Yttrium spoken.ogg
   HOME

TheInfoList



OR:

Yttrium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the symbol Y and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
39. It is a silvery-metallic
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
chemically similar to the lanthanides and has often been classified as a "
rare-earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides ( yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals, and is never found in nature as a free element. 89Y is the only stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
, and the only isotope found in the Earth's crust. The most important uses of yttrium are LEDs and phosphors, particularly the red phosphors in television set cathode ray tube displays. Yttrium is also used in the production of
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s, electrolytes, electronic filters,
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fi ...
s, superconductors, various medical applications, and tracing various materials to enhance their properties. Yttrium has no known biological role. Exposure to yttrium compounds can cause
lung disease The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side ...
in humans. The element is named after '' ytterbite'', a mineral first identified in 1787 by the chemist
Carl Axel Arrhenius Carl Axel Arrhenius (29 March 1757 – 20 November 1824) was an officer in the Swedish army as well as an amateur geologist and chemist. He is best known for his discovery of the mineral ytterbite (later called gadolinite) in 1787. The disc ...
. He named the mineral after the village of
Ytterby Ytterby () is a village on the Swedish island of Resarö, in Vaxholm Municipality in the Stockholm archipelago. Today the residential area is dominated by suburban homes. The name of the village translates to "outer village". Ytterby is per ...
, in Sweden, where it had been discovered. When one of the chemicals in ytterbite was later found to be the previously unidentified element, yttrium, the element was then named after the mineral.


Characteristics


Properties

Yttrium is a soft, silver-metallic, lustrous and highly crystalline
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
in
group 3 Group 3 may refer to: *Group 3 element, chemical element classification *Group 3 (racing), FIA classification for auto racing * Group 3, the third tier of races in worldwide Thoroughbred horse racing * Group 3 image format, Group 3 & Group 4 are ...
. As expected by
periodic trend Periodic trends are specific patterns that are present in the periodic table that illustrate different aspects of a certain element. They were discovered by the Russian chemist Dmitri Mendeleev in the year 1863. Major periodic trends include ato ...
s, it is less
electronegative Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
than its predecessor in the group,
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
, and less electronegative than the next member of period 5,
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
; additionally, it is more electronegative than
lanthanum Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lant ...
, but less electronegative than
lutetium Lutetium is a chemical element with the symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted am ...
due to the
lanthanide contraction The lanthanide contraction is the greater-than-expected decrease in atomic radii/ionic radii of the elements in the lanthanide series from atomic number 57, lanthanum, to 71, lutetium, which results in smaller than otherwise expected atomic radii ...
. Yttrium is the first
d-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
element in the fifth period. The pure element is relatively stable in air in bulk form, due to passivation of a protective oxide () film that forms on the surface. This film can reach a thickness of 10  µm when yttrium is heated to 750 ° C in
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
. When finely divided, however, yttrium is very unstable in air; shavings or
turnings Swarf, also known as chips or by other process-specific names (such as turnings, filings, or shavings), are pieces of metal, wood, or plastic that are the debris or waste resulting from machining, woodworking, or similar subtractive (material-r ...
of the metal can ignite in air at temperatures exceeding 400 °C.
Yttrium nitride Yttrium nitride, YN, is a nitride of yttrium. Yttrium nitride is hard ceramic material similar to titanium nitride and zirconium nitride. The nitrides of lanthanum, scandium, and yttrium show semiconducting properties and additionally the latt ...
(YN) is formed when the metal is heated to 1000 °C in
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
.


Similarity to the lanthanides

The similarities of yttrium to the lanthanides are so strong that the element has historically been grouped with them as a
rare-earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides ( yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
, and is always found in nature together with them in rare-earth minerals. Emsley 2001, p. 498 Chemically, yttrium resembles those elements more closely than its neighbor in the periodic table,
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
, Daane 1968, p. 810. and if physical properties were plotted against
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
, it would have an apparent number of 64.5 to 67.5, placing it between the lanthanides
gadolinium Gadolinium is a chemical element with the symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is only slightly malleable and is a ductile rare-earth element. Gadolinium reacts with atmospheric oxygen ...
and
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, or ...
. Daane 1968, p. 815. It often also falls in the same range for reaction order, resembling
terbium Terbium is a chemical element with the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with w ...
and
dysprosium Dysprosium is the chemical element with the symbol Dy and atomic number 66. It is a rare-earth element in the lanthanide series with a metallic silver luster. Dysprosium is never found in nature as a free element, though, like other lanthanides, ...
in its chemical reactivity. Yttrium is so close in size to the so-called 'yttrium group' of heavy lanthanide ions that in solution, it behaves as if it were one of them. Even though the lanthanides are one row farther down the periodic table than yttrium, the similarity in atomic radius may be attributed to the
lanthanide contraction The lanthanide contraction is the greater-than-expected decrease in atomic radii/ionic radii of the elements in the lanthanide series from atomic number 57, lanthanum, to 71, lutetium, which results in smaller than otherwise expected atomic radii ...
. One of the few notable differences between the chemistry of yttrium and that of the lanthanides is that yttrium is almost exclusively
trivalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, or affinity of an ...
, whereas about half the lanthanides can have valences other than three; nevertheless, only for four of the fifteen lanthanides are these other valences important in aqueous solution ( CeIV, SmII, EuII, and YbII). Daane 1968, p. 817


