Plasma ()πλάσμα , Henry George Liddell, Robert Scott, ''A Greek English Lexicon'', on Perseus is one of the
four fundamental states of matter
In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, ...
. It contains a significant portion of charged particles –
ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s and/or
electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
s. The presence of these charged particles is what primarily sets plasma apart from the other fundamental states of matter. It is the most abundant form of
ordinary matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic par ...
in the
universe
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. Acc ...
, being mostly associated with
star
A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, including the
Sun
The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
.
It extends to the rarefied
intracluster medium
In astronomy, the intracluster medium (ICM) is the superheated plasma that permeates a galaxy cluster. The gas consists mainly of ionized hydrogen and helium and accounts for most of the baryonic material in galaxy clusters. The ICM is heated to t ...
and possibly to intergalactic regions.
Plasma can be artificially generated by heating a neutral gas or subjecting it to a strong
electromagnetic field
An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
.
The presence of charged particles makes plasma
electrically conductive
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
, with the dynamics of individual particles and macroscopic plasma motion governed by collective electromagnetic fields and very sensitive to externally applied fields. The response of plasma to electromagnetic fields is used in many modern devices and technologies, such as plasma televisions or
plasma etching
Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (plasma) of an appropriate gas mixture being shot (in pulses) at a sample. The plasma source, known as etch speci ...
.
Depending on temperature and density, a certain number of neutral particles may also be present, in which case plasma is called
partially ionized
The degree of ionization (also known as ''ionization yield'' in the literature) refers to the proportion of neutral particles, such as those in a gas or aqueous solution, that are ionized. For electrolytes, it could be understood as a capacity o ...
.
Neon sign
In the signage industry, neon signs are electric signs lighted by long luminous gas-discharge tubes that contain rarefied neon or other gases. They are the most common use for neon lighting, which was first demonstrated in a modern form in Decem ...
s and
lightning
Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
are examples of partially ionized plasmas.
Unlike the
phase transition
In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of ...
s between the other three states of matter, the transition to plasma is not well defined and is a matter of interpretation and context. Whether a given degree of ionization suffices to call a substance 'plasma' depends on the specific phenomenon being considered.
Early history
Plasma was first identified in laboratory by
Sir William Crookes
Sir William Crookes (; 17 June 1832 – 4 April 1919) was a British chemist and physicist who attended the Royal College of Chemistry, now part of Imperial College London, and worked on spectroscopy. He was a pioneer of vacuum tubes, inventing t ...
. Crookes presented a
lecture
A lecture (from Latin ''lēctūra'' “reading” ) is an oral presentation intended to present information or teach people about a particular subject, for example by a university or college teacher. Lectures are used to convey critical inform ...
on what he called "radiant matter" to the
British Association for the Advancement of Science
The British Science Association (BSA) is a charity and learned society founded in 1831 to aid in the promotion and development of science. Until 2009 it was known as the British Association for the Advancement of Science (BA). The current Chie ...
, in Sheffield, on Friday, 22 August 1879.
Systematic studies of plasma began with the research of
Irving Langmuir
Irving Langmuir (; January 31, 1881 – August 16, 1957) was an American chemist, physicist, and engineer. He was awarded the Nobel Prize in Chemistry in 1932 for his work in surface chemistry.
Langmuir's most famous publication is the 1919 art ...
and his colleagues in the 1920s. Langmuir also introduced the term "plasma" as a description of ionized gas in 1928:
Lewi Tonks
Lewi Tonks (1897–1971) was an American quantum physicist noted for his discovery (with Marvin D. Girardeau) of the Tonks–Girardeau gas.
Tonks was employed by General Electric for most of his working life, researching microwaves and ferromagne ...
and Harold Mott-Smith, both of whom worked with Langmuir in the 1920s, recall that Langmuir first used the term by analogy with the
blood plasma
Blood plasma is a light amber-colored liquid component of blood in which blood cells are absent, but contains proteins and other constituents of whole blood in suspension. It makes up about 55% of the body's total blood volume. It is the intra ...
. Mott-Smith recalls, in particular, that the transport of electrons from thermionic filaments reminded Langmuir of "the way blood plasma carries red and white corpuscles and germs."
Definitions
The fourth state of matter
Plasma is called the ''fourth
state of matter
In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal ...
'' after
solid
Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
,
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
, and
gas
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma).
A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
.
It is a state of matter in which an ionized substance becomes highly
electrically conductive
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
to the point that long-range electric and magnetic fields dominate its behaviour.
Plasma is typically an electrically quasineutral medium of unbound positive and negative particles (i.e. the overall charge of a plasma is roughly zero). Although these particles are unbound, they are not "free" in the sense of not experiencing forces. Moving charged particles generate electric currents, and any movement of a charged plasma particle affects and is affected by the fields created by the other charges. In turn this governs collective behaviour with many degrees of variation.
Plasma is distinct from the other states of matter. In particular, describing a low-density plasma as merely an "ionized gas" is wrong and misleading, even though it is similar to the gas phase in that both assume no definite shape or volume. The following table summarizes some principal differences:
Ideal plasma
Three factors define an ideal plasma:
*The plasma approximation: The plasma approximation applies when the
plasma parameter
The plasma parameter is a dimensionless number, denoted by capital Lambda, Λ. The plasma parameter is usually interpreted to be the argument of the Coulomb logarithm, which is the ratio of the maximum impact parameter to the classical distance o ...
Λ, representing the number of charge carriers within the
Debye sphere
In plasma (physics), plasmas and electrolytes, the Debye length \lambda_ (also called Debye radius), is a measure of a charge carrier's net electrostatic effect in a Solution (chemistry), solution and how far its electrostatic effect persists. Wi ...
is much higher than unity. It can be readily shown that this criterion is equivalent to smallness of the ratio of the plasma electrostatic and thermal energy densities. Such plasmas are called weakly coupled.
