Programmed Cell Death
   HOME

TheInfoList



OR:

Programmed cell death (PCD; sometimes referred to as cellular suicide) is the death of a cell as a result of events inside of a cell, such as
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
or
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
. PCD is carried out in a
biological process Biological processes are those processes that are vital for an organism to live, and that shape its capacities for interacting with its environment. Biological processes are made of many chemical reactions or other events that are involved in the ...
, which usually confers advantage during an organism's
lifecycle Life cycle, life-cycle, or lifecycle may refer to: Science and academia * Biological life cycle, the sequence of life stages that an organism undergoes from birth to reproduction ending with the production of the offspring *Life-cycle hypothesis ...
. For example, the differentiation of fingers and toes in a developing human embryo occurs because cells between the fingers
apoptose Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
; the result is that the digits are separate. PCD serves fundamental functions during both plant and animal tissue development.
Apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
and
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
are both forms of programmed cell death.
Necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated dige ...
is the death of a cell caused by external factors such as trauma or infection and occurs in several different forms. Necrosis was long seen as a non-physiological process that occurs as a result of infection or injury, but in the 2000s, a form of programmed necrosis, called necroptosis, was recognized as an alternative form of programmed cell death. It is hypothesized that necroptosis can serve as a cell-death backup to apoptosis when the apoptosis signaling is blocked by endogenous or exogenous factors such as viruses or mutations. Most recently, other types of regulated necrosis have been discovered as well, which share several signaling events with necroptosis and apoptosis.


History

The concept of "programmed cell-death" was used by Lockshin & Williams in 1964 in relation to insect tissue development, around eight years before "apoptosis" was coined. The term PCD has, however, been a source of confusion and Durand and Ramsey have developed the concept by providing mechanistic and evolutionary definitions. PCD has become the general terms that refers to all the different types of cell death that have a genetic component. The first insight into the mechanism came from studying BCL2, the product of a putative oncogene activated by chromosome
translocation Translocation may refer to: * Chromosomal translocation, a chromosome abnormality caused by rearrangement of parts ** Robertsonian translocation, a chromosomal rearrangement in pairs 13, 14, 15, 21, and 22 ** Nonreciprocal translocation, transfer ...
s often found in follicular lymphoma. Unlike other cancer genes, which promote cancer by stimulating cell proliferation, BCL2 promoted cancer by stopping lymphoma cells from being able to kill themselves. PCD has been the subject of increasing attention and research efforts. This trend has been highlighted with the award of the 2002 Nobel Prize in Physiology or Medicine to Sydney Brenner ( United Kingdom), H. Robert Horvitz (US) and
John E. Sulston Sir John Edward Sulston (27 March 1942 – 6 March 2018) was a British biologist and academic who won the Nobel Prize in Physiology or Medicine for his work on the cell lineage and genome of the worm '' Caenorhabditis elegans'' in 2002 wit ...
(UK).


Types

*
Apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
or Type I cell-death. *
Autophagic Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
or Type II cell-death. ('' Cytoplasmic'': characterized by the formation of large vacuoles that eat away organelles in a specific sequence prior to the destruction of the nucleus.)


Apoptosis

Apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
is the process of programmed cell death (PCD) that may occur in multicellular organisms.
Biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
events lead to characteristic cell changes ( morphology) and death. These changes include blebbing, cell shrinkage,
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space * Nuclear ...
fragmentation, chromatin condensation, and chromosomal DNA fragmentation. It is now thought that- in a developmental context- cells are induced to positively commit suicide whilst in a homeostatic context; the absence of certain survival factors may provide the impetus for suicide. There appears to be some variation in the morphology and indeed the biochemistry of these suicide pathways; some treading the path of "apoptosis", others following a more generalized pathway to deletion, but both usually being genetically and synthetically motivated. There is some evidence that certain symptoms of "apoptosis" such as endonuclease activation can be spuriously induced without engaging a genetic cascade, however, presumably true apoptosis and programmed cell death must be genetically mediated. It is also becoming clear that mitosis and apoptosis are toggled or linked in some way and that the balance achieved depends on signals received from appropriate growth or survival factors.


Extrinsic Vs. Intrinsic Pathways

There are two different potential pathways that may be followed when apoptosis is needed. There is the extrinsic pathway and the intrinsic pathway. Both pathways involve the use of caspases - crucial to cell death.