Compounds and reactions

As a trivalent transition metal, yttrium forms various
inorganic compounds In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemi ...
, generally in the oxidation state of +3, by giving up all three of its
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
s. A good example is
yttrium(III) oxide Yttrium oxide, also known as yttria, is Y2 O3. It is an air-stable, white solid substance. The thermal conductivity of yttrium oxide is 27 W/(m·K). Uses Phosphors Yttria is widely used to make Eu:YVO4 and Eu:Y2O3 phosphors that give the red ...
(), also known as yttria, a six-
coordinate In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
white solid. Yttrium forms a water-insoluble fluoride,
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. I ...
, and
oxalate Oxalate (IUPAC: ethanedioate) is an anion with the formula C2O42−. This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (Na2C2O4), and several esters such as dimethyl ...
, but its
bromide A bromide ion is the negatively charged form (Br−) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant ...
,
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride sa ...
,
iodide An iodide ion is the ion I−. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine de ...
, nitrate and
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
are all
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
in water. The Y3+
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
is colorless in solution because of the absence of electrons in the d and f
electron shell In chemistry and atomic physics, an electron shell may be thought of as an orbit followed by electrons around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or ...
s.
Water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
readily reacts with yttrium and its compounds to form . Concentrated nitric and hydrofluoric acids do not rapidly attack yttrium, but other strong acids do. With halogens, yttrium forms trihalides such as yttrium(III) fluoride (),
yttrium(III) chloride Yttrium(III) chloride is an inorganic compound of yttrium and chloride. It exists in two forms, the hydrate (YCl3(H2O)6) and an anhydrous form (YCl3). Both are colourless solids that are highly soluble in water and deliquescent. Structure Sol ...
(), and yttrium(III) bromide () at temperatures above roughly 200 °C. Similarly,
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
,
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
,
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
,
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
and sulfur all form
binary compound In materials chemistry, a binary phase or binary compound is a chemical compound containing two different elements. Some binary phase compounds are molecular, e.g. carbon tetrachloride (CCl4). More typically binary phase refers to extended soli ...
s with yttrium at elevated temperatures.
Organoyttrium chemistry Organoyttrium chemistry is the study of compounds containing carbon-yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often be ...
is the study of compounds containing carbon–yttrium bonds. A few of these are known to have yttrium in the oxidation state 0. (The +2 state has been observed in chloride melts, and +1 in oxide clusters in the gas phase.) Some
trimerization In chemistry, a trimer (; ) is a molecule or polyatomic anion formed by combination or association of three molecules or ions of the same substance. In technical jargon, a trimer is a kind of oligomer derived from three identical precursors ofte ...
reactions were generated with organoyttrium compounds as catalysts. These syntheses use as a starting material, obtained from and concentrated
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid Acid strength is the tendency of an acid, symbol ...
and ammonium chloride.
Hapticity In coordination chemistry, hapticity is the coordination of a ligand to a metal center via an uninterrupted and contiguous series of atoms. The hapticity of a ligand is described with the Greek letter η ('eta'). For example, η2 describes a l ...
is a term to describe the coordination of a group of contiguous atoms of a
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
bound to the central atom; it is indicated by the Greek character ''eta'', η. Yttrium complexes were the first examples of complexes where carboranyl ligands were bound to a d0-metal center through a η7-hapticity. Vaporization of the
graphite intercalation compound Graphite intercalation compounds are complex materials having a formula where the ion or is inserted ( intercalated) between the oppositely charged carbon layers. Typically ''m'' is much less than 1. These materials are deeply colored solids t ...
s graphite–Y or graphite– leads to the formation of
endohedral fullerene Endohedral fullerenes, also called endofullerenes, are fullerenes that have additional atoms, ions, or clusters enclosed within their inner spheres. The first lanthanum C60 complex called La@C60 was synthesized in 1985. The @ (at sign) in the ...
s such as Y@C82.
Electron spin resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the sp ...
studies indicated the formation of Y3+ and (C82)3− ion pairs. The
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
s Y3C, Y2C, and YC2 can be hydrolyzed to form
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
s.