*Bulk interactions: The
Debye length
In plasmas and electrolytes, the Debye length \lambda_ (also called Debye radius), is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are in ...
is much smaller than the physical size of the plasma. This criterion means that interactions in the bulk of the plasma are more important than those at its edges, where boundary effects may take place. When this criterion is satisfied, the plasma is quasineutral.
*Collisionlessness: The electron plasma frequency (measuring
plasma oscillation Plasma oscillations, also known as Langmuir waves (after Irving Langmuir), are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability i ...
s of the electrons) is much larger than the electron–neutral collision frequency. When this condition is valid, electrostatic interactions dominate over the processes of ordinary gas kinetics. Such plasmas are called collisionless.
Non-neutral plasma
The strength and range of the electric force and the good conductivity of plasmas usually ensure that the densities of positive and negative charges in any sizeable region are equal ("quasineutrality"). A plasma with a significant excess of charge density, or, in the extreme case, is composed of a single species, is called a non-neutral plasma. In such a plasma, electric fields play a dominant role. Examples are charged
particle beam
A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neu ...
s, an electron cloud in a
Penning trap
A Penning trap is a device for the storage of charged particles using a homogeneous axial magnetic field and an inhomogeneous quadrupole electric field. This kind of trap is particularly well suited to precision measurements of properties of io ...
and positron plasmas.
Dusty plasma
A
dusty plasma
A dusty plasma is a plasma containing micrometer (10−6) to nanometer (10−9) sized particles suspended in it. Dust particles are charged and the plasma and particles behave as a plasma. Dust particles may form larger particles resulting in "gra ...
contains tiny charged particles of dust (typically found in space). The dust particles acquire high charges and interact with each other. A plasma that contains larger particles is called grain plasma. Under laboratory conditions, dusty plasmas are also called ''complex plasmas''.
Properties and parameters
Density and ionization degree
For plasma to exist,
ionization
Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
is necessary. The term "plasma density" by itself usually refers to the electron density , that is, the number of charge-contributing electrons per unit volume. The degree of ionization is defined as fraction of neutral particles that are ionized:
where is the ion density and the neutral density (in number of particles per unit volume). In the case of fully ionized matter, .
Because of the quasineutrality of plasma, the electron and ion densities are related by ,
where is the average ion charge (in units of the
elementary charge
The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundame ...
).
Temperature
Plasma temperature, commonly measured in
kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
or
electronvolt
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defi ...
s, is a measure of the thermal kinetic energy per particle. High temperatures are usually needed to sustain ionization, which is a defining feature of a plasma. The degree of plasma ionization is determined by the
electron temperature
Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged particles that responds ''collectively'' to electromagnetic forces. Plasma typically takes the form of neutral gas-like clouds or char ...
relative to the
ionization energy
Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
(and more weakly by the density). In
thermal equilibrium
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
, the relationship is given by the
Saha equation
In physics, the Saha ionization equation is an expression that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. The equation is a result of combining ideas of quantum mechanics and statistical mechanics ...
. At low temperatures, ions and electrons tend to recombine into bound states—atoms—and the plasma will eventually become a gas.
In most cases, the electrons and heavy plasma particles (ions and neutral atoms) separately have a relatively well-defined temperature; that is, their energy distribution function is close to a Maxwellian even in the presence of strong
electric
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
or
magnetic
Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
fields. However, because of the large difference in mass between electrons and ions, their temperatures may be different, sometimes significantly so. This is especially common in weakly ionized technological plasmas, where the ions are often near the
ambient temperature
Colloquially, "room temperature" is a range of air temperatures that most people prefer for indoor settings. It feels comfortable to a person when they are wearing typical indoor clothing. Human comfort can extend beyond this range depending on ...
while electrons reach thousands of kelvin. The opposite case is the
z-pinch
In fusion power research, the Z-pinch (zeta pinch) is a type of plasma confinement system that uses an electric current in the plasma to generate a magnetic field that compresses it (see pinch). These systems were originally referred to simply ...
plasma where the ion temperature may exceed that of electrons.
Plasma potential
Since plasmas are very good
electrical conductor
In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gener ...
s, electric potentials play an important role. The average potential in the space between charged particles, independent of how it can be measured, is called the "plasma potential", or the "space potential". If an electrode is inserted into a plasma, its potential will generally lie considerably below the plasma potential due to what is termed a
Debye sheath The Debye sheath (also electrostatic sheath) is a layer in a plasma which has a greater density of positive ions, and hence an overall excess positive charge, that balances an opposite negative charge on the surface of a material with which it is in ...
. The good electrical conductivity of plasmas makes their electric fields very small. This results in the important concept of "quasineutrality", which says the density of negative charges is approximately equal to the density of positive charges over large volumes of the plasma (), but on the scale of the
Debye length
In plasmas and electrolytes, the Debye length \lambda_ (also called Debye radius), is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are in ...
, there can be charge imbalance. In the special case that '' double layers'' are formed, the charge separation can extend some tens of Debye lengths.
The magnitude of the potentials and electric fields must be determined by means other than simply finding the net
charge density
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in co ...
. A common example is to assume that the electrons satisfy the
Boltzmann relation
In a plasma, the Boltzmann relation describes the number density of an isothermal charged particle fluid when the thermal and the electrostatic forces acting on the fluid have reached equilibrium.
In many situations, the electron density of a p ...
