Hyperbolic Surface
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, hyperbolic geometry (also called Lobachevskian geometry or Bolyai
Lobachevskian In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' ...
geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane. A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model. When geometers first realised they were working with something other than the standard Euclidean geometry, they described their geometry under many different names; Felix Klein finally gave the subject the name hyperbolic geometry to include it in the now rarely used sequence elliptic geometry (
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
), parabolic geometry ( Euclidean geometry), and hyperbolic geometry. In the former Soviet Union, it is commonly called Lobachevskian geometry, named after one of its discoverers, the Russian geometer Nikolai Lobachevsky. This page is mainly about the 2-dimensional (planar) hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry. See hyperbolic space for more information on hyperbolic geometry extended to three and more dimensions.


Properties


Relation to Euclidean geometry

Hyperbolic geometry is more closely related to Euclidean geometry than it seems: the only
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
atic difference is the parallel postulate. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry. There are two kinds of absolute geometry, Euclidean and hyperbolic. All theorems of absolute geometry, including the first 28 propositions of book one of Euclid's ''Elements'', are valid in Euclidean and hyperbolic geometry. Propositions 27 and 28 of Book One of Euclid's ''Elements'' prove the existence of parallel/non-intersecting lines. This difference also has many consequences: concepts that are equivalent in Euclidean geometry are not equivalent in hyperbolic geometry; new concepts need to be introduced. Further, because of the angle of parallelism, hyperbolic geometry has an absolute scale, a relation between distance and angle measurements.


Lines

Single lines in hyperbolic geometry have exactly the same properties as single straight lines in Euclidean geometry. For example, two points uniquely define a line, and line segments can be infinitely extended. Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry. For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting lines are
supplementary The term supplementary can refer to: * Supplementary angles * Supplementary Benefit, a former benefit payable in the United Kingdom * Supplementary question, a type of question asked during a questioning time for prime minister See also * Sup ...
. When a third line is introduced, then there can be properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given two intersecting lines there are infinitely many lines that do not intersect either of the given lines. These properties are all independent of the model used, even if the lines may look radically different.


Non-intersecting / parallel lines

Non-intersecting lines in hyperbolic geometry also have properties that differ from non-intersecting lines in Euclidean geometry: :For any line ''R'' and any point ''P'' which does not lie on ''R'', in the plane containing line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. This implies that there are through ''P'' an infinite number of coplanar lines that do not intersect ''R''. These non-intersecting lines are divided into two classes: * Two of the lines (''x'' and ''y'' in the diagram) are limiting parallels (sometimes called critically parallel, horoparallel or just parallel): there is one in the direction of each of the ideal points at the "ends" of ''R'', asymptotically approaching ''R'', always getting closer to ''R'', but never meeting it. * All other non-intersecting lines have a point of minimum distance and diverge from both sides of that point, and are called ''ultraparallel'', ''diverging parallel'' or sometimes ''non-intersecting.'' Some geometers simply use the phrase "''parallel'' lines" to mean "''limiting parallel'' lines", with ''ultraparallel'' lines meaning just ''non-intersecting''. These limiting parallels make an angle ''θ'' with ''PB''; this angle depends only on the
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
of the plane and the distance ''PB'' and is called the angle of parallelism. For ultraparallel lines, the ultraparallel theorem states that there is a unique line in the hyperbolic plane that is perpendicular to each pair of ultraparallel lines.


Circles and disks

In hyperbolic geometry, the circumference of a circle of radius ''r'' is greater than 2 \pi r . Let R = \frac , where K is the
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
of the plane. In hyperbolic geometry, K is negative, so the square root is of a positive number. Then the circumference of a circle of radius ''r'' is equal to: :2\pi R \sinh \frac \,. And the area of the enclosed disk is: :4\pi R^2 \sinh^2 \frac = 2\pi R^2 \left(\cosh \frac - 1\right) \,. Therefore, in hyperbolic geometry the ratio of a circle's circumference to its radius is always strictly greater than 2\pi , though it can be made arbitrarily close by selecting a small enough circle. If the Gaussian curvature of the plane is −1 then the geodesic curvature of a circle of radius ''r'' is: \frac


