An alloy is a
mixture
In chemistry, a mixture is a material made up of two or more different chemical substances which are not chemically bonded. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the ...
of
chemical elements of which at least one is a
metal. Unlike
chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as
electrical conductivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
,
ductility,
opacity
Opacity or opaque may refer to:
* Impediments to (especially, visible) light:
** Opacities, absorption coefficients
** Opacity (optics), property or degree of blocking the transmission of light
* Metaphors derived from literal optics:
** In lingu ...
, and
luster, but may have properties that differ from those of the pure metals, such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties to the constituent metal elements such as corrosion resistance or mechanical strength.
Alloys are defined by a
metallic bonding character. The alloy constituents are usually measured by mass percentage for practical applications, and in
atomic fraction for basic science studies. Alloys are usually classified as substitutional or
interstitial alloys, depending on the atomic arrangement that forms the alloy. They can be further classified as homogeneous (consisting of a single phase), or heterogeneous (consisting of two or more phases) or
intermetallic. An alloy may be a
solid solution of metal elements (a single phase, where all metallic grains (crystals) are of the same composition) or a
mixture
In chemistry, a mixture is a material made up of two or more different chemical substances which are not chemically bonded. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the ...
of metallic phases (two or more solutions, forming a
microstructure of different crystals within the metal).
Examples of alloys include
red gold (
gold and
copper)
white gold (gold and
silver),
sterling silver (silver and copper),
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
or
silicon steel (
iron with non-metallic
carbon or
silicon respectively),
solder,
brass,
pewter,
duralumin
Duralumin (also called duraluminum, duraluminium, duralum, dural(l)ium, or dural) is a trade name for one of the earliest types of age-hardenable aluminium alloys. The term is a combination of '' Dürener'' and ''aluminium''.
Its use as a tra ...
,
bronze
Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids such ...
, and
amalgams.
Alloys are used in a wide variety of applications, from the steel alloys, used in everything from buildings to automobiles to surgical tools, to exotic
titanium alloys used in the aerospace industry, to beryllium-copper alloys for non-sparking tools.
Characteristics
file:Born bronze - Bronze casts.jpg, Liquid
bronze
Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids such ...
, being poured into molds during casting
An alloy is a mixture of
chemical elements, which forms an impure substance (admixture) that retains the characteristics of a
metal. An alloy is distinct from an impure metal in that, with an alloy, the added elements are well controlled to produce desirable properties, while impure metals such as
wrought iron are less controlled, but are often considered useful. Alloys are made by mixing two or more elements, at least one of which is a metal. This is usually called the primary metal or the base metal, and the name of this metal may also be the name of the alloy. The other constituents may or may not be metals but, when mixed with the molten base, they will be
soluble and dissolve into the mixture.
The mechanical properties of alloys will often be quite different from those of its individual constituents. A metal that is normally very soft (
malleable), such as
aluminium, can be altered by alloying it with another soft metal, such as
copper. Although both metals are very soft and
ductile, the resulting
aluminium alloy will have much greater
strength. Adding a small amount of non-metallic
carbon to
iron trades its great ductility for the greater strength of an alloy called
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
. Due to its very-high strength, but still substantial
toughness, and its ability to be greatly altered by
heat treatment, steel is one of the most useful and common alloys in modern use. By adding
chromium
Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
Chromium metal is valued for its high corrosion resistance and hardne ...
to steel, its resistance to
corrosion can be enhanced, creating
stainless steel
Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
, while adding
silicon will alter its electrical characteristics, producing
silicon steel.
left, A brass lamp
Like oil and water, a molten metal may not always mix with another element. For example, pure iron is almost completely
insoluble with copper. Even when the constituents are soluble, each will usually have a
saturation point, beyond which no more of the constituent can be added. Iron, for example, can hold a maximum of 6.67% carbon. Although the elements of an alloy usually must be soluble in the
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
state, they may not always be soluble in the
solid state. If the metals remain soluble when solid, the alloy forms a
solid solution, becoming a homogeneous structure consisting of identical crystals, called a
phase. If as the mixture cools the constituents become insoluble, they may separate to form two or more different types of crystals, creating a heterogeneous
microstructure of different phases, some with more of one constituent than the other. However, in other alloys, the insoluble elements may not separate until after crystallization occurs. If cooled very quickly, they first crystallize as a homogeneous phase, but they are
supersaturated
In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a liqu ...
with the secondary constituents. As time passes, the atoms of these supersaturated alloys can separate from the crystal lattice, becoming more stable, and forming a second phase that serves to reinforce the crystals internally.
