Non-European Roots of Mathematics'', 2nd ed.