Hypercycles and horocycles

In hyperbolic geometry, there is no line all of whose points are equidistant from another line. Instead, the points that all have the same orthogonal distance from a given line lie on a curve called a hypercycle. Another special curve is the horocycle, a curve whose normal radii ( perpendicular lines) are all limiting parallel to each other (all converge asymptotically in one direction to the same ideal point, the centre of the horocycle). Through every pair of points there are two horocycles. The centres of the horocycles are the ideal points of the perpendicular bisector of the line-segment between them. Given any three distinct points, they all lie on either a line, hypercycle, horocycle, or circle. The length of the line-segment is the shortest length between two points. The arc-length of a hypercycle connecting two points is longer than that of the line segment and shorter than that of a horocycle, connecting the same two points. The arclength of both horocycles connecting two points are equal. The arc-length of a circle between two points is larger than the arc-length of a horocycle connecting two points. If the Gaussian curvature of the plane is −1 then the geodesic curvature of a horocycle is 1 and of a hypercycle is between 0 and 1.


Triangles

Unlike Euclidean triangles, where the angles always add up to π radians (180°, a straight angle), in hyperbolic geometry the sum of the angles of a hyperbolic triangle is always strictly less than π radians (180°, a straight angle). The difference is referred to as the defect. The area of a hyperbolic triangle is given by its defect in radians multiplied by ''R''2. As a consequence, all hyperbolic triangles have an area that is less than or equal to ''R''2π. The area of a hyperbolic ideal triangle in which all three angles are 0° is equal to this maximum. As in Euclidean geometry, each hyperbolic triangle has an incircle. In hyperbolic geometry, if all three of its vertices lie on a horocycle or hypercycle, then the triangle has no circumscribed circle. As in spherical and elliptical geometry, in hyperbolic geometry if two triangles are similar, they must be congruent.


Regular apeirogon

A special polygon in hyperbolic geometry is the regular apeirogon, a uniform polygon with an infinite number of sides. In Euclidean geometry, the only way to construct such a polygon is to make the side lengths tend to zero and the apeirogon is indistinguishable from a circle, or make the interior angles tend to 180 degrees and the apeirogon approaches a straight line. However, in hyperbolic geometry, a regular apeirogon has sides of any length (i.e., it remains a polygon). The side and angle bisectors will, depending on the side length and the angle between the sides, be limiting or diverging parallel (see lines above). If the bisectors are limiting parallel the apeirogon can be inscribed and circumscribed by concentric horocycles. If the bisectors are diverging parallel then a pseudogon (distinctly different from an apeirogon) can be inscribed in hypercycles (all vertices are the same distance of a line, the axis, also the midpoint of the side segments are all equidistant to the same axis.)


Tessellations

Like the Euclidean plane it is also possible to tessellate the hyperbolic plane with regular polygons as faces. There are an infinite number of uniform tilings based on the Schwarz triangles (''p'' ''q'' ''r'') where 1/''p'' + 1/''q'' + 1/''r'' < 1, where ''p'', ''q'', ''r'' are each orders of reflection symmetry at three points of the fundamental domain triangle, the symmetry group is a hyperbolic triangle group. There are also infinitely many uniform tilings that cannot be generated from Schwarz triangles, some for example requiring quadrilaterals as fundamental domains.


Standardized Gaussian curvature

Though hyperbolic geometry applies for any surface with a constant negative
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
, it is usual to assume a scale in which the curvature ''K'' is −1. This results in some formulas becoming simpler. Some examples are: * The area of a triangle is equal to its angle defect in radians. * The area of a horocyclic sector is equal to the length of its horocyclic arc. * An arc of a horocycle so that a line that is tangent at one endpoint is limiting parallel to the radius through the other endpoint has a length of 1. * The ratio of the arc lengths between two radii of two concentric horocycles where the horocycles are a distance 1 apart is ''e'' :1.


Cartesian-like coordinate systems

In hyperbolic geometry, the sum of the angles of a quadrilateral is always less than 360 degrees, and hyperbolic rectangles differ greatly from Euclidean rectangles since there are no equidistant lines, so a proper Euclidean rectangle would need to be enclosed by two lines and two hypercycles. These all complicate coordinate systems. There are however different coordinate systems for hyperbolic plane geometry. All are based around choosing a point (the origin) on a chosen directed line (the ''x''-axis) and after that many choices exist. The Lobachevski coordinates ''x'' and ''y'' are found by dropping a perpendicular onto the ''x''-axis. ''x'' will be the label of the foot of the perpendicular. ''y'' will be the distance along the perpendicular of the given point from its foot (positive on one side and negative on the other). Another coordinate system measures the distance from the point to the horocycle through the origin centered around (0, + \infty ) and the length along this horocycle. Other coordinate systems use the Klein model or the Poincare disk model described below, and take the Euclidean coordinates as hyperbolic.