A gate valve, made from ">Inconel
Some alloys, such as
electrum—an alloy of
silver and
gold—occur naturally. Meteorites are sometimes made of naturally occurring alloys of iron and
nickel, but are not native to the Earth. One of the first alloys made by humans was
bronze
Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids such ...
, which is a mixture of the metals
tin and
copper. Bronze was an extremely useful alloy to the ancients, because it is much stronger and harder than either of its components. Steel was another common alloy. However, in ancient times, it could only be created as an accidental byproduct from the heating of iron ore in fires (
smelting) during the manufacture of iron. Other ancient alloys include
pewter,
brass and
pig iron
Pig iron, also known as crude iron, is an intermediate product of the iron industry in the production of steel which is obtained by smelting iron ore in a blast furnace. Pig iron has a high carbon content, typically 3.8–4.7%, along with silic ...
. In the modern age, steel can be created in many forms.
Carbon steel
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
* no minimum content is specified or required for chromium, cobalt ...
can be made by varying only the carbon content, producing soft alloys like
mild steel
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
* no minimum content is specified or required for chromium, cobalt ...
or hard alloys like
spring steel.
Alloy steels can be made by adding other elements, such as
chromium
Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
Chromium metal is valued for its high corrosion resistance and hardne ...
,
molybdenum
Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lea ...
,
vanadium
Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer ( pas ...
or
nickel, resulting in alloys such as
high-speed steel or
tool steel. Small amounts of
manganese are usually alloyed with most modern steels because of its ability to remove unwanted impurities, like
phosphorus,
sulfur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
and
oxygen, which can have detrimental effects on the alloy. However, most alloys were not created until the 1900s, such as various aluminium,
titanium,
nickel, and
magnesium alloys. Some modern
superalloy
A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Several key characteristics of a superalloy are excellent mechanical strength, resistance to thermal creep deformation, g ...
s, such as
incoloy,
inconel, and
hastelloy, may consist of a multitude of different elements.
An alloy is technically an impure metal, but when referring to alloys, the term ''impurities'' usually denotes undesirable elements. Such impurities are introduced from the base metals and alloying elements, but are removed during processing. For instance, sulfur is a common impurity in steel. Sulfur combines readily with iron to form
iron sulfide, which is very brittle, creating weak spots in the steel.
Lithium,
sodium and
calcium are common impurities in aluminium alloys, which can have adverse effects on the
structural integrity of castings. Conversely, otherwise pure-metals that contain unwanted impurities are often called "impure metals" and are not usually referred to as alloys. Oxygen, present in the air, readily combines with most metals to form
metal oxides; especially at higher temperatures encountered during alloying. Great care is often taken during the alloying process to remove excess impurities, using
fluxes, chemical additives, or other methods of
extractive metallurgy.
Theory
Alloying a metal is done by combining it with one or more other elements. The most common and oldest alloying process is performed by heating the base metal beyond its
melting point and then dissolving the solutes into the molten liquid, which may be possible even if the melting point of the solute is far greater than that of the base. For example, in its liquid state,
titanium is a very strong solvent capable of dissolving most metals and elements. In addition, it readily absorbs gases like oxygen and burns in the presence of nitrogen. This increases the chance of contamination from any contacting surface, and so must be melted in vacuum induction-heating and special, water-cooled, copper
crucibles. However, some metals and solutes, such as iron and carbon, have very high melting-points and were impossible for ancient people to melt. Thus, alloying (in particular, interstitial alloying) may also be performed with one or more constituents in a gaseous state, such as found in a
blast furnace
A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
to make pig iron (liquid-gas),
nitriding,
carbonitriding
Carbonitriding is a metallurgical surface modification technique that is used to increase the surface hardness of a metal, thereby reducing wear.