Isotopes and nucleosynthesis

Yttrium in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
was created through stellar nucleosynthesis, mostly by the s-process (≈72%), but also by the r-process (≈28%). The r-process consists of rapid
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
by lighter elements during supernova explosions. The s-process is a slow
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
capture of lighter elements inside pulsating red giant stars. Yttrium isotopes are among the most common products of the nuclear fission of uranium in nuclear explosions and nuclear reactors. In the context of
nuclear waste Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, rare-earth mining, and nuclear weapons ...
management, the most important isotopes of yttrium are 91Y and 90Y, with half-lives of 58.51 days and 64 hours, respectively. Though 90Y has a short half-life, it exists in
secular equilibrium In nuclear physics, secular equilibrium is a situation in which the quantity of a radioactive isotope remains constant because its production rate (e.g., due to decay of a parent isotope) is equal to its decay rate. In radioactive decay Secular e ...
with its long-lived parent isotope,
strontium-90 Strontium-90 () is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.8 years. It undergoes β− decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine and ...
(90Sr) with a half-life of 29 years. All group 3 elements have an odd
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
, and therefore few stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s.
Scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
has one
stable isotope The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundanc ...
, and yttrium itself has only one stable isotope, 89Y, which is also the only isotope that occurs naturally. However, the lanthanide
rare earths The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
contain elements of even atomic number and many stable isotopes. Yttrium-89 is thought to be more abundant than it otherwise would be, due in part to the s-process, which allows enough time for isotopes created by other processes to decay by
electron emission In physics, electron emission is the ejection of an electron from the surface of matter, or, in beta decay (β− decay), where a beta particle (a fast energetic electron or positron) is emitted from an atomic nucleus transforming the original nu ...
(neutron → proton). Such a slow process tends to favor isotopes with
atomic mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxim ...
s (A = protons + neutrons) around 90, 138 and 208, which have unusually stable
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
with 50, 82, and 126 neutrons, respectively. This stability is thought to result from their very low neutron-capture cross-section. . Electron emission of isotopes with those mass numbers is simply less prevalent due to this stability, resulting in them having a higher abundance. 89Y has a mass number close to 90 and has 50 neutrons in its nucleus. At least 32 synthetic isotopes of yttrium have been observed, and these range in
atomic mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxim ...
from 76 to 108. The least stable of these is 106Y with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of >150  ns (76Y has a half-life of >200 ns) and the most stable is 88Y with a half-life of 106.626 days. Apart from the isotopes 91Y, 87Y, and 90Y, with half-lives of 58.51 days, 79.8 hours, and 64 hours, respectively, all the other isotopes have half-lives of less than a day and most of less than an hour. Yttrium isotopes with mass numbers at or below 88 decay primarily by
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron ...
(proton → neutron) to form strontium ( Z = 38) isotopes. Yttrium isotopes with mass numbers at or above 90 decay primarily by electron emission (neutron → proton) to form
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
(Z = 40) isotopes. Isotopes with mass numbers at or above 97 are also known to have minor decay paths of β delayed
neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
. Yttrium has at least 20 metastable ("excited") isomers ranging in mass number from 78 to 102. Multiple excitation states have been observed for 80Y and 97Y. While most of yttrium's isomers are expected to be less stable than their ground state, 78mY, 84mY, 85mY, 96mY, 98m1Y, 100mY, and 102mY have longer half-lives than their ground states, as these isomers decay by beta decay rather than isomeric transition.