= Extrinsic Pathway

= The extrinsic pathway involves specific receptor ligand interaction. Either the FAS ligand binds to the FAS receptor or the TNF-alpha ligand can bind to the TNF receptor. In both situations there is the activation of initiator caspase. The extrinsic pathway can be activated in two ways. The first way is through fast ligan TNF-alpha binding or through a cytotoxic t-cell. The cytotoxic T-cell can attach itself to a membrane, facilitating the release of granzyme B. Granzyme B perforates the target cell membrane and in turn allows the release of perforin. Finally, perforin creates a pore in the membrane, and releases the caspases which leads to the activation of caspase 3. This initiator caspase may cause the cleaving of inactive caspase 3, causing it to become cleaved caspase 3. This is the final molecule needed to trigger cell death.


= Intrinsic Pathway

= The intrinsic pathway is caused by cell damage such as DNA damage or UV exposure. This pathway takes place in the mitochondria and is mediated by sensors called Bcl sensors, and two proteins called BAX and BAK. These proteins are found in a majority of higher mammals as they are able to pierce the mitochondrial outer membrane - making them an integral part of mediating cell death by apoptosis. They do this by orchestrating the formation of pores within the membrane - essential to the release of cytochrome c. However, cytochrome c is only released if the mitochondrial membrane is compromised. Once cytochrome c is detected, the apoptosome complex is formed. This complex activates the executioner caspase which causes cell death. This killing of the cells may be essential as it prevents cellular overgrowth which can result in disease such as cancer. There are another two proteins worth mentioning that inhibit the release of cytochrome c in the mitochondria. Bcl-2 and Bcl-xl are anti-apoptotic and therefore prevent cell death. There is a potential mutation that can occur in that causes the overactivity of Bcl-2. It is the translocation between chromosomes 14 and 18. This over activity can result in the development of follicular lymphoma.


Autophagy

Macroautophagy, often referred to as
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
, is a catabolic process that results in the autophagosomic- lysosomal degradation of bulk cytoplasmic contents, abnormal protein aggregates, and excess or damaged
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
s.
Autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
is generally activated by conditions of
nutrient A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
deprivation but has also been associated with physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection and cancer.


Mechanism

A critical regulator of autophagy induction is the
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
mTOR, which when activated, suppresses
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
and when not activated promotes it. Three related
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
/
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
kinases, UNC-51-like kinase -1, -2, and -3 (ULK1, ULK2, UKL3), which play a similar role as the yeast Atg1, act downstream of the mTOR complex. ULK1 and
ULK2 Unc-51-like kinase 2 (C. elegans) also known as ULK2 is an enzyme which in humans is encoded by the ''ULK2'' gene. The gene is located within the Smith–Magenis syndrome region on chromosome 17. Structure and function This gene encodes a prote ...
form a large complex with the mammalian homolog of an autophagy-related (Atg) gene product (mAtg13) and the scaffold protein FIP200. Class III PI3K complex, containing hVps34,
Beclin-1 Beclin-1 is a protein that in humans is encoded by the ''BECN1'' gene. Beclin-1 is a mammalian ortholog of the yeast autophagy-related gene 6 (Atg6)  and BEC-1 in the C. elegans nematode. This protein interacts with either BCL-2 or PI3k cla ...
, p150 and Atg14-like protein or ultraviolet irradiation resistance-associated gene (UVRAG), is required for the induction of autophagy. The
ATG ATG may refer to: Companies *ATG Stores, an e-tail site * Advanced Technology Group (Apple), a former division of Apple Computer * Advanced Technology Group (Novell), a former division of Novell * Aviation Technology Group, the defunct developer of ...
genes control the autophagosome formation through ATG12- ATG5 and LC3-II ( ATG8-II) complexes. ATG12 is conjugated to ATG5 in a ubiquitin-like reaction that requires
ATG7 Autophagy related 7 is a protein in humans encoded by ''ATG7'' gene. Related to GSA7; APG7L; APG7-LIKE. ATG 7, present in both plant and animal genomes, acts as an essential protein for cell degradation and its recycling. The sequence associates ...
and
ATG10 Autophagy-related protein 10 is a protein that in humans is encoded by the ''ATG10'' gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation' ...
. The Atg12–Atg5 conjugate then interacts non-covalently with ATG16 to form a large complex. LC3/ ATG8 is cleaved at its C terminus by ATG4 protease to generate the cytosolic LC3-I. LC3-I is conjugated to phosphatidylethanolamine (PE) also in a ubiquitin-like reaction that requires Atg7 and Atg3. The lipidated form of LC3, known as LC3-II, is attached to the autophagosome membrane.
Autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
and
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
are connected both positively and negatively, and extensive crosstalk exists between the two. During nutrient deficiency,
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
functions as a pro-survival mechanism, however, excessive
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
may lead to cell death, a process morphologically distinct from
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
. Several pro-apoptotic signals, such as TNF, TRAIL, and FADD, also induce autophagy. Additionally, Bcl-2 inhibits
Beclin-1 Beclin-1 is a protein that in humans is encoded by the ''BECN1'' gene. Beclin-1 is a mammalian ortholog of the yeast autophagy-related gene 6 (Atg6)  and BEC-1 in the C. elegans nematode. This protein interacts with either BCL-2 or PI3k cla ...
-dependent autophagy, thereby functioning both as a pro-survival and as an anti-autophagic regulator.