During the process, atoms of carbon and nitrogen diffuse interstitially into the metal, creatin ...
or other forms of
case hardening (solid-gas), or the
cementation process
The cementation process is an obsolete technology for making steel by carburization of iron. Unlike modern steelmaking, it increased the amount of carbon in the iron. It was apparently developed before the 17th century. Derwentcote Steel F ...
used to make
blister steel (solid-gas). It may also be done with one, more, or all of the constituents in the solid state, such as found in ancient methods of
pattern welding
Pattern welding is the practice in sword and knife making of forming a blade of several metal pieces of differing composition that are forge welding, forge-welded together and twisted and manipulated to form a pattern. Often mistakenly called Dam ...
(solid-solid),
shear steel
The cementation process is an obsolete technology for making steel by carburization of iron. Unlike modern steelmaking, it increased the amount of carbon in the iron. It was apparently developed before the 17th century. Derwentcote Steel Furna ...
(solid-solid), or
crucible steel production (solid-liquid), mixing the elements via solid-state
diffusion.
By adding another element to a metal, differences in the size of the atoms create internal stresses in the lattice of the metallic crystals; stresses that often enhance its properties. For example, the combination of carbon with iron produces
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
, which is stronger than
iron, its primary element. The
electrical and
thermal conductivity of alloys is usually lower than that of the pure metals. The physical properties, such as
density,
reactivity,
Young's modulus of an alloy may not differ greatly from those of its base element, but engineering properties such as
tensile strength, ductility, and
shear strength may be substantially different from those of the constituent materials. This is sometimes a result of the sizes of the
atoms in the alloy, because larger atoms exert a compressive force on neighboring atoms, and smaller atoms exert a tensile force on their neighbors, helping the alloy resist deformation. Sometimes alloys may exhibit marked differences in behavior even when small amounts of one element are present. For example, impurities in semiconducting
ferromagnetic
Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
alloys lead to different properties, as first predicted by White, Hogan, Suhl, Tian Abrie and Nakamura.
Unlike pure metals, most alloys do not have a single
melting point, but a melting range during which the material is a mixture of
solid and
liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
phases (a slush). The temperature at which melting begins is called the
solidus, and the temperature when melting is just complete is called the
liquidus
The liquidus temperature, TL or Tliq, specifies the temperature above which a material is completely liquid, and the maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium. It is mostly used for impure subst ...
. For many alloys there is a particular alloy proportion (in some cases more than one), called either a
eutectic mixture or a peritectic composition, which gives the alloy a unique and low melting point, and no liquid/solid slush transition.
Heat treatment
left, , (alpha iron">Allotropes of iron, (alpha iron and gamma iron">alpha_iron.html" ;"title="Allotropes of iron, (alpha iron">Allotropes of iron, (alpha iron and gamma iron) showing the differences in atomic arrangement
file:Photomicrograph of annealed and quenched steel, from 1911 Britannica plates 11 and 14.jpg, Photomicrographs of
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
. Top photo:
Annealed (slowly cooled) steel forms a heterogeneous, lamellar microstructure called
pearlite, consisting of the phases
cementite (light) and
ferrite (dark). Bottom photo:
Quenched (quickly cooled) steel forms a single phase called
martensite, in which the carbon remains trapped within the crystals, creating internal stresses
Alloying elements are added to a base metal, to induce
hardness,
toughness,
ductility, or other desired properties. Most metals and alloys can be
work hardened
In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.
This strengt ...
by creating defects in their crystal structure. These defects are created during
plastic deformation by hammering, bending, extruding, et cetera, and are permanent unless the metal is
recrystallized. Otherwise, some alloys can also have their properties altered by
heat treatment. Nearly all metals can be softened by
annealing, which recrystallizes the alloy and repairs the defects, but not as many can be hardened by controlled heating and cooling. Many alloys of
aluminium,
copper,
magnesium,
titanium, and
nickel can be strengthened to some degree by some method of heat treatment, but few respond to this to the same degree as does
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
.