Distance

A Cartesian-like coordinate system (''x, y'') on the oriented hyperbolic plane is constructed as follows. Choose a line in the hyperbolic plane together with an orientation and an origin ''o'' on this line. Then: *the ''x''-coordinate of a point is the signed distance of its projection onto the line (the foot of the perpendicular segment to the line from that point) to the origin; *the ''y''-coordinate is the signed distance from the point to the line, with the sign according to whether the point is on the positive or negative side of the oriented line. The distance between two points represented by (''x_i, y_i''), ''i=1,2'' in this coordinate system is \operatorname (\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) = \operatorname \left( \cosh y_1 \cosh (x_2 - x_1) \cosh y_2 - \sinh y_1 \sinh y_2 \right) \,. This formula can be derived from the formulas about hyperbolic triangles. The corresponding metric tensor field is: (\mathrm s)^2 = \cosh^2 y \, (\mathrm x)^2 + (\mathrm y)^2 . In this coordinate system, straight lines take one of these forms ((''x'', ''y'') is a point on the line; ''x''0, ''y''0, ''A'', and ''α'' are parameters): ultraparallel to the ''x''-axis : \tanh (y) = \tanh (y_0) \cosh (x - x_0) asymptotically parallel on the negative side : \tanh (y) = A \exp (x) asymptotically parallel on the positive side : \tanh (y) = A \exp (- x) intersecting perpendicularly : x = x_0 intersecting at an angle ''α'' : \tanh (y) = \tan (\alpha) \sinh (x - x_0) Generally, these equations will only hold in a bounded domain (of ''x'' values). At the edge of that domain, the value of ''y'' blows up to ±infinity. See also Coordinate systems for the hyperbolic plane#Polar coordinate system.


History

Since the publication of Euclid's Elements circa 300 BCE, many geometers made attempts to prove the parallel postulate. Some tried to prove it by assuming its negation and trying to derive a contradiction. Foremost among these were
Proclus Proclus Lycius (; 8 February 412 – 17 April 485), called Proclus the Successor ( grc-gre, Πρόκλος ὁ Διάδοχος, ''Próklos ho Diádokhos''), was a Greek Neoplatonist philosopher, one of the last major classical philosophers ...
, Ibn al-Haytham (Alhacen),
Omar Khayyám Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīsābūrī (18 May 1048 – 4 December 1131), commonly known as Omar Khayyam ( fa, عمر خیّام), was a polymath, known for his contributions to mathematics, astronomy, philosophy, an ...
, Nasīr al-Dīn al-Tūsī, Witelo, Gersonides, Alfonso, and later
Giovanni Gerolamo Saccheri Giovanni Girolamo Saccheri (; 5 September 1667 – 25 October 1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. Saccheri was born in Sanremo. He entered the Jesuit order in 1685 and was ordained as a priest in 1694. ...
,
John Wallis John Wallis (; la, Wallisius; ) was an English clergyman and mathematician who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 he served as chief cryptographer for Parliament and, later, the royal ...
, Johann Heinrich Lambert, and Legendre. Their attempts were doomed to failure (as we now know, the parallel postulate is not provable from the other postulates), but their efforts led to the discovery of hyperbolic geometry. The theorems of Alhacen, Khayyam and al-Tūsī on quadrilaterals, including the Ibn al-Haytham–Lambert quadrilateral and Khayyam–Saccheri quadrilateral, were the first theorems on hyperbolic geometry. Their works on hyperbolic geometry had a considerable influence on its development among later European geometers, including Witelo, Gersonides, Alfonso, John Wallis and Saccheri. In the 18th century, Johann Heinrich Lambert introduced the hyperbolic functions and computed the area of a hyperbolic triangle.