History

In 1787, part-time chemist
Carl Axel Arrhenius Carl Axel Arrhenius (29 March 1757 – 20 November 1824) was an officer in the Swedish army as well as an amateur geologist and chemist. He is best known for his discovery of the mineral ytterbite (later called gadolinite) in 1787. The disc ...
found a heavy black rock in an old quarry near the Swedish village of
Ytterby Ytterby () is a village on the Swedish island of Resarö, in Vaxholm Municipality in the Stockholm archipelago. Today the residential area is dominated by suburban homes. The name of the village translates to "outer village". Ytterby is per ...
(now part of the Stockholm Archipelago). Thinking it was an unknown mineral containing the newly discovered element
tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
, Emsley 2001, p. 496 he named it ''ytterbite'' and sent samples to various chemists for analysis. Van der Krogt 2005
Johan Gadolin Johan Gadolin (5 June 176015 August 1852) was a Finnish chemist, physicist and mineralogist. Gadolin discovered a " new earth" containing the first rare-earth compound yttrium, which was later determined to be a chemical element. He is also ...
at the
University of Åbo The Royal Academy of Turku or the Royal Academy of Åbo ( sv, Kungliga Akademin i Åbo or ; la, Regia Academia Aboensis; fi, Turun akatemia) was the first university in Finland, and the only Finnish university that was founded when the country ...
identified a new oxide (or "
earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
") in Arrhenius' sample in 1789, and published his completed analysis in 1794.
Anders Gustaf Ekeberg Anders Gustaf Ekeberg ( Stockholm, Sweden, 16 January 1767 – Uppsala, Sweden, 11 February 1813) was a Swedish analytical chemist who discovered tantalum in 1802. - subscription required He was notably deaf. Education Anders Gustav Ekeberg ...
confirmed the identification in 1797 and named the new oxide ''yttria''. In the decades after
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794),
CNRS (
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s, it was believed that earths could be reduced to their elements, meaning that the discovery of a new earth was equivalent to the discovery of the element within, which in this case would have been ''yttrium''. Friedrich Wöhler is credited with first isolating the metal in 1828 by reacting a volatile chloride that he believed to be yttrium chloride with potassium. In 1843,
Carl Gustaf Mosander Carl Gustaf Mosander (10 September 1797 – 15 October 1858) was a Swedish chemist. He discovered the rare earth elements lanthanum, erbium and terbium. Early life and education Born in Kalmar, Mosander attended school there until he moved ...
found that samples of yttria contained three oxides: white
yttrium oxide Yttrium oxide may refer to: * Yttrium(II) oxide, YO, a dark brown solid * Yttrium(III) oxide Yttrium oxide, also known as yttria, is Y2 O3. It is an air-stable, white solid substance. The thermal conductivity of yttrium oxide is 27 W/(m·K). ...
(yttria), yellow terbium oxide (confusingly, this was called 'erbia' at the time) and rose-colored erbium oxide (called 'terbia' at the time). A fourth oxide, ytterbium oxide, was isolated in 1878 by
Jean Charles Galissard de Marignac Jean Charles Galissard de Marignac (24 April 1817 – 15 April 1894) was a Swiss chemist whose work with atomic weights suggested the possibility of isotopes and the packing fraction of nuclei. His study of the rare earth elements led to h ...
. New elements were later isolated from each of those oxides, and each element was named, in some fashion, after Ytterby, the village near the quarry where they were found (see
ytterbium Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the othe ...
,
terbium Terbium is a chemical element with the symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with w ...
, and
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, or ...
). In the following decades, seven other new metals were discovered in "Gadolin's yttria". Since yttria was found to be a mineral and not an oxide,
Martin Heinrich Klaproth Martin Heinrich Klaproth (1 December 1743 – 1 January 1817) was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and ...
renamed it gadolinite in honor of Gadolin. Until the early 1920s, the chemical symbol Yt was used for the element, after which Y came into common use. In 1987,
yttrium barium copper oxide Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen ...
was found to achieve
high-temperature superconductivity High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previou ...
. It was only the second material known to exhibit this property, and it was the first-known material to achieve superconductivity above the (economically important) boiling point of nitrogen.


Occurrence


Abundance

Yttrium is found in most rare-earth minerals, it is found in some
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
ores, but is never found in the Earth's crust as a free element. About 31  ppm of the Earth's crust is yttrium, making it the 28th most abundant element, 400 times more common than
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
. Yttrium is found in soil in concentrations between 10 and 150 ppm (dry weight average of 23 ppm) and in sea water at 9  ppt. Lunar rock samples collected during the
American American(s) may refer to: * American, something of, from, or related to the United States of America, commonly known as the "United States" or "America" ** Americans, citizens and nationals of the United States of America ** American ancestry, pe ...
Apollo Project have a relatively high content of yttrium. Stwertka 1998, p. 115. Yttrium has no known biological role, though it is found in most, if not all, organisms and tends to concentrate in the liver, kidney, spleen, lungs, and bones of humans. Normally, as little as is found in the entire human body; human breast milk contains 4 ppm. Yttrium can be found in edible plants in concentrations between 20 ppm and 100 ppm (fresh weight), with cabbage having the largest amount. With as much as 700 ppm, the seeds of woody plants have the highest known concentrations. there are reports of the discovery of very large reserves of rare-earth elements on a tiny Japanese island. Minami-Torishima Island, also known as Marcus Island, is described as having "tremendous potential" for rare-earth elements and yttrium (REY), according to a study published in Scientific Reports. "This REY-rich mud has great potential as a rare-earth metal resource because of the enormous amount available and its advantageous mineralogical features," the study reads. The study shows that more than of rare-earth elements could be "exploited in the near future." Including yttrium (Y), which is used in products like camera lenses and mobile phone screens, the rare-earth elements found are europium (Eu), terbium (Tb), and dysprosium (Dy).