The base metal iron of the iron-carbon alloy known as steel, undergoes a change in the arrangement (
allotropy) of the atoms of its crystal matrix at a certain temperature (usually between and , depending on carbon content). This allows the smaller carbon atoms to enter the interstices of the iron crystal. When this
diffusion happens, the carbon atoms are said to be in ''
solution'' in the iron, forming a particular single, homogeneous, crystalline phase called
austenite. If the steel is cooled slowly, the carbon can diffuse out of the iron and it will gradually revert to its low temperature allotrope. During slow cooling, the carbon atoms will no longer be as
soluble with the iron, and will be forced to
precipitate out of solution,
nucleating
In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determ ...
into a more concentrated form of iron carbide (Fe
3C) in the spaces between the pure iron crystals. The steel then becomes heterogeneous, as it is formed of two phases, the iron-carbon phase called
cementite (or
carbide), and pure iron
ferrite. Such a heat treatment produces a steel that is rather soft. If the steel is cooled quickly, however, the carbon atoms will not have time to diffuse and precipitate out as carbide, but will be trapped within the iron crystals. When rapidly cooled, a
diffusionless (martensite) transformation occurs, in which the carbon atoms become trapped in solution. This causes the iron crystals to deform as the crystal structure tries to change to its low temperature state, leaving those crystals very hard but much less ductile (more brittle).
While the high strength of steel results when diffusion and precipitation is prevented (forming martensite), most heat-treatable alloys are
precipitation hardening alloys, that depend on the diffusion of alloying elements to achieve their strength. When heated to form a solution and then cooled quickly, these alloys become much softer than normal, during the diffusionless transformation, but then harden as they age. The solutes in these alloys will precipitate over time, forming
intermetallic phases, which are difficult to discern from the base metal. Unlike steel, in which the solid solution separates into different crystal phases (carbide and ferrite), precipitation hardening alloys form different phases within the same crystal. These intermetallic alloys appear homogeneous in crystal structure, but tend to behave heterogeneously, becoming hard and somewhat brittle.
In 1906,
precipitation hardening alloys were discovered by
Alfred Wilm Alfred Wilm (25 June 1869 – 6 August 1937) was a German metallurgist who invented the alloy Al-3.5–5.5%Cu-Mg-Mn, now known as Duralumin which is used extensively in aircraft.
Whilst working in military research NUTZ in Neubabelsberg in 1901, Wi ...
. Precipitation hardening alloys, such as certain alloys of
aluminium,
titanium, and copper, are heat-treatable alloys that soften when
quenched (cooled quickly), and then harden over time. Wilm had been searching for a way to harden aluminium alloys for use in machine-gun cartridge cases. Knowing that aluminium-copper alloys were heat-treatable to some degree, Wilm tried quenching a ternary alloy of aluminium, copper, and the addition of
magnesium, but was initially disappointed with the results. However, when Wilm retested it the next day he discovered that the alloy increased in hardness when left to age at room temperature, and far exceeded his expectations. Although an explanation for the phenomenon was not provided until 1919,
duralumin
Duralumin (also called duraluminum, duraluminium, duralum, dural(l)ium, or dural) is a trade name for one of the earliest types of age-hardenable aluminium alloys. The term is a combination of '' Dürener'' and ''aluminium''.
Its use as a tra ...
was one of the first "age hardening" alloys used, becoming the primary building material for the first
Zeppelins, and was soon followed by many others. Because they often exhibit a combination of high strength and low weight, these alloys became widely used in many forms of industry, including the construction of modern
aircraft.
Mechanisms
Different atomic mechanisms of alloy formation, showing pure metal, substitutional, interstitial, and a combination of the two
When a molten metal is mixed with another substance, there are two mechanisms that can cause an alloy to form, called ''atom exchange'' and the ''interstitial mechanism''. The relative size of each element in the mix plays a primary role in determining which mechanism will occur. When the atoms are relatively similar in size, the atom exchange method usually happens, where some of the atoms composing the metallic crystals are substituted with atoms of the other constituent. This is called a ''substitutional alloy''. Examples of substitutional alloys include bronze and
brass, in which some of the copper atoms are substituted with either tin or zinc atoms respectively.