:
Differentiating this relation provides a means to calculate the electric field from the density:
It is possible to produce a plasma that is not quasineutral. An electron beam, for example, has only negative charges. The density of a non-neutral plasma must generally be very low, or it must be very small, otherwise, it will be dissipated by the repulsive
electrostatic force
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventiona ...
.
Magnetization
The existence of charged particles causes the plasma to generate, and be affected by,
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s.
Plasma with a magnetic field strong enough to influence the motion of the charged particles is said to be magnetized. A common quantitative criterion is that a particle on average completes at least one gyration around the magnetic-field line before making a collision, i.e., , where is the electron
gyrofrequency
Cyclotron resonance describes the interaction of external forces with charged particles experiencing a magnetic field, thus already moving on a circular path. It is named after the cyclotron, a cyclic particle accelerator that utilizes an oscillati ...
and is the electron collision rate. It is often the case that the electrons are magnetized while the ions are not. Magnetized plasmas are ''
anisotropic
Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
'', meaning that their properties in the direction parallel to the magnetic field are different from those perpendicular to it. While electric fields in plasmas are usually small due to the plasma high conductivity, the electric field associated with a plasma moving with velocity in the magnetic field is given by the usual Lorentz formula , and is not affected by
Debye shielding
The debye (symbol: D) (; ) is a CGS unit (a non- SI metric unit) of electric dipole momentTwo equal and opposite charges separated by some distance constitute an electric dipole. This dipole possesses an electric dipole moment whose value is give ...
.
Mathematical descriptions
To completely describe the state of a plasma, all of the
particle locations and velocities that describe the electromagnetic field in the plasma region would need to be written down.
However, it is generally not practical or necessary to keep track of all the particles in a plasma.
Therefore, plasma physicists commonly use less detailed descriptions, of which
there are two main types:
Fluid model
Fluid models describe plasmas in terms of smoothed quantities, like density and averaged velocity around each position (see
Plasma parameters
Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged particles that responds ''collectively'' to electromagnetic forces. Plasma typically takes the form of neutral gas-like clouds or charg ...
). One simple fluid model,
magnetohydrodynamics
Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is the study of the magnetic properties and behaviour of electrically conducting fluids. Examples of such magnetofluids include plasmas, liquid metals, ...
, treats the plasma as a single fluid governed by a combination of
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
...
and the
Navier–Stokes equations
In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
. A more general description is the two-fluid plasma, where the ions and electrons are described separately. Fluid models are often accurate when collisionality is sufficiently high to keep the plasma velocity distribution close to a
Maxwell–Boltzmann distribution
In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.
It was first defined and used ...
. Because fluid models usually describe the plasma in terms of a single flow at a certain temperature at each spatial location, they can neither capture velocity space structures like beams or double layers, nor resolve wave-particle effects.
Kinetic model
Kinetic models describe the particle velocity distribution function at each point in the plasma and therefore do not need to assume a
Maxwell–Boltzmann distribution
In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.
It was first defined and used ...
. A kinetic description is often necessary for collisionless plasmas. There are two common approaches to kinetic description of a plasma. One is based on representing the smoothed distribution function on a grid in velocity and position. The other, known as the
particle-in-cell
In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles (or fluid elements) in a Lagrangian frame are tracked in continuous ph ...
(PIC) technique, includes kinetic information by following the trajectories of a large number of individual particles. Kinetic models are generally more computationally intensive than fluid models. The
Vlasov equation The Vlasov equation is a differential equation describing time evolution of the Distribution function (physics), distribution function of plasma (physics), plasma consisting of charged particles with long-range interaction, e.g. Coulomb's law, Coulo ...
may be used to describe the dynamics of a system of charged particles interacting with an electromagnetic field.
In magnetized plasmas, a gyrokinetic approach can substantially reduce the computational expense of a fully kinetic simulation.
Plasma science and technology
Plasmas are the object of study of the
academic field
An academy (Attic Greek: Ἀκαδήμεια; Koine Greek Ἀκαδημία) is an institution of secondary or tertiary higher learning (and generally also research or honorary membership). The name traces back to Plato's school of philosophy, f ...
of ''plasma science'' or ''plasma physics'', including sub-disciplines such as
space plasma physics Space physics, also known as solar-terrestrial physics or space-plasma physics, is the study of plasmas as they occur naturally in the Earth's upper atmosphere (aeronomy) and within the Solar System. As such, it encompasses a far-ranging number of ...
. It currently involves the following fields of active research and features across many journals, whose interest includes:
*Plasma theory
**
Plasma equilibria and stability
The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. ...
**Plasma interactions with waves and beams
**
Guiding center
In physics, the motion of an electrically charged particle such as an electron or ion in a plasma in a magnetic field can be treated as the superposition of a relatively fast circular motion around a point called the guiding center and a relati ...
**
Adiabatic invariant
A property of a physical system, such as the entropy of a gas, that stays approximately constant when changes occur slowly is called an adiabatic invariant. By this it is meant that if a system is varied between two end points, as the time for the ...
**
Debye sheath The Debye sheath (also electrostatic sheath) is a layer in a plasma which has a greater density of positive ions, and hence an overall excess positive charge, that balances an opposite negative charge on the surface of a material with which it is in ...
**
Coulomb collision A Coulomb collision is a binary elastic collision between two charged particles interacting through their own electric field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit. Th ...
*Plasmas in nature
**
Astrophysical plasma
Astrophysical plasma is plasma outside of the Solar System. It is studied as part of astrophysics and is commonly observed in space. The accepted view of scientists is that much of the baryonic matter in the universe exists in this state.
Whe ...
ionosphere
The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
**
Interplanetary medium
The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM sto ...
**Planetary
magnetosphere
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
s
**
Space plasma
The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM sto ...
