HOME
*



picture info

Tokamak
A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. , it was the leading candidate for a practical fusion reactor. Tokamaks were initially conceptualized in the 1950s by Soviet physicists Igor Tamm and Andrei Sakharov, inspired by a letter by Oleg Lavrentiev. The first working tokamak was attributed to the work of Natan Yavlinsky on the T-1 in 1958. It had been demonstrated that a stable plasma equilibrium requires magnetic field lines that wind around the torus in a helix. Devices like the z-pinch and stellarator had attempted this, but demonstrated serious instabilities. It was the development of the concept now known as the safety factor (labelled ''q'' in mathematical notation) that guided tokamak development; by arranging the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International Thermonuclear Experimental Reactor
ITER (initially the International Thermonuclear Experimental Reactor, ''iter'' meaning "the way" or "the path" in Latin) is an international nuclear fusion research and engineering megaproject aimed at creating energy by replicating, on Earth, the fusion processes of the Sun. Upon completion of construction of the main reactor and first plasma, planned for late 2025, it will be the world's largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor. It is being built next to the Cadarache facility in southern France. ITER will be the largest of more than 100 fusion reactors built since the 1950s, with ten times the plasma volume of any other tokamak operating today. The long-term goal of fusion research is to generate electricity. ITER's stated purpose is scientific research, and technological demonstration of a large fusion reactor, without electricity generation. ITER's goals are to achieve enough fusion to produce 10 ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Tokamak
A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or '' aspect ratio''. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared with a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST. The spherical tokamak is an offshoot of the conventional tokamak design. Proponents claim that it has a number of substantial practical advantages over these devices. For this reason the ST has generated considerable interest since the late 1980s. However, development remains effectively one generation behind traditional tokamak efforts like JET. Major experiments in the ST field include the pioneering START and MAST at Culham in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fusion Power
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion, nuclear fusion reactions. In a fusion process, two lighter atomic nucleus, atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2022, only one design, an Inertial confinement fusion, inertial confinement laser-driven fusion machine at the US National Ignition Facility, has conclusively produced a positive fusion energy gain factor, i.e. more power output than input. Fusion processes require fuel and a confined environment with sufficient temperature, pressure, and confinement time to create a plasma (physics), plasma in which fusion can occur. The combination of these figures that results in a power-producing system is known as the Lawson criterion. In stars, the most common fuel is hydrogen, and gravity provides ext ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fusion Reactor
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2022, only one design, an inertial confinement laser-driven fusion machine at the US National Ignition Facility, has conclusively produced a positive fusion energy gain factor, i.e. more power output than input. Fusion processes require fuel and a confined environment with sufficient temperature, pressure, and confinement time to create a plasma in which fusion can occur. The combination of these figures that results in a power-producing system is known as the Lawson criterion. In stars, the most common fuel is hydrogen, and gravity provides extremely long confinement times that reach the conditions needed for fusion energ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma Equilibria And Stability
The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD). MHD theory is the simplest representation of a plasma, so MHD stability is a necessity for stable devices to be used for nuclear fusion, specifically magnetic fusion energy. There are, however, other types of instabilities, such as velocity-space instabilities in magnetic mirrors and systems with beams. There are also rare cases of systems, e.g. the field-reversed configuration, predicted by MHD to be unstable, but which are observed to be stable, probably due to kinetic effects. Plasma instabilities Plasma instabilities can be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellarator
A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror. The stellarator was invented by American scientist Lyman Spitzer of Princeton University in 1951, and much of its early development was carried out by his team at what became the Princeton Plasma Physics Laboratory (PPPL). Lyman's Model A began operation in 1953 and demonstrated plasma confinement. Larger models followed, but these demonstrated poor performance, losing plasma at rates far worse than theoretical predictions. By the early 1960s, any hope of quickly producing a commercial machine faded, and attention turned to studying the fundamental theory of high-energy plasma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natan Yavlinsky