In the case of the interstitial mechanism, one atom is usually much smaller than the other and can not successfully substitute for the other type of atom in the crystals of the base metal. Instead, the smaller atoms become trapped in the
interstitial sites between the atoms of the crystal matrix. This is referred to as an ''interstitial alloy''. Steel is an example of an interstitial alloy, because the very small carbon atoms fit into interstices of the iron matrix.
Stainless steel
Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
is an example of a combination of interstitial and substitutional alloys, because the carbon atoms fit into the interstices, but some of the iron atoms are substituted by nickel and chromium atoms.
[Dossett, Jon L. and Boyer, Howard E. (2006) ''Practical heat treating''. ASM International. pp. 1–14. .]
History and examples
left, A and a hatchet that was forged from meteoric iron">meteorite and a hatchet that was forged from meteoric iron ">meteoric_iron.html" ;"title="meteorite and a hatchet that was forged from meteoric iron">meteorite and a hatchet that was forged from meteoric iron
Meteoric iron
The use of alloys by humans started with the use of meteoric iron, a naturally occurring alloy of
nickel and
iron. It is the main constituent of
iron meteorites. As no metallurgic processes were used to separate iron from nickel, the alloy was used as it was. Meteoric iron could be forged from a red heat to make objects such as tools, weapons, and nails. In many cultures it was shaped by cold hammering into knives and arrowheads. They were often used as anvils. Meteoric iron was very rare and valuable, and difficult for ancient people to
work.
Bronze and brass
axe 1100 BC">Bronze axe 1100 BC
file:Türzieher Bremen 1405.JPG, left, A
bronze
Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids such ...
doorknocker
Iron is usually found as iron ore on Earth, except for one deposit of native iron in Greenland, which was used by the Inuit. Native
copper, however, was found worldwide, along with
silver,
gold, and
platinum, which were also used to make tools, jewelry, and other objects since Neolithic times. Copper was the hardest of these metals, and the most widely distributed. It became one of the most important metals to the ancients. Around 10,000 years ago in the highlands of
Anatolia (Turkey), humans learned to
smelt metals such as copper and
tin from
ore. Around 2500 BC, people began alloying the two metals to form
bronze
Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids such ...
, which was much harder than its ingredients. Tin was rare, however, being found mostly in Great Britain. In the Middle East, people began alloying copper with
zinc to form
brass. Ancient civilizations took into account the mixture and the various properties it produced, such as
hardness,
toughness and
melting point, under various conditions of
temperature and
work hardening, developing much of the information contained in modern
alloy phase diagrams.
[ For example, arrowheads from the Chinese Qin dynasty (around 200 BC) were often constructed with a hard bronze-head, but a softer bronze-tang, combining the alloys to prevent both dulling and breaking during use.
]
Amalgams
Mercury
Mercury commonly refers to:
* Mercury (planet), the nearest planet to the Sun
* Mercury (element), a metallic chemical element with the symbol Hg
* Mercury (mythology), a Roman god
Mercury or The Mercury may also refer to:
Companies
* Merc ...
has been smelted from cinnabar for thousands of years. Mercury dissolves many metals, such as gold, silver, and tin, to form amalgams
Amalgam most commonly refers to:
* Amalgam (chemistry), mercury alloy
* Amalgam (dentistry), material of silver tooth fillings
** Bonded amalgam, used in dentistry
Amalgam may also refer to:
* Amalgam Comics, a publisher
* Amalgam Digital, an in ...
(an alloy in a soft paste or liquid form at ambient temperature). Amalgams have been used since 200 BC in China for gilding
Gilding is a decorative technique for applying a very thin coating of gold over solid surfaces such as metal (most common), wood, porcelain, or stone. A gilded object is also described as "gilt". Where metal is gilded, the metal below was tradi ...
objects such as armor and mirrors with precious metals. The ancient Romans often used mercury-tin amalgams for gilding their armor. The amalgam was applied as a paste and then heated until the mercury vaporized, leaving the gold, silver, or tin behind. Mercury was often used in mining, to extract precious metals like gold and silver from their ores.