Production

As yttrium is chemically similar to lanthanides, it occurs in the same ores ( rare-earth minerals) and is extracted by the same refinement processes. A slight distinction is recognized between the light (LREE) and the heavy rare-earth elements (HREE), but the distinction is not perfect. Yttrium is concentrated in the HREE group because of its ion size, though it has a lower
atomic mass The atomic mass (''m''a or ''m'') is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1&nb ...
. Rare-earth elements (REEs) come mainly from four sources: * Carbonate and fluoride containing ores such as the LREE
bastnäsite The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-( Ce) with a formula of (Ce, La)CO3F, bastnäsite-( La) with a formula of (La, Ce)CO3F, and bastnäsite-( Y) with a formul ...
( /nowiki>(Ce, La, etc.)(CO3)F/nowiki>) contain an average of 0.1% of yttrium compared to the 99.9% for the 16 other REEs. The main source for bastnäsite from the 1960s to the 1990s was the Mountain Pass rare earth mine in California, making the United States the largest producer of REEs during that period. The name "bastnäsite" is actually a group name, and the Levinson suffix is used in the correct mineral names, e.g., bästnasite-(Y) has Y as a prevailing element. *
Monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the ceriu ...
( Ce,_lanthanum.html"_;"title="cerium.html"_;"title="/nowiki>(cerium">Ce,_lanthanum">La,_etc.) Ce,_lanthanum.html"_;"title="cerium.html"_;"title="/nowiki>(cerium">Ce,_lanthanum">La,_etc.)phosphate">PO4.html" ;"title="phosphate.html" ;"title="cerium">Ce,_lanthanum.html" ;"title="cerium.html" ;"title="/nowiki>(cerium">Ce, lanthanum">La, etc.)phosphate">PO4">phosphate.html" ;"title="cerium">Ce,_lanthanum.html" ;"title="cerium.html" ;"title="/nowiki>(cerium">Ce, lanthanum">La, etc.)phosphate">PO4/nowiki>), which is mostly phosphate, is a placer deposit of sand created by the transportation and gravitational separation of eroded granite. Monazite as a LREE ore contains 2% (or 3%) Stwertka 1998, p. 116 yttrium. The largest deposits were found in India and Brazil in the early 20th century, making those two countries the largest producers of yttrium in the first half of that century. Of the monazite group, the Ce-dominant member, monazite-(Ce), is the most common one. *
Xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series with chernovite-(Y) ( Y As O4) and therefore may contain trace impurities of arsenic, as well as sili ...
, a REE phosphate, is the main HREE ore containing as much as 60% yttrium as
yttrium phosphate Yttrium phosphate, YPO4, is the phosphate salt of yttrium. It occurs in nature as mineral xenotime Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate ( Y P O4). It forms a solid solution series ...
(YPO4). This applies to xenotime-(Y). The largest mine is the
Bayan Obo Bayan'obo Mining District, ( Mongolian: ''Bayan Oboɣ-a Aɣurqai-yin toɣoriɣ'', Баян-Овоо Уурхайн тойрог ( mn, italic=yes, "rich" + ovoo); ), or Baiyun-Obo or Baiyun'ebo, is a mining town in the west of Inner Mongolia, ...
deposit in China, making China the largest exporter for HREE since the closure of the Mountain Pass mine in the 1990s. * Ion absorption clays or Lognan clays are the weathering products of granite and contain only 1% of REEs. The final ore concentrate can contain as much as 8% yttrium. Ion absorption clays are mostly in southern China. Yttrium is also found in
samarskite Samarskite is a radioactive rare earth mineral series which includes samarskite-(Y), with the chemical formula and samarskite-(Yb), with the chemical formula . The formula for samarskite-(Y) is also given as . Samarskite crystallizes in the orth ...
and fergusonite (which also stand for group names). Emsley 2001, p. 497 One method for obtaining pure yttrium from the mixed oxide ores is to dissolve the oxide in sulfuric acid and fractionate it by
ion exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
chromatography In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it through a system ( ...
. With the addition of oxalic acid, the yttrium oxalate precipitates. The oxalate is converted into the oxide by heating under oxygen. By reacting the resulting yttrium oxide with hydrogen fluoride, yttrium fluoride is obtained. When quaternary ammonium salts are used as extractants, most yttrium will remain in the aqueous phase. When the counter-ion is nitrate, the light lanthanides are removed, and when the counter-ion is thiocyanate, the heavy lanthanides are removed. In this way, yttrium salts of 99.999% purity are obtained. In the usual situation, where yttrium is in a mixture that is two-thirds heavy-lanthanide, yttrium should be removed as soon as possible to facilitate the separation of the remaining elements. Annual world production of yttrium oxide had reached by 2001; by 2014 it had increased to . Global reserves of yttrium oxide were estimated in 2014 to be more than . The leading countries for these reserves included Australia, Brazil, China, India, and the United States. Only a few tonnes of yttrium metal are produced each year by reducing yttrium fluoride to a metal sponge with
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
alloy. The temperature of an arc furnace of greater than 1,600 °C is sufficient to melt the yttrium.