19th-century developments

In the 19th century, hyperbolic geometry was explored extensively by Nikolai Ivanovich Lobachevsky, János Bolyai, Carl Friedrich Gauss and
Franz Taurinus Franz Adolph Taurinus (15 November 1794 – 13 February 1874) was a Germans, German mathematician who is known for his work on non-Euclidean geometry. Life Franz Taurinus was the son of Julius Ephraim Taurinus, a court official of the Count of ...
. Unlike their predecessors, who just wanted to eliminate the parallel postulate from the axioms of Euclidean geometry, these authors realized they had discovered a new geometry. Gauss wrote in an 1824 letter to
Franz Taurinus Franz Adolph Taurinus (15 November 1794 – 13 February 1874) was a Germans, German mathematician who is known for his work on non-Euclidean geometry. Life Franz Taurinus was the son of Julius Ephraim Taurinus, a court official of the Count of ...
that he had constructed it, but Gauss did not publish his work. Gauss called it " non-Euclidean geometry" causing several modern authors to continue to consider "non-Euclidean geometry" and "hyperbolic geometry" to be synonyms. Taurinus published results on hyperbolic trigonometry in 1826, argued that hyperbolic geometry is self consistent, but still believed in the special role of Euclidean geometry. The complete system of hyperbolic geometry was published by Lobachevsky in 1829/1830, while Bolyai discovered it independently and published in 1832. In 1868, Eugenio Beltrami provided models (see below) of hyperbolic geometry, and used this to prove that hyperbolic geometry was consistent if and only if Euclidean geometry was. The term "hyperbolic geometry" was introduced by Felix Klein in 1871. Klein followed an initiative of
Arthur Cayley Arthur Cayley (; 16 August 1821 – 26 January 1895) was a prolific United Kingdom of Great Britain and Ireland, British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics. As a child, C ...
to use the transformations of projective geometry to produce isometries. The idea used a conic section or quadric to define a region, and used cross ratio to define a metric. The projective transformations that leave the conic section or quadric
stable A stable is a building in which livestock, especially horses, are kept. It most commonly means a building that is divided into separate stalls for individual animals and livestock. There are many different types of stables in use today; the ...
are the isometries. "Klein showed that if the
Cayley absolute Cayley may refer to: __NOTOC__ People * Cayley (surname) * Cayley Illingworth (1759–1823), Anglican Archdeacon of Stow * Cayley Mercer (born 1994), Canadian women's ice hockey player Places * Cayley, Alberta, Canada, a hamlet * Mount Cayley, a vo ...
is a real curve then the part of the projective plane in its interior is isometric to the hyperbolic plane..." For more history, see article on non-Euclidean geometry, and the references Coxeter and Milnor.


Philosophical consequences

The discovery of hyperbolic geometry had important philosophical consequences. Before its discovery many philosophers (for example Hobbes and Spinoza) viewed philosophical rigour in terms of the "geometrical method", referring to the method of reasoning used in '' Euclid's Elements''. Kant in the ''Critique of Pure Reason'' came to the conclusion that space (in Euclidean geometry) and time are not discovered by humans as objective features of the world, but are part of an unavoidable systematic framework for organizing our experiences. It is said that Gauss did not publish anything about hyperbolic geometry out of fear of the "uproar of the Boeotians", which would ruin his status as ''princeps mathematicorum'' (Latin, "the Prince of Mathematicians"). The "uproar of the Boeotians" came and went, and gave an impetus to great improvements in
mathematical rigour Rigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as m ...
, analytical philosophy and logic. Hyperbolic geometry was finally proved consistent and is therefore another valid geometry.


Geometry of the universe (spatial dimensions only)

Because Euclidean, hyperbolic and elliptic geometry are all consistent, the question arises: which is the real geometry of space, and if it is hyperbolic or elliptic, what is its curvature? Lobachevsky had already tried to measure the curvature of the universe by measuring the
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects ...
of Sirius and treating Sirius as the ideal point of an angle of parallelism. He realised that his measurements were not precise enough to give a definite answer, but he did reach the conclusion that if the geometry of the universe is hyperbolic, then the absolute length is at least one million times the diameter of the
earth's orbit Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes  days (1 sidereal year), during which time Earth ...
(, 10 parsec). Some argue that his measurements were methodologically flawed.
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
, with his sphere-world thought experiment, came to the conclusion that everyday experience does not necessarily rule out other geometries. The geometrization conjecture gives a complete list of eight possibilities for the fundamental geometry of our space. The problem in determining which one applies is that, to reach a definitive answer, we need to be able to look at extremely large shapes – much larger than anything on Earth or perhaps even in our galaxy.


Geometry of the universe (special relativity)

Special relativity places space and time on equal footing, so that one considers the geometry of a unified spacetime instead of considering space and time separately. Minkowski geometry replaces Galilean geometry (which is the three-dimensional Euclidean space with time of Galilean relativity). In relativity, rather than considering Euclidean, elliptic and hyperbolic geometries, the appropriate geometries to consider are Minkowski space, de Sitter space and anti-de Sitter space, corresponding to zero, positive and negative curvature respectively. Hyperbolic geometry enters special relativity through
rapidity In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with di ...
, which stands in for velocity, and is expressed by a hyperbolic angle. The study of this velocity geometry has been called kinematic geometry. The space of relativistic velocities has a three-dimensional hyperbolic geometry, where the distance function is determined from the relative velocities of "nearby" points (velocities).