*Industrial plasmas
**
Plasma chemistry
Gas phase ion chemistry is a field of science encompassed within both chemistry and physics. It is the science that studies ions and molecules in the gas phase, most often enabled by some form of mass spectrometry. By far the most important applic ...
**
Plasma processing
Plasma processing is a plasma-based material processing technology that aims at modifying the chemical and physical properties of a surface.
Plasma processing techniques include:
*Plasma activation
*Plasma ashing
*Plasma cleaning
*Plasma electro ...
**
Plasma spray
Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame).
Thermal sprayi ...
**
Plasma display
A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large (over 32 inches diagonal) flat panel displays to be release ...
**Plasma sources
**
Dusty plasma
A dusty plasma is a plasma containing micrometer (10−6) to nanometer (10−9) sized particles suspended in it. Dust particles are charged and the plasma and particles behave as a plasma. Dust particles may form larger particles resulting in "gra ...
s
*
Plasma diagnostics Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a Plasma (physics), plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles ...
**
Thomson scattering
Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering: the particle's kinetic energy and photon frequency ...
**
Langmuir probe
A Langmuir probe is a device used to determine the electron temperature, electron density, and electric potential of a plasma. It works by inserting one or more electrodes into a plasma, with a constant or time-varying electric potential between ...
**
Ball-pen probe
A ball-pen probe is a modified Langmuir probe used to measure the plasma potential in magnetized plasmas. The ball-pen probe balances the electron and ion saturation currents, so that its floating potential is equal to the plasma potential. Be ...
**
Faraday cup
A Faraday cup is a metal (conductive) cup designed to catch charged particles in vacuum. The resulting current can be measured and used to determine the number of ions or electrons hitting the cup. The Faraday cup was named after Michael Faraday w ...
**
Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
**
Interferometry
Interferometry is a technique which uses the ''interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber opt ...
Incoherent scatter Incoherent scattering is a type of scattering phenomenon in physics. The term is most commonly used when referring to the scattering of an electromagnetic wave (usually light or radio frequency) by random fluctuations in a gas of particles (most o ...
radar
*Plasma applications
**
Dielectric barrier discharge
Dielectric-barrier discharge (DBD) is the electrical discharge between two electrodes separated by an insulating dielectric barrier. Originally called silent (inaudible) discharge and also known as ozone production discharge or partial dischar ...
**
Enhanced oil recovery
Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted otherwise. EOR can extract 30% to 60% or more of a reservoir's oil, compared to 20% to 40% using ...
**
Fusion power
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion, nuclear fusion reactions. In a fusion process, two lighter atomic nucleus, atomic nuclei combine to form a heavier nucleus, whi ...
**Plasma Actuator (e.g.
Serpentine geometry plasma actuator
The serpentine plasma actuator represents a broad class of plasma actuator. The actuators vary from the standard type in that their electrode geometry has been modified in to be periodic across its span.
History
This class of plasma actuators wa ...
)
***
Magnetic fusion energy
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with i ...
(MFE) —
****
Tokamak
A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being d ...
****
Stellarator
A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the ...
****
Reversed field pinch
A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear Plasma (physics), plasmas. It is a Pinch (magnetic fusion), toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically con ...
****
Magnetic mirror
A magnetic mirror, known as a magnetic trap (магнитный захват) in Russia and briefly as a pyrotron in the US, is a type of magnetic confinement device used in fusion power to trap high temperature plasma using magnetic fields. T ...
****
Dense plasma focus
A dense plasma focus (DPF) is a type of plasma generating system originally developed as a fusion power device starting in the early 1960s. The system demonstrated scaling laws that suggested it would not be useful in the commercial power role, and ...
***
Inertial confinement fusion
Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
(ICF)
***
Plasma weapon
A directed-energy weapon (DEW) is a ranged weapon that damages its target with highly focused energy without a solid projectile, including lasers, microwaves, particle beams, and sound beams. Potential applications of this technology include w ...
s
**
Ion implantation
Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fab ...
**
Ion thruster
An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity.
An ion thruster ionizes a neutral gas by extracting some electrons out of a ...
**
MAGPIE
Magpies are birds of the Corvidae family. Like other members of their family, they are widely considered to be intelligent creatures. The Eurasian magpie, for instance, is thought to rank among the world's most intelligent creatures, and is one ...
(Implosion experiments)
**
Plasma ashing
In semiconductor manufacturing plasma ashing is the process of removing the photoresist (light sensitive coating) from an etched wafer. Using a plasma source, a monatomic (single atom) substance known as a reactive species is generated. Oxygen or ...
**
Spark-ignition engine
A spark-ignition engine (SI engine) is an internal combustion engine, generally a petrol engine, where the combustion process of the air-fuel mixture is ignited by a spark from a spark plug. This is in contrast to compression-ignition engines, ty ...
s: enhancing ignition at a single point (from the spark plug) with a broad-front multi-channel discharge in plasma.
**Food processing
***
Nonthermal plasma
A nonthermal plasma, cold plasma or non-equilibrium plasma is a plasma which is not in thermodynamic equilibrium, because the electron temperature is much hotter than the temperature of heavy species (ions and neutrals). As only electrons are ther ...
or "cold plasma"
**
Plasma arc waste disposal
Plasma gasification is an extreme thermal process using plasma which converts organic matter into a syngas (synthesis gas) which is primarily made up of hydrogen and carbon monoxide. A plasma torch powered by an electric arc is used to ionize g ...
, recycling.
**
Plasma acceleration
Plasma acceleration is a technique for accelerating charged particles, such as electrons, positrons, and ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures (like shock and sheath fields). ...
**
Plasma medicine
Plasma medicine is an emerging field that combines plasma physics, life sciences and clinical medicine. It is being studied in disinfection, healing, and cancer. Most of the research is in vitro and in animal models.