Applications


Consumer

The red component of color television cathode ray tubes is typically emitted from an yttria () or yttrium oxide sulfide () host lattice doped with europium (III) cation (Eu3+) phosphors. The red color itself is emitted from the europium while the yttrium collects energy from the
electron gun An electron gun (also called electron emitter) is an electrical component in some vacuum tubes that produces a narrow, collimated electron beam that has a precise kinetic energy. The largest use is in cathode-ray tubes (CRTs), used in nearly ...
and passes it to the phosphor. Daane 1968, p. 818 Yttrium compounds can serve as host lattices for doping with different lanthanide cations. Tb3+ can be used as a doping agent to produce green
luminescence Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light". It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a crys ...
. As such yttrium compounds such as yttrium aluminium garnet (YAG) are useful for phosphors and are an important component of white LEDs. Yttria is used as a
sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
additive in the production of porous
silicon nitride Silicon nitride is a chemical compound of the elements silicon and nitrogen. is the most thermodynamically stable and commercially important of the silicon nitrides, and the term "silicon nitride" commonly refers to this specific composition. It ...
. Yttrium compounds are used as a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
for ethylene
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many fo ...
. As a metal, yttrium is used on the electrodes of some high-performance
spark plugs A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air ...
. Yttrium is used in
gas mantle A Coleman white gas lantern mantle glowing at full brightness An incandescent gas mantle, gas mantle or Welsbach mantle is a device for generating incandescent bright white light when heated by a flame. The name refers to its original heat sou ...
s for propane lanterns as a replacement for
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
, which is
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
. Currently under development is yttrium-stabilized zirconia as a solid electrolyte and as an oxygen sensor in automobile exhaust systems.


Garnets

Yttrium is used in the production of a large variety of synthetic garnets, and yttria is used to make
yttrium iron garnet Yttrium iron garnet (YIG) is a kind of synthetic garnet, with chemical composition , or Y3Fe5O12. It is a ferrimagnetic material with a Curie temperature of 560  K. YIG may also be known as yttrium ferrite garnet, or as iron yttrium oxide or ...
s (, also "YIG"), which are very effective
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
filters Filter, filtering or filters may refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component tha ...
which were recently shown to have magnetic interactions more complex and longer-ranged than understood over the previous four decades. Yttrium,
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
,
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
, and
gadolinium Gadolinium is a chemical element with the symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is only slightly malleable and is a ductile rare-earth element. Gadolinium reacts with atmospheric oxygen ...
garnets (e.g. and ) have important magnetic properties. YIG is also very efficient as an acoustic energy transmitter and transducer.
Yttrium aluminium garnet Yttrium aluminium garnet (YAG, Y3 Al5 O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP) in a hexagonal or an orthorhombic, perovskite-like form, and ...
( or YAG) has a
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard ...
of 8.5 and is also used as a gemstone in jewelry (simulated
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
).
Cerium Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the +3 ...
-doped yttrium aluminium garnet (YAG:Ce) crystals are used as phosphors to make white LEDs. YAG, yttria,
yttrium lithium fluoride Yttrium lithium fluoride (LiYF4, sometimes abbreviated YLF) is a birefringent crystal, typically doped with neodymium or praseodymium and used as a gain medium in solid-state lasers. Yttrium is the substitutional element in LiYF4. The hardness of ...
(), and
yttrium orthovanadate Yttrium orthovanadate (YVO4) is a transparent crystal. Undoped YVO4 is also used to make efficient high-power polarizing prisms similar to Glan–Taylor prisms. There are two principal applications for doped Yttrium orthovanadate: *Doped with ne ...
() are used in combination with
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
s such as
neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishe ...
,
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, or ...
,
ytterbium Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the othe ...
in near-
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fi ...
s. YAG lasers can operate at high power and are used for drilling and cutting metal. The single crystals of doped YAG are normally produced by the Czochralski process.


Material enhancer

Small amounts of yttrium (0.1 to 0.2%) have been used to reduce the grain sizes of chromium, molybdenum,
titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
, and
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
. Yttrium is used to increase the
strength Strength may refer to: Physical strength *Physical strength, as in people or animals * Hysterical strength, extreme strength occurring when people are in life-and-death situations *Superhuman strength, great physical strength far above human c ...
of aluminium and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
alloys. The addition of yttrium to alloys generally improves workability, adds resistance to high-temperature recrystallization, and significantly enhances resistance to high-temperature
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
(see graphite nodule discussion below). Yttrium can be used to deoxidize vanadium and other non-ferrous metals.
Yttria Yttrium oxide, also known as yttria, is Y2 O3. It is an air-stable, white solid substance. The thermal conductivity of yttrium oxide is 27 W/(m·K). Uses Phosphors Yttria is widely used to make Eu:YVO4 and Eu:Y2O3 phosphors that give the red ...
stabilizes the cubic form of zirconia in jewelry. Yttrium has been studied as a nodulizer in ductile cast iron, forming the
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
into compact nodules instead of flakes to increase
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile str ...
and fatigue resistance. Having a high
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
, yttrium oxide is used in some
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
and
glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling ( quenching ...
to impart
shock Shock may refer to: Common uses Collective noun *Shock, a historic commercial term for a group of 60, see English numerals#Special names * Stook, or shock of grain, stacked sheaves Healthcare * Shock (circulatory), circulatory medical emergen ...
resistance and low
thermal expansion Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic ...
properties. Those same properties make such glass useful in camera lenses.