Physical realizations of the hyperbolic plane

The hyperbolic plane is a plane where every point is a
saddle point In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function ...
. There exist various pseudospheres in Euclidean space that have a finite area of constant negative Gaussian curvature. By Hilbert's theorem, it is not possible to isometrically immerse a complete hyperbolic plane (a complete regular surface of constant negative
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
) in a three-dimensional Euclidean space. Other useful
models A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
of hyperbolic geometry exist in Euclidean space, in which the metric is not preserved. A particularly well-known paper model based on the pseudosphere is due to William Thurston. The art of
crochet Crochet (; ) is a process of creating textiles by using a crochet hook to interlock loops of yarn, thread (yarn), thread, or strands of other materials. The name is derived from the French term ''crochet'', meaning 'hook'. Hooks can be made from ...
has been used (see ) to demonstrate hyperbolic planes, the first such demonstration having been made by Daina Taimiņa. In 2000, Keith Henderson demonstrated a quick-to-make paper model dubbed the " hyperbolic soccerball" (more precisely, a truncated order-7 triangular tiling). Instructions on how to make a hyperbolic quilt, designed by Helaman Ferguson, have been made available by Jeff Weeks.


Models of the hyperbolic plane

Various pseudospheres – surfaces with constant negative Gaussian curvature – can be embedded in 3-dimensional space under the standard Euclidean metric, and so can be made into tangible physical models. Of these, the tractoid (often called the pseudosphere) is the best known; using the tractoid as a model of the hyperbolic plane is analogous to using a cone or cylinder as a model of the Euclidean plane. However, the entire hyperbolic plane cannot be embedded into Euclidean space in this way, and various other models are more convenient for abstractly exploring hyperbolic geometry. There are four models commonly used for hyperbolic geometry: the Klein model, the
Poincaré disk model In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk th ...
, the
Poincaré half-plane model In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H = \, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry. Equivalently the Poincaré ha ...
, and the Lorentz or hyperboloid model. These models define a hyperbolic plane which satisfies the axioms of a hyperbolic geometry. Despite their names, the first three mentioned above were introduced as models of hyperbolic space by Beltrami, not by
Poincaré Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré (1854–1912), French physicist, mathematician and philosopher of science * Henriette Poincaré (1858-1943), wife of Prime Minister Raymond Poincaré * Luci ...
or Klein. All these models are extendable to more dimensions.


The Beltrami–Klein model

The Beltrami–Klein model, also known as the projective disk model, Klein disk model and Klein model, is named after Eugenio Beltrami and Felix Klein. For the two dimensions this model uses the interior of the unit circle for the complete hyperbolic plane, and the chords of this circle are the hyperbolic lines. For higher dimensions this model uses the interior of the unit ball, and the chords of this ''n''-ball are the hyperbolic lines. * This model has the advantage that lines are straight, but the disadvantage that angles are distorted (the mapping is not
conformal Conformal may refer to: * Conformal (software), in ASIC Software * Conformal coating in electronics * Conformal cooling channel, in injection or blow moulding * Conformal field theory in physics, such as: ** Boundary conformal field theory ...
), and also circles are not represented as circles. * The distance in this model is half the logarithm of the cross-ratio, which was introduced by
Arthur Cayley Arthur Cayley (; 16 August 1821 – 26 January 1895) was a prolific United Kingdom of Great Britain and Ireland, British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics. As a child, C ...
in projective geometry.


The Poincaré disk model

The
Poincaré disk model In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk th ...
, also known as the conformal disk model, also employs the interior of the unit circle, but lines are represented by arcs of circles that are
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
to the boundary circle, plus diameters of the boundary circle. * This model preserves angles, and is thereby
conformal Conformal may refer to: * Conformal (software), in ASIC Software * Conformal coating in electronics * Conformal cooling channel, in injection or blow moulding * Conformal field theory in physics, such as: ** Boundary conformal field theory ...
. All isometries within this model are therefore
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad'' ...
s. * Circles entirely within the disk remain circles although the Euclidean center of the circle is closer to the center of the disk than is the hyperbolic center of the circle. * Horocycles are circles within the disk which are tangent to the boundary circle, minus the point of contact. * Hypercycles are open-ended chords and circular arcs within the disc that terminate on the boundary circle at non-orthogonal angles.