Natan Aronovich Yavlinsky (russian: Натан Аронович Явлинский; 13 February 191228 July 1962) was a Russian physicist in the former Soviet Union who invented and developed the first working tokamak. Early life and career Yavlinsky was born to a family of doctors on 13 February 1912 at Kharkiv, Russian Empire. Grigory Yavlinsky, an economist and politician, is related to him. He underwent professional technical school (PTU) in 1931 and finished an engineering degree in 1936 at Kharkiv Polytechnic Institute (then Kharkiv V.I. Lenin Polytechnic Institute). As a student, he worked in the Kharkiv Electromechanical Plant. He became a member of the Communist Party of the Soviet Union (then All-Union Communist Party) in 1932, but was removed from the party in 1937. His exclusion from the party also cost him his work at the Moscow Power Engineering Institute (founded as Correspondence Power Engineering Institute). While little is known about his removal from the party, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Confinement Fusion
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy. In order to overcome the electrostatic repulsion between the nuclei, they must have a temperature of tens of millions of degrees, creating a plasma. In addition, the plasma must be contained at a sufficient density for a sufficient time, as specified by the Lawson criterion (triple product). Magnetic confinement fusion attempts to use the electrical conductivity of the plasma to contain it through interaction with magnetic fields. The magnetic pressure offsets the plasma pressure. Developing a suitable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tokamak Fusion Test Reactor
The Tokamak Fusion Test Reactor (TFTR) was an experimental tokamak built at Princeton Plasma Physics Laboratory (PPPL) circa 1980 and entering service in 1982. TFTR was designed with the explicit goal of reaching scientific breakeven, the point where the heat being released from the fusion reactions in the plasma is equal or greater than the heating being supplied to the plasma by external devices to warm it up. The TFTR never achieved this goal, but it did produce major advances in confinement time and energy density. It was the world's first magnetic fusion device to perform extensive scientific experiments with plasmas composed of 50/50 deuterium/tritium (D-T), the fuel mix required for practical fusion power production, and also the first to produce more than 10 MW of fusion power. It set several records for power output, maximum temperature, and fusion triple product. TFTR shut down in 1997 after fifteen years of operation. PPPL used the knowledge from TFTR to begin studying ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joint European Torus
The Joint European Torus, or JET, is an operational magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility is a joint European project with a main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine. JET was built with the hope of reaching ''scientific breakeven'' where the fusion energy gain factor ''Q'' =1.0. It began operation in 1983 and spent most of the next decade increasing its performance in a lengthy series of experiments and upgrades. In 1991 the first experiments including tritium were made, making JET the first reactor in the world to run on the production fuel of a 50–50 mix of tritium and deuterium. It was also decided to add a divertor design to JET, which occurred between 1991 and 1993. Performance was significantly improved, and in 1997 JET set the record for the cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory (PPPL) is a United States Department of Energy national laboratory for plasma physics and nuclear fusion science. Its primary mission is research into and development of fusion as an energy source. It is known in particular for the development of the stellarator and tokamak designs, along with numerous fundamental advances in plasma physics and the exploration of many other plasma confinement concepts. PPPL grew out of the top-secret Cold War project to control thermonuclear reactions, called Project Matterhorn. The focus of this program changed from H-bombs to fusion power in 1951, when Lyman Spitzer developed the stellarator concept and was granted funding from the Atomic Energy Commission to study the concept. This led to a series of machines in the 1950s and 60s. In 1961, after declassification, Project Matterhorn was renamed the Princeton Plasma Physics Laboratory. PPPL's stellarators proved unable to meet their performance goals. In 196 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Z-pinch
In fusion power research, the Z-pinch (zeta pinch) is a type of plasma confinement system that uses an electric current in the plasma to generate a magnetic field that compresses it (see pinch). These systems were originally referred to simply as pinch or Bennett pinch (after Willard Harrison Bennett), but the introduction of the θ-pinch (theta pinch) concept led to the need for clearer, more precise terminology. The name refers to the direction of the current in the devices, the Z-axis on a normal three-dimensional graph. Any machine that causes a pinch effect due to current running in that direction is correctly referred to as a Z-pinch system, and this encompasses a wide variety of devices used for an equally wide variety of purposes. Early uses focused on fusion research in donut-shaped tubes with the Z-axis running down the inside the tube, while modern devices are generally cylindrical and used to generate high-intensity x-ray sources for the study of nuclear weapons an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]