It uses ionized gas (physic ...
(e. g. Dentistry)
**
Plasma window The plasma window (not to be confused with a ''plasma shield'') is a technology that fills a volume of space with plasma confined by a magnetic field. With current technology, this volume is quite small and the plasma is generated as a flat plane in ...
Plasmas can appear in nature in various forms and locations, summarised in the following table:
Space and astrophysics
Plasmas are by far the most common phase of ordinary matter in the universe, both by mass and by volume.
Above the Earth's surface, the ionosphere is a plasma, and the magnetosphere contains plasma. Within our Solar System,
interplanetary space
Interplanetary may refer to:
*Interplanetary space, the space between the planets of the Solar System
*Interplanetary spaceflight, travel between planets
*The interplanetary medium, the material that exists in interplanetary space
*The InterPlanet ...
is filled with the plasma expelled via the
solar wind
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sola ...
, extending from the Sun's surface out to the heliopause. Furthermore, all the distant
star
A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, and much of
interstellar space
Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, predo ...
or
intergalactic space
Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, predo ...
is also likely filled with plasma, albeit at very low densities.
Astrophysical plasma
Astrophysical plasma is plasma outside of the Solar System. It is studied as part of astrophysics and is commonly observed in space. The accepted view of scientists is that much of the baryonic matter in the universe exists in this state.
Whe ...
s are also observed in
accretion disk
An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other fo ...
s around stars or compact objects like
white dwarf
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes fro ...
s,
neutron star
A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white ...
s, or
black holes
A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can def ...
in close
binary star
A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in wh ...
systems. Plasma is associated with ejection of material in
astrophysical jets
An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets bec ...
, which have been observed with accreting black holes or in active
galaxies
A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
like M87's jet that possibly extends out to 5,000 light-years.
Artificial plasmas
Most artificial plasmas are generated by the application of electric and/or magnetic fields through a gas. Plasma generated in a laboratory setting and for industrial use can be generally categorized by:
*The type of power source used to generate the plasma—DC, AC (typically with
radio frequency
Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the upp ...
(RF)) and microwave
*The pressure they operate at—vacuum pressure (< 10 mTorr or 1 Pa), moderate pressure (≈1 Torr or 100 Pa), atmospheric pressure (760 Torr or 100 kPa)
*The degree of ionization within the plasma—fully, partially, or weakly ionized
*The temperature relationships within the plasma—thermal plasma (), non-thermal or "cold" plasma ()
*The electrode configuration used to generate the plasma
*The magnetization of the particles within the plasma—magnetized (both ion and electrons are trapped in Larmor orbits by the magnetic field), partially magnetized (the electrons but not the ions are trapped by the magnetic field), non-magnetized (the magnetic field is too weak to trap the particles in orbits but may generate
Lorentz force
In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
s)
Generation of artificial plasma
Just like the many uses of plasma, there are several means for its generation. However, one principle is common to all of them: there must be energy input to produce and sustain it. For this case, plasma is generated when an
electric current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
is applied across a
dielectric gas A dielectric gas, or insulating gas, is a dielectric material in gaseous state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric gases are used as electrical insulators in high voltage applications, e.g. transformers ...
or fluid (an electrically
non-conducting
An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and electrical conductor, conductors—con ...
material) as can be seen in the adjacent image, which shows a
discharge tube
A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric d ...
as a simple example ( DC used for simplicity).
The
potential difference
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
and subsequent
electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
pull the bound electrons (negative) toward the
anode
An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic is ...
(positive electrode) while the
cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
(negative electrode) pulls the nucleus. As the
voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
increases, the current stresses the material (by
electric polarization
In classical electromagnetism, polarization density (or electric polarization, or simply polarization) is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is ...
electrical breakdown
Electrical breakdown or dielectric breakdown is a process that occurs when an electrical insulating material, subjected to a high enough voltage, suddenly becomes an electrical conductor and electric current flows through it. All insulating mate ...
, marked by an
electric spark
An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael F ...
, where the material transforms from being an insulator into a conductor (as it becomes increasingly
ionized
Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
). The underlying process is the
Townsend avalanche
The Townsend discharge or Townsend avalanche is a gas ionisation process where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated an ...
, where collisions between electrons and neutral gas atoms create more ions and electrons (as can be seen in the figure on the right). The first impact of an electron on an atom results in one ion and two electrons. Therefore, the number of charged particles increases rapidly (in the millions) only "after about 20 successive sets of collisions", mainly due to a small mean free path (average distance travelled between collisions).
=Electric arc
=
With ample current density and ionization, this forms a luminous
electric arc
An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The electric current, current through a normally Electrical conductance, nonconductive medium such as air produces a plasma (p ...
(a continuous electric discharge similar to
lightning
Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
) between the electrodes.
Electrical resistance
The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels ...
along the continuous electric arc creates
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
, which dissociates more gas molecules and ionizes the resulting atoms (where degree of ionization is determined by temperature), and as per the sequence:
solid
Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
-
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
-
gas
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma).
A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
-plasma, the gas is gradually turned into a thermal plasma. A thermal plasma is in
thermal equilibrium
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
, which is to say that the temperature is relatively homogeneous throughout the heavy particles (i.e. atoms, molecules and ions) and electrons. This is so because when thermal plasmas are generated,
electrical energy
Electrical energy is energy related to forces on electrically charged particles and the movement of electrically charged particles (often electrons in wires, but not always). This energy is supplied by the combination of electric current and electr ...
is given to electrons, which, due to their great mobility and large numbers, are able to disperse it rapidly and by
elastic collision
In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into o ...