Precious metals
, a natural alloy of silver and gold, was often used for making coins">Electrum, a natural alloy of silver and gold, was often used for making coins
Many ancient civilizations alloyed metals for purely aesthetic purposes. In ancient Egypt and Mycenae, gold was often alloyed with copper to produce red-gold, or iron to produce a bright burgundy-gold. Gold was often found alloyed with silver or other metals to produce various types of colored gold. These metals were also used to strengthen each other, for more practical purposes. Copper was often added to silver to make sterling silver, increasing its strength for use in dishes, silverware, and other practical items. Quite often, precious metals were alloyed with less valuable substances as a means to deceive buyers. Around 250 BC, Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
was commissioned by the King of Syracuse
Syracuse may refer to:
Places Italy
*Syracuse, Sicily, or spelled as ''Siracusa''
*Province of Syracuse
United States
*Syracuse, New York
**East Syracuse, New York
**North Syracuse, New York
*Syracuse, Indiana
* Syracuse, Kansas
*Syracuse, Miss ...
to find a way to check the purity of the gold in a crown, leading to the famous bath-house shouting of "Eureka!" upon the discovery of Archimedes' principle.
Pewter
The term pewter covers a variety of alloys consisting primarily of tin. As a pure metal, tin is much too soft to use for most practical purposes. However, during the Bronze Age, tin was a rare metal in many parts of Europe and the Mediterranean, so it was often valued higher than gold. To make jewellery, cutlery, or other objects from tin, workers usually alloyed it with other metals to increase strength and hardness. These metals were typically lead, antimony, bismuth or copper. These solutes were sometimes added individually in varying amounts, or added together, making a wide variety of objects, ranging from practical items such as dishes, surgical tools, candlesticks or funnels, to decorative items like ear rings and hair clips.
The earliest examples of pewter come from ancient Egypt, around 1450 BC. The use of pewter was widespread across Europe, from France to Norway and Britain (where most of the ancient tin was mined) to the Near East. The alloy was also used in China and the Far East, arriving in Japan around 800 AD, where it was used for making objects like ceremonial vessels, tea canisters, or chalices used in shinto shrines.
Iron
file:Chinese fining.png, Puddling in China, circa 1637. Opposite to most alloying processes, liquid pig-iron is poured from a blast furnace into a container and stirred to remove carbon, which diffuses into the air forming carbon dioxide, leaving behind a mild steel
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
* no minimum content is specified or required for chromium, cobalt ...
to wrought iron
The first known smelting of iron began in Anatolia, around 1800 BC. Called the bloomery, bloomery process, it produced very soft but ductile wrought iron. By 800 BC, iron-making technology had spread to Europe, arriving in Japan around 700 AD. Pig iron
Pig iron, also known as crude iron, is an intermediate product of the iron industry in the production of steel which is obtained by smelting iron ore in a blast furnace. Pig iron has a high carbon content, typically 3.8–4.7%, along with silic ...
, a very hard but brittle alloy of iron and carbon, was being produced in China
China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and ...
as early as 1200 BC, but did not arrive in Europe until the Middle Ages. Pig iron has a lower melting point than iron, and was used for making cast-iron. However, these metals found little practical use until the introduction of crucible steel around 300 BC. These steels were of poor quality, and the introduction of pattern welding
Pattern welding is the practice in sword and knife making of forming a blade of several metal pieces of differing composition that are forge welding, forge-welded together and twisted and manipulated to form a pattern. Often mistakenly called Dam ...
, around the 1st century AD, sought to balance the extreme properties of the alloys by laminating them, to create a tougher metal. Around 700 AD, the Japanese began folding bloomery-steel and cast-iron in alternating layers to increase the strength of their swords, using clay fluxes to remove slag
Slag is a by-product of smelting (pyrometallurgical) ores and used metals. Broadly, it can be classified as ferrous (by-products of processing iron and steel), ferroalloy (by-product of ferroalloy production) or non-ferrous/base metals (by-prod ...
and impurities. This method of Japanese swordsmithing produced one of the purest steel-alloys of the ancient world.[Smith, Cyril (1960) ''History of metallography''. MIT Press. pp. 2–4. .]