Other types

Besides the above two types of PCD, other pathways have been discovered. Called "non-apoptotic programmed cell-death" (or "
caspase Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
-independent programmed cell-death" or "necroptosis"), these alternative routes to death are as efficient as apoptosis and can function as either backup mechanisms or the main type of PCD. Other forms of programmed cell death include anoikis, almost identical to apoptosis except in its induction; cornification, a form of cell death exclusive to the epidermis; excitotoxicity; ferroptosis, an iron-dependent form of cell death and Wallerian degeneration. Necroptosis is a programmed form of necrosis, or inflammatory cell death. Conventionally, necrosis is associated with unprogrammed cell death resulting from cellular damage or infiltration by pathogens, in contrast to orderly, programmed cell death via
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
. Nemosis is another programmed form of necrosis that takes place in fibroblasts. Eryptosis is a form of suicidal erythrocyte death. Aponecrosis is a hybrid of apoptosis and necrosis and refers to an incomplete apoptotic process that is completed by necrosis. NETosis is the process of cell-death generated by NETs.
Paraptosis Paraptosis (from the Greek παρά ''para'', "related to" and apoptosis) is a type of programmed cell death, morphologically distinct from apoptosis and necrosis. The defining features of paraptosis are cytoplasmic vacuolation, independent o ...
is another type of nonapoptotic cell death that is mediated by MAPK through the activation of
IGF-1 Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults. IGF-1 is a protein that in humans is ...
. It's characterized by the intracellular formation of vacuoles and swelling of mitochondria. Pyroptosis, an inflammatory type of cell death, is uniquely mediated by caspase 1, an enzyme not involved in apoptosis, in response to infection by certain microorganisms. Plant cells undergo particular processes of PCD similar to autophagic cell death. However, some common features of PCD are highly conserved in both plants and metazoa.


Atrophic factors

An atrophic factor is a force that causes a cell to
die Die, as a verb, refers to death, the cessation of life. Die may also refer to: Games * Die, singular of dice, small throwable objects used for producing random numbers Manufacturing * Die (integrated circuit), a rectangular piece of a semicondu ...
. Only natural forces on the cell are considered to be atrophic factors, whereas, for example, agents of mechanical or chemical abuse or lysis of the cell are considered not to be atrophic factors. Common types of atrophic factors are: #Decreased workload #Loss of innervation #Diminished blood supply #Inadequate nutrition #Loss of
endocrine The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is the neu ...
stimulation #Senility #Compression


Role in the development of the nervous system

The initial expansion of the developing nervous system is counterbalanced by the removal of neurons and their processes. During the development of the nervous system almost 50% of developing neurons are naturally removed by programmed cell death (PCD). PCD in the nervous system was first recognized in 1896 by John Beard. Since then several theories were proposed to understand its biological significance during
neural development The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The fie ...
.


Role in neural development

PCD in the developing nervous system has been observed in proliferating as well as post-mitotic cells. One theory suggests that PCD is an adaptive mechanism to regulate the number of progenitor cells. In humans, PCD in progenitor cells starts at gestational week 7 and remains until the first trimester. This process of cell death has been identified in the germinal areas of the cerebral cortex,
cerebellum The cerebellum (Latin for "little brain") is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebel ...
, thalamus,
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is cont ...
, and spinal cord among other regions. At gestational weeks 19–23, PCD is observed in post-mitotic cells. The prevailing theory explaining this observation is the neurotrophic theory which states that PCD is required to optimize the connection between neurons and their afferent inputs and efferent targets. Another theory proposes that developmental PCD in the nervous system occurs in order to correct for errors in neurons that have migrated ectopically, innervated incorrect targets, or have
axons An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, th ...
that have gone awry during path finding. It is possible that PCD during the development of the nervous system serves different functions determined by the developmental stage, cell type, and even species.