(without energy loss) to the heavy particles.Note that non-thermal, or non-equilibrium plasmas are not as ionized and have lower energy densities, and thus the temperature is not dispersed evenly among the particles, where some heavy ones remain "cold".
Examples of industrial/commercial plasma
Because of their sizable temperature and density ranges, plasmas find applications in many fields of research, technology and industry. For example, in: industrial and extractive
metallurgy
Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys.
Metallurgy encompasses both the sc ...
, surface treatments such as
plasma spraying
Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame).
Thermal sprayi ...
(coating),
etching
Etching is traditionally the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio (incised) in the metal. In modern manufacturing, other chemicals may be used on other types ...
in microelectronics, metal cutting and
welding
Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing Fusion welding, fusion. Welding is distinct from lower ...
fluorescent
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
/
luminescent
Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light".
It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a cryst ...
aerospace engineering
Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is si ...
.
=Low-pressure discharges
=
*''
Glow discharge
A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the str ...
plasmas'': non-thermal plasmas generated by the application of DC or low frequency RF (<100 kHz) electric field to the gap between two metal electrodes. Probably the most common plasma; this is the type of plasma generated within
fluorescent light
A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet lig ...
tubes.
*''
Capacitively coupled plasma
A capacitively coupled plasma (CCP) is one of the most common types of industrial plasma sources. It essentially consists of two metal electrodes separated by a small distance, placed in a reactor. The gas pressure in the reactor can be lower than ...
(CCP)'': similar to glow discharge plasmas, but generated with high frequency RF electric fields, typically 13.56 MHz. These differ from glow discharges in that the sheaths are much less intense. These are widely used in the microfabrication and integrated circuit manufacturing industries for plasma etching and plasma enhanced chemical vapor deposition.
*''
Cascaded arc plasma source
The cascaded arc is a wall-stabilized thermal electric arc discharge that produces a high density, low temperature plasma.
General
The cascaded arc source, developed at the Eindhoven University of Technology,Inductively coupled plasma
An inductively coupled plasma (ICP) or transformer coupled plasma (TCP) is a type of plasma source in which the energy is supplied by electric currents which are produced by electromagnetic induction, that is, by time-varying magnetic fields.
...
(ICP)'': similar to a CCP and with similar applications but the electrode consists of a coil wrapped around the chamber where plasma is formed.
*''
Wave heated plasma
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
'': similar to CCP and ICP in that it is typically RF (or microwave). Examples include
helicon discharge
In electromagnetism, a helicon is a low-frequency electromagnetic wave that can exist in bounded plasmas in the presence of a magnetic field. The first helicons observed were atmospheric whistlers, but they also exist in solid conductorsBowers, ...
and
electron cyclotron resonance
Electron cyclotron resonance (ECR) is a phenomenon observed in plasma physics, condensed matter physics, and accelerator physics. It happens when the frequency of incident radiation coincides with the natural frequency of rotation of electrons in ...
(ECR).
=Atmospheric pressure
=
*''
Arc discharge
An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The electric current, current through a normally Electrical conductance, nonconductive medium such as air produces a plasma (p ...
:'' this is a high power thermal discharge of very high temperature (≈10,000 K). It can be generated using various power supplies. It is commonly used in
metallurgical
Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys.
Metallurgy encompasses both the sc ...
processes. For example, it is used to smelt minerals containing Al2O3 to produce
aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
.
*''
Corona discharge
A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air (or other fluid) has undergone electrical breakdown ...
:'' this is a non-thermal discharge generated by the application of high voltage to sharp electrode tips. It is commonly used in
ozone
Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
generators and particle precipitators.
*''
Dielectric barrier discharge
Dielectric-barrier discharge (DBD) is the electrical discharge between two electrodes separated by an insulating dielectric barrier. Originally called silent (inaudible) discharge and also known as ozone production discharge or partial dischar ...
(DBD):'' this is a non-thermal discharge generated by the application of high voltages across small gaps wherein a non-conducting coating prevents the transition of the plasma discharge into an arc. It is often mislabeled 'Corona' discharge in industry and has similar application to corona discharges. A common usage of this discharge is in a
plasma actuator
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
for vehicle drag reduction. It is also widely used in the web treatment of fabrics. The application of the discharge to synthetic fabrics and plastics functionalizes the surface and allows for paints, glues and similar materials to adhere. The dielectric barrier discharge was used in the mid-1990s to show that low temperature atmospheric pressure plasma is effective in inactivating bacterial cells. This work and later experiments using mammalian cells led to the establishment of a new field of research known as
plasma medicine
Plasma medicine is an emerging field that combines plasma physics, life sciences and clinical medicine. It is being studied in disinfection, healing, and cancer. Most of the research is in vitro and in animal models.
It uses ionized gas (physic ...
. The dielectric barrier discharge configuration was also used in the design of low temperature plasma jets. These plasma jets are produced by fast propagating guided ionization waves known as plasma bullets.
*''
Capacitive discharge
A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals.
The effect of ...
:'' this is a
nonthermal plasma
A nonthermal plasma, cold plasma or non-equilibrium plasma is a plasma which is not in thermodynamic equilibrium, because the electron temperature is much hotter than the temperature of heavy species (ions and neutrals). As only electrons are ther ...
generated by the application of RF power (e.g., 13.56 MHz) to one powered electrode, with a grounded electrode held at a small separation distance on the order of 1 cm. Such discharges are commonly stabilized using a noble gas such as helium or argon.
*"
Piezoelectric direct discharge plasma Piezoelectric direct discharge (PDD) plasma is a type of cold non-equilibrium plasma, generated by a direct gas discharge of a high voltage piezoelectric transformer. It can be ignited in air or other gases in a wide range of pressures, including at ...