While the use of iron started to become more widespread around 1200 BC, mainly because of interruptions in the trade routes for tin, the metal was much softer than bronze. However, very small amounts of steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
, (an alloy of iron and around 1% carbon), was always a byproduct of the bloomery process. The ability to modify the hardness of steel by heat treatment had been known since 1100 BC, and the rare material was valued for the manufacture of tools and weapons. Because the ancients could not produce temperatures high enough to melt iron fully, the production of steel in decent quantities did not occur until the introduction of blister steel during the Middle Ages. This method introduced carbon by heating wrought iron in charcoal for long periods of time, but the absorption of carbon in this manner is extremely slow thus the penetration was not very deep, so the alloy was not homogeneous. In 1740, Benjamin Huntsman began melting blister steel in a crucible to even out the carbon content, creating the first process for the mass production of tool steel. Huntsman's process was used for manufacturing tool steel until the early 1900s.[Roberts, George Adam; Krauss, George; Kennedy, Richard and Kennedy, Richard L. (1998]
''Tool steels''
. ASM International. pp. 2–3. .
The introduction of the blast furnace to Europe in the Middle Ages meant that people could produce pig iron
Pig iron, also known as crude iron, is an intermediate product of the iron industry in the production of steel which is obtained by smelting iron ore in a blast furnace. Pig iron has a high carbon content, typically 3.8–4.7%, along with silic ...
in much higher volumes than wrought iron. Because pig iron could be melted, people began to develop processes to reduce carbon in liquid
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
pig iron to create steel. Puddling
A puddle is a small accumulation of liquid on a surface.
Puddle or Puddles may also refer to:
* Puddle, Cornwall, hamlet in England
* ''Puddle'' (video game)
* Puddle (M. C. Escher), a woodcut by M. C. Escher
* Weld puddle, a crucial part of the ...
had been used in China since the first century, and was introduced in Europe during the 1700s, where molten pig iron was stirred while exposed to the air, to remove the carbon by oxidation. In 1858, Henry Bessemer developed a process of steel-making by blowing hot air through liquid pig iron to reduce the carbon content. The Bessemer process led to the first large scale manufacture of steel.
Steel is an alloy of iron and carbon, but the term '' alloy steel'' usually only refers to steels that contain other elements— like vanadium
Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer ( pas ...
, molybdenum
Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lea ...
, or cobalt—in amounts sufficient to alter the properties of the base steel. Since ancient times, when steel was used primarily for tools and weapons, the methods of producing and working the metal were often closely guarded secrets. Even long after the Age of reason
The Age of reason, or the Enlightenment, was an intellectual and philosophical movement that dominated the world of ideas in Europe during the 17th to 19th centuries.
Age of reason or Age of Reason may also refer to:
* Age of reason (canon law), ...
, the steel industry was very competitive and manufacturers went through great lengths to keep their processes confidential, resisting any attempts to scientifically analyze the material for fear it would reveal their methods. For example, the people of Sheffield, a center of steel production in England, were known to routinely bar visitors and tourists from entering town to deter industrial espionage
Industrial espionage, economic espionage, corporate spying, or corporate espionage is a form of espionage conducted for commercial purposes instead of purely national security.
While political espionage is conducted or orchestrated by governmen ...
. Thus, almost no metallurgical information existed about steel until 1860. Because of this lack of understanding, steel was not generally considered an alloy until the decades between 1930 and 1970 (primarily due to the work of scientists like William Chandler Roberts-Austen
Sir William Chandler Roberts-Austen (3 March 1843, Kennington – 22 November 1902, London) was an English metallurgist noted for his research on the physical properties of metals and their alloys. The austenite class of iron alloys is named aft ...
, Adolf Martens
Adolf Martens (Adolf Karl Gottfried Martens), 6 March 1850 in Gammelin – 24 July 1914 in Groß-Lichterfelde, was a German metallurgist and the namesake of the steel structure martensite and the martensitic transformation, a type of diffusion ...