The neurotrophic theory

The neurotrophic theory is the leading hypothesis used to explain the role of programmed cell death in the developing nervous system. It postulates that in order to ensure optimal innervation of targets, a surplus of neurons is first produced which then compete for limited quantities of protective neurotrophic factors and only a fraction survive while others die by programmed cell death. Furthermore, the theory states that predetermined factors regulate the amount of neurons that survive and the size of the innervating neuronal population directly correlates to the influence of their target field. The underlying idea that target cells secrete attractive or inducing factors and that their growth cones have a chemotactic sensitivity was first put forth by Santiago Ramon y Cajal in 1892. Cajal presented the idea as an explanation for the "intelligent force" axons appear to take when finding their target but admitted that he had no empirical data. The theory gained more attraction when experimental manipulation of axon targets yielded death of all innervating neurons. This developed the concept of target derived regulation which became the main tenet in the neurotrophic theory. Experiments that further supported this theory led to the identification of the first neurotrophic factor,
nerve growth factor Nerve growth factor (NGF) is a neurotrophic factor and neuropeptide primarily involved in the regulation of growth, maintenance, proliferation, and survival of certain target neurons. It is perhaps the prototypical growth factor, in that it was on ...
(NGF).


Peripheral versus central nervous system

Different mechanisms regulate PCD in the peripheral nervous system (PNS) versus the central nervous system (CNS). In the PNS, innervation of the target is proportional to the amount of the target-released neurotrophic factors NGF and NT3. Expression of neurotrophin receptors, TrkA and TrkC, is sufficient to induce
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
in the absence of their
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
. Therefore, it is speculated that PCD in the PNS is dependent on the release of neurotrophic factors and thus follows the concept of the neurotrophic theory. Programmed cell death in the CNS is not dependent on external growth factors but instead relies on intrinsically derived cues. In the
neocortex The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, sp ...
, a 4:1 ratio of excitatory to inhibitory interneurons is maintained by apoptotic machinery that appears to be independent of the environment. Supporting evidence came from an experiment where interneuron progenitors were either transplanted into the mouse neocortex or cultured in vitro. Transplanted cells died at the age of two weeks, the same age at which endogenous interneurons undergo apoptosis. Regardless of the size of the transplant, the fraction of cells undergoing apoptosis remained constant. Furthermore, disruption of TrkB, a receptor for brain derived neurotrophic factor (Bdnf), did not affect cell death. It has also been shown that in mice null for the proapoptotic factor Bax (Bcl-2-associated X protein) a larger percentage of interneurons survived compared to wild type mice. Together these findings indicate that programmed cell death in the CNS partly exploits Bax-mediated signaling and is independent of BDNF and the environment. Apoptotic mechanisms in the CNS are still not well understood, yet it is thought that apoptosis of interneurons is a self-autonomous process.


Nervous system development in its absence

Programmed cell death can be reduced or eliminated in the developing nervous system by the targeted deletion of pro-apoptotic genes or by the overexpression of anti-apoptotic genes. The absence or reduction of PCD can cause serious anatomical malformations but can also result in minimal consequences depending on the gene targeted, neuronal population, and stage of development. Excess progenitor cell proliferation that leads to gross brain abnormalities is often lethal, as seen in caspase-3 or caspase-9
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
which develop exencephaly in the forebrain. The brainstem, spinal cord, and peripheral ganglia of these mice develop normally, however, suggesting that the involvement of
caspases Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
in PCD during development depends on the brain region and cell type. Knockout or inhibition of apoptotic protease activating factor 1 ( APAF1), also results in malformations and increased embryonic lethality. Manipulation of apoptosis regulator proteins Bcl-2 and Bax (overexpression of Bcl-2 or deletion of Bax) produces an increase in the number of neurons in certain regions of the nervous system such as the retina,
trigeminal nucleus The sensory trigeminal nerve nuclei are the largest of the cranial nerve nuclei, and extend through the whole of the midbrain, pons and medulla, and into the high cervical spinal cord. The nucleus is divided into three parts, from rostral to caud ...
, cerebellum, and spinal cord. However, PCD of neurons due to Bax deletion or Bcl-2 overexpression does not result in prominent morphological or behavioral abnormalities in mice. For example, mice overexpressing Bcl-2 have generally normal motor skills and vision and only show impairment in complex behaviors such as learning and anxiety. The normal behavioral phenotypes of these mice suggest that an adaptive mechanism may be involved to compensate for the excess neurons.