:" is a
nonthermal plasma
A nonthermal plasma, cold plasma or non-equilibrium plasma is a plasma which is not in thermodynamic equilibrium, because the electron temperature is much hotter than the temperature of heavy species (ions and neutrals). As only electrons are ther ...
generated at the high-side of a piezoelectric transformer (PT). This generation variant is particularly suited for high efficient and compact devices where a separate high voltage power supply is not desired.
MHD converters
A world effort was triggered in the 1960s to study
magnetohydrodynamic converter __NOTOC__
A magnetohydrodynamic converter (MHD converter) is an electromagnetic machine with no moving parts involving magnetohydrodynamics, the study of the kinetics of electrically conductive fluids (liquid or ionized gas) in the presence of elec ...
s in order to bring MHD power conversion to market with commercial power plants of a new kind, converting the
kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
of a high velocity plasma into
electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
with no
moving parts
Machines include both fixed and moving parts. The moving parts have controlled and constrained motions.
Moving parts are machine components excluding any moving fluids, such as fuel, coolant or hydraulic fluid. Moving parts also do not include ...
at a high
efficiency
Efficiency is the often measurable ability to avoid wasting materials, energy, efforts, money, and time in doing something or in producing a desired result. In a more general sense, it is the ability to do things well, successfully, and without ...
. Research was also conducted in the field of supersonic and hypersonic aerodynamics to study plasma interaction with magnetic fields to eventually achieve passive and even active flow control around vehicles or projectiles, in order to soften and mitigate
shock wave
In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a med ...
s, lower thermal transfer and reduce drag.
Such ionized gases used in "plasma technology" ("technological" or "engineered" plasmas) are usually ''weakly ionized gases'' in the sense that only a tiny fraction of the gas molecules are ionized. These kinds of weakly ionized gases are also nonthermal "cold" plasmas. In the presence of magnetics fields, the study of such magnetized nonthermal weakly ionized gases involves resistive magnetohydrodynamics with low
magnetic Reynolds number
In magnetohydrodynamics, the magnetic Reynolds number (Rm) is a dimensionless quantity that estimates the relative effects of advection or induction of a magnetic field by the motion of a conducting medium to the magnetic diffusion. It is the mag ...
, a challenging field of plasma physics where calculations require
dyadic tensor In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra.
There are numerous ways to multiply two Euclidean vectors. The dot product takes in two v ...
phase space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually ...
. When used in combination with a high
Hall parameter
In architecture, a hall is a relatively large space enclosed by a roof and walls. In the Iron Age and early Middle Ages in northern Europe, a mead hall was where a lord and his retainers ate and also slept. Later in the Middle Ages, the grea ...
, a critical value triggers the problematic
electrothermal instability
__NOTOC__
The electrothermal instability (also known as ionization instability, non-equilibrium instability or Velikhov instability in the literature) is a magnetohydrodynamic (MHD) instability appearing in magnetized non-thermal plasmas used ...
which limited these technological developments.
Complex plasma phenomena
Although the underlying equations governing plasmas are relatively simple, plasma behaviour is extraordinarily varied and subtle: the emergence of unexpected behaviour from a simple model is a typical feature of a
complex system
A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication ...
. Such systems lie in some sense on the boundary between ordered and disordered behaviour and cannot typically be described either by simple, smooth, mathematical functions, or by pure randomness. The spontaneous formation of interesting spatial features on a wide range of length scales is one manifestation of plasma complexity. The features are interesting, for example, because they are very sharp, spatially intermittent (the distance between features is much larger than the features themselves), or have a
fractal
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illu ...
form. Many of these features were first studied in the laboratory, and have subsequently been recognized throughout the universe. Examples of complexity and complex structures in plasmas include:
Filamentation
Striations or string-like structures, also known as
Birkeland current
A Birkeland current (also known as field-aligned current) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the curr ...
s, are seen in many plasmas, like the plasma ball, the
aurora
An aurora (plural: auroras or aurorae), also commonly known as the polar lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions (around the Arctic and Antarctic). Auroras display dynamic patterns of bri ...
,
lightning
Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
,
electric arc
An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The electric current, current through a normally Electrical conductance, nonconductive medium such as air produces a plasma (p ...
s,
solar flares
A solar flare is an intense localized eruption of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other solar phe ...
, and
supernova remnant
A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar mat ...
s. They are sometimes associated with larger current densities, and the interaction with the magnetic field can form a
magnetic rope
A Birkeland current (also known as field-aligned current) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the cu ...
structure. (See also
Plasma pinch
A pinch (or: Bennett pinch (after Willard Harrison Bennett), electromagnetic pinch, magnetic pinch, pinch effect, or plasma pinch.) is the compression of an electrically conducting Electrical filament, filament by magnetic forces, or a device tha ...
)
Filamentation also refers to the self-focusing of a high power laser pulse. At high powers, the nonlinear part of the
index of refraction
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.
The refractive index determines how much the path of light is bent, or ...
becomes important and causes a higher index of refraction in the center of the laser beam, where the laser is brighter than at the edges, causing a feedback that focuses the laser even more. The tighter focused laser has a higher peak brightness (irradiance) that forms a plasma. The plasma has an index of refraction lower than one, and causes a defocusing of the laser beam. The interplay of the focusing index of refraction, and the defocusing plasma makes the formation of a long filament of plasma that can be
micrometers
The micrometre (American and British English spelling differences#-re, -er, international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American and British English spelling differences# ...
to kilometers in length. One interesting aspect of the filamentation generated plasma is the relatively low ion density due to defocusing effects of the ionized electrons. (See also
Filament propagation In nonlinear optics, filament propagation is propagation of a beam of light through a medium without diffraction. This is possible because the Kerr effect causes an index of refraction change in the medium, resulting in self-focusing of the beam.