The Poincaré half-plane model

The
Poincaré half-plane model In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H = \, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry. Equivalently the Poincaré ha ...
takes one-half of the Euclidean plane, bounded by a line ''B'' of the plane, to be a model of the hyperbolic plane. The line ''B'' is not included in the model. The Euclidean plane may be taken to be a plane with the
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
and the x-axis is taken as line ''B'' and the half plane is the upper half (''y'' > 0 ) of this plane. * Hyperbolic lines are then either half-circles orthogonal to ''B'' or rays perpendicular to ''B''. * The length of an interval on a ray is given by logarithmic measure so it is invariant under a homothetic transformation (x, y) \mapsto (\lambda x, \lambda y),\quad \lambda > 0 . * Like the Poincaré disk model, this model preserves angles, and is thus
conformal Conformal may refer to: * Conformal (software), in ASIC Software * Conformal coating in electronics * Conformal cooling channel, in injection or blow moulding * Conformal field theory in physics, such as: ** Boundary conformal field theory ...
. All isometries within this model are therefore
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad'' ...
s of the plane. * The half-plane model is the limit of the Poincaré disk model whose boundary is tangent to ''B'' at the same point while the radius of the disk model goes to infinity.


The hyperboloid model

The hyperboloid model or Lorentz model employs a 2-dimensional
hyperboloid In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by defo ...
of revolution (of two sheets, but using one) embedded in 3-dimensional Minkowski space. This model is generally credited to Poincaré, but Reynolds says that Wilhelm Killing used this model in 1885 * This model has direct application to special relativity, as Minkowski 3-space is a model for spacetime, suppressing one spatial dimension. One can take the hyperboloid to represent the events (positions in spacetime) that various inertially moving observers, starting from a common event, will reach in a fixed proper time. * The hyperbolic distance between two points on the hyperboloid can then be identified with the relative
rapidity In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with di ...
between the two corresponding observers. * The model generalizes directly to an additional dimension: a hyperbolic 3-space three-dimensional hyperbolic geometry relates to Minkowski 4-space.


The hemisphere model

The hemisphere model is not often used as model by itself, but it functions as a useful tool for visualising transformations between the other models. The hemisphere model uses the upper half of the unit sphere: x^2 + y^2 +z^2 = 1 , z > 0. The hyperbolic lines are half-circles orthogonal to the boundary of the hemisphere. The hemisphere model is part of a Riemann sphere, and different projections give different models of the hyperbolic plane: *
Stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (geometry), plane (the ''projection plane'') perpendicular to ...
from (0,0, -1) onto the plane z = 0 projects corresponding points on the
Poincaré disk model In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk th ...
*
Stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (geometry), plane (the ''projection plane'') perpendicular to ...
from (0,0, -1) onto the surface x^2 + y^2 - z^2 = -1 , z > 0 projects corresponding points on the hyperboloid model *
Stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (geometry), plane (the ''projection plane'') perpendicular to ...
from (-1,0,0) onto the plane x=1 projects corresponding points on the
Poincaré half-plane model In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H = \, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry. Equivalently the Poincaré ha ...
*
Orthographic projection Orthographic projection (also orthogonal projection and analemma) is a means of representing Three-dimensional space, three-dimensional objects in Two-dimensional space, two dimensions. Orthographic projection is a form of parallel projection in ...
onto a plane z = C projects corresponding points on the Beltrami–Klein model. * Central projection from the centre of the sphere onto the plane z = 1 projects corresponding points on the Gans Model See further: Connection between the models (below)


The Gans model

In 1966 David Gans proposed a flattened hyperboloid model in the journal ''
American Mathematical Monthly ''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an e ...
''. It is an
orthographic projection Orthographic projection (also orthogonal projection and analemma) is a means of representing Three-dimensional space, three-dimensional objects in Two-dimensional space, two dimensions. Orthographic projection is a form of parallel projection in ...
of the hyperboloid model onto the xy-plane. This model is not as widely used as other models but nevertheless is quite useful in the understanding of hyperbolic geometry. * Unlike the Klein or the Poincaré models, this model utilizes the entire
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
. * The lines in this model are represented as branches of a hyperbola.


The band model

The band model employs a portion of the Euclidean plane between two parallel lines. Distance is preserved along one line through the middle of the band. Assuming the band is given by \, the metric is given by , dz, \sec (\operatorname z).