Invertebrates and vertebrates

Learning about PCD in various species is essential in understanding the evolutionary basis and reason for apoptosis in development of the nervous system. During the development of the invertebrate nervous system, PCD plays different roles in different species. The similarity of the asymmetric cell death mechanism in the
nematode The nematodes ( or grc-gre, Νηματώδη; la, Nematoda) or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant-Parasitism, parasitic nematodes also known as eelworms. They are a diverse animal phylum inhab ...
and the
leech Leeches are segmented parasitic or predatory worms that comprise the subclass Hirudinea within the phylum Annelida. They are closely related to the oligochaetes, which include the earthworm, and like them have soft, muscular segmented bodie ...
indicates that PCD may have an evolutionary significance in the development of the nervous system. In the nematode, PCD occurs in the first hour of development leading to the elimination of 12% of non-gonadal cells including neuronal lineages. Cell death in
arthropods Arthropods (, (gen. ποδός)) are invertebrate animals with an exoskeleton, a Segmentation (biology), segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and Arth ...
occurs first in the nervous system when
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
cells differentiate and one daughter cell becomes a
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
and the other undergoes apoptosis. Furthermore, sex targeted cell death leads to different neuronal innervation of specific organs in males and females. In '' Drosophila'', PCD is essential in segmentation and specification during development. In contrast to invertebrates, the mechanism of programmed cell death is found to be more conserved in vertebrates. Extensive studies performed on various vertebrates show that PCD of neurons and glia occurs in most parts of the nervous system during development. It has been observed before and during synaptogenesis in the central nervous system as well as the peripheral nervous system. However, there are a few differences between vertebrate species. For example, mammals exhibit extensive arborization followed by PCD in the retina while birds do not. Although synaptic refinement in vertebrate systems is largely dependent on PCD, other evolutionary mechanisms also play a role.


In plant tissue

Programmed cell death in plants has a number of molecular similarities to animal
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
, but it also has differences, the most obvious being the presence of a
cell wall A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mech ...
and the lack of an immune system that removes the pieces of the dead cell. Instead of an immune response, the dying cell synthesizes substances to break itself down and places them in a vacuole that ruptures as the cell dies. In "APL regulates vascular tissue identity in
Arabidopsis ''Arabidopsis'' (rockcress) is a genus in the family Brassicaceae. They are small flowering plants related to cabbage and mustard. This genus is of great interest since it contains thale cress (''Arabidopsis thaliana''), one of the model organi ...
", Martin Bonke and his colleagues had stated that one of the two long-distance transport systems in vascular plants, xylem, consists of several cell-types "the differentiation of which involves deposition of elaborate cell-wall thickenings and programmed cell-death." The authors emphasize that the products of plant PCD play an important structural role. Basic morphological and biochemical features of PCD have been conserved in both plant and animal kingdoms. Specific types of plant cells carry out unique cell-death programs. These have common features with animal apoptosis—for instance, nuclear DNA degradation—but they also have their own peculiarities, such as
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space * Nuclear ...
degradation triggered by the collapse of the vacuole in tracheary elements of the xylem. Janneke Balk and Christopher J. Leaver, of the Department of Plant Sciences, University of Oxford, carried out research on mutations in the mitochondrial genome of sun-flower cells. Results of this research suggest that
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
play the same key role in vascular plant PCD as in other eukaryotic cells.


PCD in pollen prevents inbreeding

During pollination, plants enforce self-incompatibility (SI) as an important means to prevent self-fertilization. Research on the corn poppy (''Papaver rhoeas'') has revealed that proteins in the
pistil Gynoecium (; ) is most commonly used as a collective term for the parts of a flower that produce ovules and ultimately develop into the fruit and seeds. The gynoecium is the innermost whorl of a flower; it consists of (one or more) ''pistils'' ...
on which the
pollen Pollen is a powdery substance produced by seed plants. It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells). Pollen grains have a hard coat made of sporopollenin that protects the gametophyt ...
lands, interact with pollen and trigger PCD in incompatible (i.e., ''self'') pollen. The researchers, Steven G. Thomas and Vernonica E. Franklin-Tong, also found that the response involves rapid inhibition of pollen-tube growth, followed by PCD.