Medical

The radioactive isotope
yttrium-90 Yttrium-90 () is an isotope of yttrium. Yttrium-90 has found a wide range of uses in radiation therapy to treat some forms of cancer. Decay undergoes β− decay to zirconium-90 with a half-life of 64.1 hours and a decay energy of 2.28 M ...
is used in drugs such as Yttrium Y 90-DOTA-tyr3-octreotide and Yttrium Y 90 ibritumomab tiuxetan for the treatment of various
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
s, including
lymphoma Lymphoma is a group of blood and lymph tumors that develop from lymphocytes (a type of white blood cell). In current usage the name usually refers to just the cancerous versions rather than all such tumours. Signs and symptoms may include enla ...
,
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ...
, liver, ovarian, colorectal, pancreatic and bone cancers. Emsley 2001, p. 495 It works by adhering to monoclonal antibodies, which in turn bind to cancer cells and kill them via intense
β-radiation A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, ...
from the yttrium-90 (see
monoclonal antibody therapy Monoclonal antibody therapy is a form of immunotherapy that uses monoclonal antibodies (mAbs) to bind monospecifically to certain cells or proteins. The objective is that this treatment will stimulate the patient's immune system to attack those ...
). A technique called
radioembolization Selective internal radiation therapy (SIRT), also known as transarterial radioembolization (TARE), radioembolization or intra-arterial microbrachytherapy is a form of radiation therapy used in interventional radiology to treat cancer. It is general ...
is used to treat hepatocellular carcinoma and
liver metastasis A liver metastasis is a malignant tumor in the liver that has spread from another organ affected by cancer. The liver is a common site for metastatic disease because of its rich, dual blood supply (the liver receives blood via the hepatic artery a ...
. Radioembolization is a low toxicity, targeted liver cancer therapy that uses millions of tiny beads made of glass or resin containing radioactive yttrium-90. The radioactive microspheres are delivered directly to the blood vessels feeding specific liver tumors/segments or lobes. It is minimally invasive and patients can usually be discharged after a few hours. This procedure may not eliminate all tumors throughout the entire liver, but works on one segment or one lobe at a time and may require multiple procedures. Also see radioembolization in the case of combined cirrhosis and hepatocellular carcinoma. Needles made of yttrium-90, which can cut more precisely than scalpels, have been used to sever pain-transmitting nerves in the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
, and yttrium-90 is also used to carry out radionuclide
synovectomy Synovectomy is a procedure where the synovial tissue surrounding a joint is removed. This procedure is typically recommended to provide relief from a condition in which the synovial membrane or the joint lining becomes inflamed and irritated and i ...
in the treatment of inflamed joints, especially knees, in sufferers of conditions such as
rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are invol ...
. A neodymium-doped yttrium-aluminium-garnet laser has been used in an experimental, robot-assisted radical
prostatectomy Prostatectomy (from the Greek , "prostate" and , "excision") as a medical term refers to the surgical removal of all or part of the prostate gland. This operation is done for benign conditions that cause urinary retention, as well as for pros ...
in canines in an attempt to reduce collateral nerve and tissue damage, and erbium-doped lasers are coming into use for cosmetic skin resurfacing.


Superconductors

Yttrium is a key ingredient in the
yttrium barium copper oxide Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen ...
(YBa2Cu3O7, aka 'YBCO' or '1-2-3') superconductor developed at the
University of Alabama The University of Alabama (informally known as Alabama, UA, or Bama) is a public research university in Tuscaloosa, Alabama. Established in 1820 and opened to students in 1831, the University of Alabama is the oldest and largest of the publi ...
and the
University of Houston The University of Houston (UH) is a public research university in Houston, Texas. Founded in 1927, UH is a member of the University of Houston System and the university in Texas with over 47,000 students. Its campus, which is primarily in s ...
in 1987. This superconductor is notable because the operating superconductivity temperature is above liquid nitrogen's boiling point (77.1 K). Since liquid nitrogen is less expensive than the
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
required for metallic superconductors, the operating costs for applications would be less. The actual superconducting material is often written as YBa2Cu3O7–''d'', where ''d'' must be less than 0.7 for superconductivity. The reason for this is still not clear, but it is known that the vacancies occur only in certain places in the crystal, the copper oxide planes, and chains, giving rise to a peculiar oxidation state of the copper atoms, which somehow leads to the superconducting behavior. The theory of low temperature superconductivity has been well understood since the
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
of 1957. It is based on a peculiarity of the interaction between two electrons in a crystal lattice. However, the BCS theory does not explain high temperature superconductivity, and its precise mechanism is still a mystery. What is known is that the composition of the copper-oxide materials must be precisely controlled for superconductivity to occur. This superconductor is a black and green, multi-crystal, multi-phase mineral. Researchers are studying a class of materials known as
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as (XIIA2+VIB4+X2−3), known a ...
s that are alternative combinations of these elements, hoping to develop a practical
high-temperature superconductor High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previou ...
.