Connection between the models

All models essentially describe the same structure. The difference between them is that they represent different
coordinate charts In mathematics, particularly topology, one describes a manifold using an atlas. An atlas consists of individual ''charts'' that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an a ...
laid down on the same metric space, namely the hyperbolic plane. The characteristic feature of the hyperbolic plane itself is that it has a constant negative
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
, which is indifferent to the coordinate chart used. The
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s are similarly invariant: that is, geodesics map to geodesics under coordinate transformation. Hyperbolic geometry generally is introduced in terms of the geodesics and their intersections on the hyperbolic plane. Once we choose a coordinate chart (one of the "models"), we can always embed it in a Euclidean space of same dimension, but the embedding is clearly not isometric (since the curvature of Euclidean space is 0). The hyperbolic space can be represented by infinitely many different charts; but the embeddings in Euclidean space due to these four specific charts show some interesting characteristics. Since the four models describe the same metric space, each can be transformed into the other. See, for example: * the Beltrami–Klein model's relation to the hyperboloid model, * the Beltrami–Klein model's relation to the Poincaré disk model, * and the Poincaré disk model's relation to the hyperboloid model.


Isometries of the hyperbolic plane

Every isometry ( transformation or motion) of the hyperbolic plane to itself can be realized as the composition of at most three reflections. In ''n''-dimensional hyperbolic space, up to ''n''+1 reflections might be required. (These are also true for Euclidean and spherical geometries, but the classification below is different.) All the isometries of the hyperbolic plane can be classified into these classes: * Orientation preserving ** the identity isometry — nothing moves; zero reflections; zero
degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
. ** inversion through a point (half turn) — two reflections through mutually perpendicular lines passing through the given point, i.e. a rotation of 180 degrees around the point; two
degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
. **
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
around a normal point — two reflections through lines passing through the given point (includes inversion as a special case); points move on circles around the center; three degrees of freedom. ** "rotation" around an ideal point (horolation) — two reflections through lines leading to the ideal point; points move along horocycles centered on the ideal point; two degrees of freedom. ** translation along a straight line — two reflections through lines perpendicular to the given line; points off the given line move along hypercycles; three degrees of freedom. * Orientation reversing ** reflection through a line — one reflection; two degrees of freedom. ** combined reflection through a line and translation along the same line — the reflection and translation commute; three reflections required; three degrees of freedom.


Hyperbolic geometry in art

M. C. Escher's famous prints '' Circle Limit III'' and ''Circle Limit IV'' illustrate the conformal disc model (
Poincaré disk model In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk th ...
) quite well. The white lines in ''III'' are not quite geodesics (they are hypercycles), but are close to them. It is also possible to see quite plainly the negative
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
of the hyperbolic plane, through its effect on the sum of angles in triangles and squares. For example, in ''Circle Limit III'' every vertex belongs to three triangles and three squares. In the Euclidean plane, their angles would sum to 450°; i.e., a circle and a quarter. From this, we see that the sum of angles of a triangle in the hyperbolic plane must be smaller than 180°. Another visible property is exponential growth. In ''Circle Limit III'', for example, one can see that the number of fishes within a distance of ''n'' from the center rises exponentially. The fishes have an equal hyperbolic area, so the area of a ball of radius ''n'' must rise exponentially in ''n''. The art of
crochet Crochet (; ) is a process of creating textiles by using a crochet hook to interlock loops of yarn, thread (yarn), thread, or strands of other materials. The name is derived from the French term ''crochet'', meaning 'hook'. Hooks can be made from ...
has been used to demonstrate hyperbolic planes (pictured above) with the first being made by Daina Taimiņa, whose book '' Crocheting Adventures with Hyperbolic Planes'' won the 2009 Bookseller/Diagram Prize for Oddest Title of the Year. HyperRogue is a roguelike game set on various tilings of the hyperbolic plane.


Higher dimensions

Hyperbolic geometry is not limited to 2 dimensions; a hyperbolic geometry exists for every higher number of dimensions.