In slime molds

The social slime mold '' Dictyostelium discoideum'' has the peculiarity of either adopting a predatory amoeba-like behavior in its unicellular form or coalescing into a mobile
slug Slug, or land slug, is a common name for any apparently shell-less terrestrial gastropod mollusc. The word ''slug'' is also often used as part of the common name of any gastropod mollusc that has no shell, a very reduced shell, or only a smal ...
-like form when dispersing the
spore In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, f ...
s that will give birth to the next generation. The stalk is composed of dead cells that have undergone a type of PCD that shares many features of an autophagic cell-death: massive vacuoles forming inside cells, a degree of chromatin condensation, but no DNA fragmentation. The structural role of the residues left by the dead cells is reminiscent of the products of PCD in plant tissue. ''D. discoideum'' is a slime mold, part of a branch that might have emerged from eukaryotic ancestors about a billion years before the present. It seems that they emerged after the ancestors of green plants and the ancestors of fungi and animals had differentiated. But, in addition to their place in the evolutionary tree, the fact that PCD has been observed in the humble, simple, six- chromosome ''D. discoideum'' has additional significance: It permits the study of a developmental PCD path that does not depend on caspases characteristic of apoptosis.


Evolutionary origin of mitochondrial apoptosis

The occurrence of programmed cell death in protists is possible, but it remains controversial. Some categorize death in those organisms as unregulated apoptosis-like cell death. Biologists had long suspected that
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
originated from bacteria that had been incorporated as endosymbionts ("living together inside") of larger eukaryotic cells. It was Lynn Margulis who from 1967 on championed this theory, which has since become widely accepted. The most convincing
evidence Evidence for a proposition is what supports this proposition. It is usually understood as an indication that the supported proposition is true. What role evidence plays and how it is conceived varies from field to field. In epistemology, evidenc ...
for this theory is the fact that mitochondria possess their own DNA and are equipped with genes and
replication Replication may refer to: Science * Replication (scientific method), one of the main principles of the scientific method, a.k.a. reproducibility ** Replication (statistics), the repetition of a test or complete experiment ** Replication crisi ...
apparatus. This evolutionary step would have been risky for the primitive eukaryotic cells, which began to engulf the energy-producing bacteria, as well as a perilous step for the ancestors of mitochondria, which began to invade their proto-eukaryotic hosts. This process is still evident today, between human white blood cells and bacteria. Most of the time, invading bacteria are destroyed by the white blood cells; however, it is not uncommon for the
chemical warfare Chemical warfare (CW) involves using the toxic properties of chemical substances as weapons. This type of warfare is distinct from nuclear warfare, biological warfare and radiological warfare, which together make up CBRN, the military acronym ...
waged by prokaryotes to succeed, with the consequence known as infection by its resulting damage. One of these rare evolutionary events, about two billion years before the present, made it possible for certain eukaryotes and energy-producing prokaryotes to coexist and mutually benefit from their
symbiosis Symbiosis (from Greek , , "living together", from , , "together", and , bíōsis, "living") is any type of a close and long-term biological interaction between two different biological organisms, be it mutualistic, commensalistic, or parasit ...
. Mitochondriate eukaryotic cells live poised between life and death, because mitochondria still retain their repertoire of molecules that can trigger cell suicide. It is not clear why apoptotic machinery is maintained in the extant unicellular organisms. This process has now been evolved to happen only when programmed.Kaczanowski, S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 13, http://iopscience.iop.org/article/10.1088/1478-3975/13/3/031001 to cells (such as feedback from neighbors, stress or DNA damage), mitochondria release
caspase Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
activators that trigger the cell-death-inducing
biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
cascade. As such, the cell suicide mechanism is now crucial to all of our lives.