Lithium batteries

Yttrium is used in small quantities in cathodes of some
Lithium iron phosphate battery The lithium iron phosphate battery (LFP (lithium ferro-phosphate), or Li-IP) is a type of lithium-ion battery using lithium iron phosphate () as the cathode material, and a graphitic carbon electrode with a metallic backing as the anode. Beca ...
(LFP), and then called commonly LiFeYPO4 chemistry, or LYP. Similar to LFP, LYP batteries offer high energy density, good safety and long life. But LYP, offer higher
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
stability, and prolong life of battery, by protecting physical structure of the
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
, especially at higher temperatures and higher charging / discharge current. LYP batteries do find use in stationary applications ( off-grid solar systems), electric vehicles (some cars), as well other applications (submarines, ships), similar to LFP batteries, but often at improved safety and cycle life time
LYP cells
have essentially same nominal voltage as LFP, of 3.25V, but the maximum charging voltage is 4.0V, and very similar charging and discharge characteristic.


Other applications

In 2009, Professor
Mas Subramanian Mas Subramanian, (born 1954), is a solid-state materials scientist at Oregon State University in Corvallis, Oregon. He is a University Distinguished Professor and the Milton Harris Chair of Materials Science in the university's Department of ...
and associates at
Oregon State University Oregon State University (OSU) is a public land-grant, research university in Corvallis, Oregon. OSU offers more than 200 undergraduate-degree programs along with a variety of graduate and doctoral degrees. It has the 10th largest engineering c ...
discovered that yttrium can be combined with
indium Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts ...
and
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
to form an intensely
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
, non-toxic, inert, fade-resistant
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
, YInMn blue, the first new blue pigment discovered in 200 years.


Precautions

Yttrium currently has no known biological role, and it can be highly
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subs ...
to humans, animals and plants. Water-soluble compounds of yttrium are considered mildly toxic, while its insoluble compounds are non-toxic. In experiments on animals, yttrium and its compounds caused lung and liver damage, though toxicity varies with different yttrium compounds. In rats, inhalation of yttrium citrate caused
pulmonary edema Pulmonary edema, also known as pulmonary congestion, is excessive liquid accumulation in the tissue and air spaces (usually alveoli) of the lungs. It leads to impaired gas exchange and may cause hypoxemia and respiratory failure. It is due t ...
and
dyspnea Shortness of breath (SOB), also medically known as dyspnea (in AmE) or dyspnoea (in BrE), is an uncomfortable feeling of not being able to breathe well enough. The American Thoracic Society defines it as "a subjective experience of breathing di ...
, while inhalation of yttrium chloride caused liver edema,
pleural effusion A pleural effusion is accumulation of excessive fluid in the pleural space, the potential space that surrounds each lung. Under normal conditions, pleural fluid is secreted by the parietal pleural capillaries at a rate of 0.6 millilitre per k ...
s, and pulmonary hyperemia. (public domain text) Exposure to yttrium compounds in humans may cause lung disease. Workers exposed to airborne yttrium europium vanadate dust experienced mild eye, skin, and upper respiratory tract irritation—though this may be caused by the vanadium content rather than the yttrium. Acute exposure to yttrium compounds can cause shortness of breath, coughing, chest pain, and cyanosis. The
Occupational Safety and Health Administration The Occupational Safety and Health Administration'' (OSHA ) is a large regulatory agency of the United States Department of Labor that originally had federal visitorial powers to inspect and examine workplaces. Congress established the agenc ...
(OSHA)
limits Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
exposure to yttrium in the workplace to over an 8-hour workday. The
National Institute for Occupational Safety and Health The National Institute for Occupational Safety and Health (NIOSH, ) is the United States federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. NIOSH is part of the C ...
(NIOSH)
recommended exposure limit A recommended exposure limit (REL) is an occupational exposure limit that has been recommended by the United States National Institute for Occupational Safety and Health. The REL is a level that NIOSH believes would be protective of worker safet ...
(REL) is over an 8-hour workday. At levels of , yttrium is
immediately dangerous to life and health The term immediately dangerous to life or health (IDLH) is defined by the US National Institute for Occupational Safety and Health (NIOSH) as exposure to airborne contaminants that is "likely to cause death or immediate or delayed permanent advers ...
. Yttrium dust is highly flammable.


See also

*


Notes


References


Bibliography

* * * * * * *


Further reading

* *


External links


Yttrium by Paul C.W. Chu at acs.org


at ''
The Periodic Table of Videos ''Periodic Videos'' (also known as ''The Periodic Table of Videos'') is a video project and YouTube channel on chemistry. It consists of a series of videos about chemical elements and the periodic table, with additional videos on other topics i ...
'' (University of Nottingham) *
Encyclopedia of Geochemistry - Yttrium
{{Authority control Chemical elements Transition metals Deoxidizers Chemical elements with hexagonal close-packed structure