Homogeneous structure

Hyperbolic space of dimension ''n'' is a special case of a Riemannian symmetric space of noncompact type, as it is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to the quotient :: \mathrm(1,n)/(\mathrm(1) \times \mathrm(n)). The
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
acts The Acts of the Apostles ( grc-koi, Πράξεις Ἀποστόλων, ''Práxeis Apostólōn''; la, Actūs Apostolōrum) is the fifth book of the New Testament; it tells of the founding of the Christian Church and the spread of its message ...
by norm-preserving transformations on Minkowski space R1,''n'', and it acts
transitively Transitivity or transitive may refer to: Grammar * Transitivity (grammar), a property of verbs that relates to whether a verb can take direct objects * Transitive verb, a verb which takes an object * Transitive case, a grammatical case to mark a ...
on the two-sheet hyperboloid of norm 1 vectors. Timelike lines (i.e., those with positive-norm tangents) through the origin pass through antipodal points in the hyperboloid, so the space of such lines yields a model of hyperbolic ''n''-space. The stabilizer of any particular line is isomorphic to the product of the orthogonal groups O(''n'') and O(1), where O(''n'') acts on the tangent space of a point in the hyperboloid, and O(1) reflects the line through the origin. Many of the elementary concepts in hyperbolic geometry can be described in linear algebraic terms: geodesic paths are described by intersections with planes through the origin, dihedral angles between hyperplanes can be described by inner products of normal vectors, and hyperbolic reflection groups can be given explicit matrix realizations. In small dimensions, there are exceptional isomorphisms of Lie groups that yield additional ways to consider symmetries of hyperbolic spaces. For example, in dimension 2, the isomorphisms allow one to interpret the upper half plane model as the quotient and the Poincaré disc model as the quotient . In both cases, the symmetry groups act by fractional linear transformations, since both groups are the orientation-preserving stabilizers in of the respective subspaces of the Riemann sphere. The Cayley transformation not only takes one model of the hyperbolic plane to the other, but realizes the isomorphism of symmetry groups as conjugation in a larger group. In dimension 3, the fractional linear action of on the Riemann sphere is identified with the action on the conformal boundary of hyperbolic 3-space induced by the isomorphism . This allows one to study isometries of hyperbolic 3-space by considering spectral properties of representative complex matrices. For example, parabolic transformations are conjugate to rigid translations in the upper half-space model, and they are exactly those transformations that can be represented by unipotent upper triangular matrices.


See also

* Band model * Constructions in hyperbolic geometry *
Hjelmslev transformation In mathematics, the Hjelmslev transformation is an effective method for mapping an entire hyperbolic plane into a circle with a finite radius. The transformation was invented by Danish mathematician Johannes Hjelmslev. It utilizes Nikolai Ivanovi ...
* Hyperbolic 3-manifold * Hyperbolic manifold * Hyperbolic set * Hyperbolic tree * Kleinian group * Lambert quadrilateral * Open universe * Poincaré metric * Saccheri quadrilateral *
Systolic geometry In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, ...
* Uniform tilings in hyperbolic plane * δ-hyperbolic space


Notes


References

* A'Campo, Norbert and Papadopoulos, Athanase, (2012) ''Notes on hyperbolic geometry'', in: Strasbourg Master class on Geometry, pp. 1–182, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 18, Zürich: European Mathematical Society (EMS), 461 pages, SBN , DOI 10.4171–105. * Coxeter, H. S. M., (1942) ''Non-Euclidean geometry'', University of Toronto Press, Toronto * * * Lobachevsky, Nikolai I., (2010) ''Pangeometry'', Edited and translated by Athanase Papadopoulos, Heritage of European Mathematics, Vol. 4. Zürich: European Mathematical Society (EMS). xii, 310~p, /hbk * Milnor, John W., (1982)
Hyperbolic geometry: The first 150 years
', Bull. Amer. Math. Soc. (N.S.) Volume 6, Number 1, pp. 9–24. * Reynolds, William F., (1993) ''Hyperbolic Geometry on a Hyperboloid'',
American Mathematical Monthly ''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an e ...
100:442–455. * * Samuels, David, (March 2006) ''Knit Theory'' Discover Magazine, volume 27, Number 3. * James W. Anderson, ''Hyperbolic Geometry'', Springer 2005, * James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry (1997)
Hyperbolic Geometry
', MSRI Publications, volume 31.


External links



University of New Mexico * ttps://www.youtube.com/watch?v=B16YjC9OS0k&mode=user&search= "The Hyperbolic Geometry Song"A short music video about the basics of Hyperbolic Geometry available at YouTube. * * *
More on hyperbolic geometry, including movies and equations for conversion between the different models
University of Illinois at Urbana-Champaign
Hyperbolic Voronoi diagrams made easy, Frank Nielsen
* , interactive instructional website.
Hyperbolic Planar Tesselations

Models of the Hyperbolic Plane
{{DEFAULTSORT:Hyperbolic Geometry