DNA damage and apoptosis

Repair of DNA damages and
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
are two enzymatic processes essential for maintaining genome integrity in humans. Cells that are deficient in DNA repair tend to accumulate DNA damages, and when such cells are also defective in apoptosis they tend to survive even with excess DNA damage.Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res. 2002 Jun;511(2):145-78. doi: 10.1016/s1383-5742(02)00009-1. PMID: 12052432 Replication of DNA in such cells leads to mutations and these mutations may cause cancer (see Figure). Several enzymatic pathways have evolved for repairing different kinds of DNA damage, and it has been found that in five well studied DNA repair pathways particular enzymes have a dual role, where one role is to participate in repair of a specific class of damages and the second role is to induce apoptosis if the level of such DNA damage is beyond the cell’s repair capability. These dual role proteins tend to protect against development of cancer. Proteins that function in such a dual role for each repair process are: (1) DNA mismatch repair, MSH2, MSH6,
MLH1 DNA mismatch repair protein Mlh1 or MutL protein homolog 1 is a protein that in humans is encoded by the MLH1 gene located on chromosome 3. It is a gene commonly associated with hereditary nonpolyposis colorectal cancer. Orthologs of human MLH1 h ...
and PMS2; (2) base excision repair,
APEX1 DNA-(apurinic or apyrimidinic site) lyase is an enzyme that in humans is encoded by the ''APEX1'' gene. Apurinic/apyrimidinic (AP) sites (also called "abasic sites") occur frequently in DNA molecules by spontaneous hydrolysis, by DNA damaging age ...
(REF1/APE), poly(ADP-ribose) polymerase (PARP); (3)
nucleotide excision repair Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals (e.g. intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucle ...
, XPB, XPD ( ERCC2), p53, p33( ING1b); (4) non-homologous end joining, the catalytic subunit of DNA-PK; (5) homologous recombinational repair, BRCA1, ATM, ATR, WRN, BLM, Tip60, p53.


Programmed death of entire organisms


Clinical significance


ABL

The BCR-ABL oncogene has been found to be involved in the development of cancer in humans.


c-Myc

c-Myc is involved in the regulation of apoptosis via its role in downregulating the Bcl-2 gene. Its role the disordered growth of tissue.


Metastasis

A
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
characteristic of metastatic cells is their altered expression of several apoptotic genes.


See also

* Anoikis *
Apoptosis-inducing factor Apoptosis inducing factor is involved in initiating a caspase-independent pathway of apoptosis (positive intrinsic regulator of apoptosis) by causing DNA fragmentation and chromatin condensation. Apoptosis inducing factor is a flavoprotein. It al ...
*
Apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
versus
Pseudoapoptosis Pseudoapoptosis can be defined from multiple viewpoints, with an underlying premise of the differences in cellular processes and states relating to apoptosis. Pseudoapoptosis can be referred to as an apoptotic-like cellular state that can be readil ...
* Apoptosome * Apoptotic DNA fragmentation * Autolysis (biology) *
Autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
* Autoschizis * Bcl-2 * BH3 interacting domain death agonist (BID) * Calpains *
Caspases Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
* Cell damage * Cornification *
Cytochrome c The cytochrome complex, or cyt ''c'', is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion. It belongs to the cytochrome c family of proteins and plays a major role in cell apoptosis. Cytochrome c is hig ...
*
Cytotoxicity Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa''). Cell physiology Treating cells ...
* Diablo homolog * Entosis * Excitotoxicity * Ferroptosis * Inflammasome * Mitochondrial permeability transition pore * Mitotic catastrophe *
Necrobiology Cell death is the event of a biological cell ceasing to carry out its functions. This may be the result of the natural process of old cells dying and being replaced by new ones, as in programmed cell death, or may result from factors such as dis ...
* Necroptosis *
Necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated dige ...
*
p53 upregulated modulator of apoptosis The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro- apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the ''BBC3'' ge ...
(PUMA) *
Paraptosis Paraptosis (from the Greek παρά ''para'', "related to" and apoptosis) is a type of programmed cell death, morphologically distinct from apoptosis and necrosis. The defining features of paraptosis are cytoplasmic vacuolation, independent o ...
* Parthanatos * Pyroptosis *
RIP kinase RIP kinases (receptor-interacting protein kinases) are a class of serine/threonine protein kinases. In humans, five different RIP kinases are known: * RIPK1 * RIPK2 * RIPK3 * RIPK4 * RIPK5 Further reading

* \ EC 2.7.11 Human proteins ...
s * Wallerian degeneration


Notes and references

* Srivastava, R. E. in Molecular Mechanisms (Humana Press, 2007). * Kierszenbaum, A. L. & Tres, L. L. (ed Madelene Hyde) (ELSEVIER SAUNDERS, Philadelphia, 2012).


External links


Apoptosis and Cell Death LabsInternational Cell Death SocietyThe Bcl-2 Family Database
{{embryology Mitochondria Cellular senescence Apoptosis