, and Edgar Bain
Edgar Collins Bain (September 14, 1891 – November 27, 1971) was an American metallurgist and member of the National Academy of Sciences, who worked for the US Steel Corporation of Pittsburgh, Pennsylvania. He worked on the alloying and heat ...
), so "alloy steel" became the popular term for ternary and quaternary steel-alloys.
After Benjamin Huntsman developed his crucible steel in 1740, he began experimenting with the addition of elements like manganese (in the form of a high-manganese pig-iron called ''spiegeleisen
Spiegeleisen (literally "mirror-iron", —mirror or specular; —iron) is a ferromanganese alloy containing approximately 15% manganese and small quantities of carbon and silicon. Spiegeleisen is sometimes also referred to as ''specular pig iron' ...
''), which helped remove impurities such as phosphorus and oxygen; a process adopted by Bessemer and still used in modern steels (albeit in concentrations low enough to still be considered carbon steel). Afterward, many people began experimenting with various alloys of steel without much success. However, in 1882, Robert Hadfield, being a pioneer in steel metallurgy, took an interest and produced a steel alloy containing around 12% manganese. Called mangalloy, it exhibited extreme hardness and toughness, becoming the first commercially viable alloy-steel. Afterward, he created silicon steel, launching the search for other possible alloys of steel.
Robert Forester Mushet found that by adding tungsten to steel it could produce a very hard edge that would resist losing its hardness at high temperatures. "R. Mushet's special steel" (RMS) became the first high-speed steel. Mushet's steel was quickly replaced by tungsten carbide steel, developed by Taylor and White in 1900, in which they doubled the tungsten content and added small amounts of chromium and vanadium, producing a superior steel for use in lathes and machining tools. In 1903, the Wright brothers used a chromium-nickel steel to make the crankshaft for their airplane engine, while in 1908 Henry Ford began using vanadium steels for parts like crankshafts and valves in his Model T Ford, due to their higher strength and resistance to high temperatures.[''Metallurgy for the Non-Metallurgist'' by Harry Chandler – ASM International 1998 Page 3—5] In 1912, the Krupp Ironworks in Germany developed a rust-resistant steel by adding 21% chromium
Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
Chromium metal is valued for its high corrosion resistance and hardne ...
and 7% nickel, producing the first stainless steel
Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
.
Others
Due to their high reactivity, most metals were not discovered until the 19th century. A method for extracting aluminium from bauxite was proposed by Humphry Davy in 1807, using an electric arc. Although his attempts were unsuccessful, by 1855 the first sales of pure aluminium reached the market. However, as extractive metallurgy was still in its infancy, most aluminium extraction-processes produced unintended alloys contaminated with other elements found in the ore; the most abundant of which was copper. These aluminium-copper alloys (at the time termed "aluminum bronze") preceded pure aluminium, offering greater strength and hardness over the soft, pure metal, and to a slight degree were found to be heat treatable. However, due to their softness and limited hardenability these alloys found little practical use, and were more of a novelty, until the Wright brothers used an aluminium alloy to construct the first airplane engine in 1903. During the time between 1865 and 1910, processes for extracting many other metals were discovered, such as chromium, vanadium, tungsten, iridium, cobalt, and molybdenum
Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lea ...
, and various alloys were developed.[''Metallurgy: 1863–1963'' by W.H. Dennis – Routledge 2017]
Prior to 1910, research mainly consisted of private individuals tinkering in their own laboratories. However, as the aircraft and automotive industries began growing, research into alloys became an industrial effort in the years following 1910, as new magnesium alloys were developed for pistons and wheels in cars, and pot metal for levers and knobs, and aluminium alloys developed for airframe
The mechanical structure of an aircraft is known as the airframe. This structure is typically considered to include the fuselage, undercarriage, empennage and wings, and excludes the propulsion system.
Airframe design is a field of aerospa ...
s and aircraft skins were put into use.
See also
* Alloy broadening
* CALPHAD
* Ideal mixture
In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zer ...
* List of alloys
References
Bibliography
*
External links
*
*
{{Authority control
Metallurgy
Chemistry