F ...
)
Impermeable plasma
Impermeable plasma is a type of thermal plasma which acts like an impermeable solid with respect to gas or cold plasma and can be physically pushed. Interaction of cold gas and thermal plasma was briefly studied by a group led by
Hannes Alfvén
Hannes Olof Gösta Alfvén (; 30 May 1908 – 2 April 1995) was a Swedish electrical engineer, plasma physicist and winner of the 1970 Nobel Prize in Physics for his work on magnetohydrodynamics (MHD). He described the class of MHD waves now ...
in 1960s and 1970s for its possible applications in insulation of
fusion
Fusion, or synthesis, is the process of combining two or more distinct entities into a new whole.
Fusion may also refer to:
Science and technology Physics
*Nuclear fusion, multiple atomic nuclei combining to form one or more different atomic nucl ...
plasma from the reactor walls. However, later it was found that the external
magnetic fields
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
in this configuration could induce kink instabilities in the plasma and subsequently lead to an unexpectedly high heat loss to the walls.
In 2013, a group of materials scientists reported that they have successfully generated stable impermeable plasma with no
magnetic confinement
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with i ...
using only an ultrahigh-pressure blanket of cold gas. While spectroscopic data on the characteristics of plasma were claimed to be difficult to obtain due to the high pressure, the passive effect of plasma on
synthesis
Synthesis or synthesize may refer to:
Science Chemistry and biochemistry
*Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors
** Organic synthesis, the chemical synthesis of organ ...
of different
nanostructures
A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale.
In describing nanostructures, it is necessary to differentiate between the number of dimensi ...
clearly suggested the effective confinement. They also showed that upon maintaining the impermeability for a few tens of seconds, screening of
ions
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
at the plasma-gas interface could give rise to a strong secondary mode of heating (known as viscous heating) leading to different kinetics of reactions and formation of complex
nanomaterials
*
Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).
Nanomaterials research takes a materials science-based approach to nan ...
.
Gallery
File:HallThruster 2.jpg,
Hall-effect thruster
In spacecraft propulsion, a Hall-effect thruster (HET) is a type of ion thruster in which the propellant is accelerated by an electric field. Hall-effect thrusters (based on the discovery by Edwin Hall) are sometimes referred to as Hall thruster ...
File:Wispy 'Plasma Dancer' on the limb of the Sun.ogv, Solar plasma
File:Plasma Spraying Process.jpg, Plasma spraying
File:MAST plasma image.jpg, Plasma in a
tokamak
A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being d ...
File:Argon Plasma.jpg, Laboratory plasma
See also
*
Ambipolar diffusion Ambipolar diffusion (ambipolar: relating to or consisting of both electrons and positive ions moving in opposite directions) is diffusion of positive and negative species with opposite electrical charge due to their interaction via an electric field ...
*
Electric field screening
In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases (classical plasmas), electrolytes, and charge carri ...
*
Electrically powered spacecraft propulsion
Spacecraft electric propulsion (or just electric propulsion) is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a s ...
*
Hannes Alfvén Prize
The Hannes Alfvén Prize is a prize established by the European Physical Society (EPS) Plasma Physics Division in 2000. The Prize is awarded annually by the European Physical Society at the EPS Conference on Plasma Physics for outstanding work in t ...
*
IEEE Nuclear and Plasma Sciences Society
The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical engineering (and associated disciplines) with its corporate office in New York City and its operation ...
*
List of plasma physicists
This is a list of physicists who have worked in or made notable contributions to the field of plasma physics.
{, class="wikitable sortable"
, -
! Name !! Known for
, -
, Hannes Alfvén , , 1970 Nobel Prize in Physics "''for fundamental work an ...
*
List of plasma physics articles
This is a list of plasma physics topics.
A
* Ablation
* Abradable coating
* Abraham–Lorentz force
* Absorption band
* Accretion disk
* Active galactic nucleus
* Adiabatic invariant
* ADITYA (tokamak)
* Aeronomy
* Afterglow plasma
* Air ...
*
LULI {{About, , the Central Asian ethnic group, Lyuli, the Chilean model, Nicole Moreno
Luli or Elulaios was king of the Phoenician city of Tyre (729–694 BC). During his reign, Tyre lost what remained of its power to Assyria.
The reign of Luli is cha ...
*
Magnetohydrodynamic converter __NOTOC__
A magnetohydrodynamic converter (MHD converter) is an electromagnetic machine with no moving parts involving magnetohydrodynamics, the study of the kinetics of electrically conductive fluids (liquid or ionized gas) in the presence of elec ...
Plasma nitriding
Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on low-alloy steels. They are also used on titanium, aluminium and molybdenum.
T ...
*
Plasma propulsion engine
A plasma propulsion engine is a type of electric propulsion that generates thrust from a quasi-neutral plasma. This is in contrast with ion thruster engines, which generate thrust through extracting an ion current from the plasma source, which i ...
*
Plasma surface interaction
Plasma Surface Interaction (PSI) studies study the interaction at the interface between plasma and materials. Focus of the research lies on providing both theoretical and experimental support to the design and validation of plasma facing material ...
Space physics Space physics, also known as solar-terrestrial physics or space-plasma physics, is the study of plasmas as they occur naturally in the Earth's upper atmosphere (aeronomy) and within the Solar System. As such, it encompasses a far-ranging number of ...
*
Total electron content
Total electron content (TEC) is an important descriptive quantity for the ionosphere of the Earth. TEC is the total number of electrons integrated between two points, along a tube of one meter squared cross section, i.e., the electron columnar nu ...