TP53-inducible Glycolysis And Apoptosis Regulator
   HOME

TheInfoList



OR:

The TP53-inducible glycolysis and apoptosis regulator (TIGAR) also known as fructose-2,6-bisphosphatase TIGAR is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
that in humans is encoded by the ''C12orf5''
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. TIGAR is a recently discovered enzyme that primarily functions as a regulator of
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
breakdown in human cells. In addition to its role in controlling glucose degradation, TIGAR activity can allow a cell to carry out DNA repair, and the degradation of its own
organelles In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' th ...
. Finally, TIGAR can protect a cell from death. Since its discovery in 2005 by Kuang-Yu Jen and Vivian G. Cheung, TIGAR has become of particular interest to the scientific community thanks to its active role in many
cancers Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bl ...
. Normally, TIGAR manufacture by the body is activated by the
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
tumour suppressor
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
after a cell has experienced a low level of
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA d ...
or stress. In some cancers, TIGAR has fallen under the control of other proteins. The hope is that future research into TIGAR will provide insight into new ways to treat cancer. This gene is regulated as part of the p53
tumor suppressor A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or re ...
pathway and encodes a protein with sequence similarity to the bisphosphate domain of the glycolytic enzyme that degrades fructose-2,6-bisphosphate. The protein functions by blocking glycolysis and directing the pathway into the
pentose phosphate shunt The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt and the HMP Shunt) is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses (5-carbon sugars) as well as ribose 5-p ...
. Expression of this protein also protects cells from DNA damaging
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
and provides some protection from DNA damage-induced apoptosis. The 12p13.32 region that includes this gene is paralogous to the 11q13.3 region.


Gene

In humans the TIGAR
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
, known as C12orf5, is found on
chromosome 12 Chromosome 12 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 12 spans about 133 million base pairs (the building material of DNA) and represents between 4 and 4.5 percent of the to ...
p13-3, and consists of 6 exons. The C12orf5
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
is 8237 base pairs in length.


Discovery

Jen and Cheung first discovered the c12orf5 gene whilst using computer based searches to find novel p53-regulated genes that were switched on in response to ionizing radiation. They published their research in Cancer Research in 2005. Later a study focused wholly on the structure and function of the c12orf5 gene was published in Cell by Karim Bensaad et al., in which c12orf5 was given the name TIGAR in honour of its apparent function.


Expression

TIGAR
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
is rapidly activated by the p53 tumour suppressor protein in response to low levels of cellular stress, such as that caused by exposure to low doses of UV. However, under high levels of cellular stress TIGAR expression decreases. P53, a
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...
, can bind two sites within the human TIGAR gene to activate expression. One site is found within the first intron, and binds p53 with high affinity. The second is found just prior to the first exon, binds p53 with low affinity, and is conserved between mice and humans. TIGAR expression can be regulated by other non-p53 mechanisms in tumour cell lines.


Structure

TIGAR is approximately 30kDa and has a
tertiary structure Protein tertiary structure is the three dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains may i ...
that is similar to the histidine phosphatase fold. The core of TIGAR is made up of an α-β-α sandwich, which consists of a six-stranded β sheet surrounded by 4
α helices The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ear ...
. Additional α helices and a long loop are built around the core to give the full enzyme. TIGAR has an active site that is structurally similar to that of PhoE (a bacterial phosphatase enzyme) and functionally similar to that of fructose-2,6-bisphosphatase. The bis-phosphatase-like active site of TIGAR is positively charged, and
catalyse Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s the removal of
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
groups from other molecules. In contrast to Fructose-2,6-Bisphosphatase, TIGAR's active site is open and accessible like that of PhoE. The site contains 3 crucial amino acids (2 histidines and 1 glutamic acid) that are involved in the phosphatase reaction. These 3 residues are known collectively as a
catalytic triad A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes (e.g. proteases, amidases, esterases, acylases, li ...
, and are found in all enzymes belonging to the
phosphoglyceromutase :''This enzyme is not to be confused with Bisphosphoglycerate mutase which catalyzes the conversion of 1,3-bisphosphoglycerate to 2,3-bisphosphoglycerate.'' Phosphoglycerate mutase (PGM) is any enzyme that catalyzes step 8 of glycolysis - ...
branch of the histidine phosphatase superfamily. One of the histidine residues is
electrostatically Electrostatics is a branch of physics that studies electric charges at rest (static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber ...
bound to a negatively charged phosphate. A second phosphate is bound elsewhere in the active site.


Function

TIGAR activity can have multiple cellular effects. TIGAR acts as a direct regulator of fructose-2,6-bisphosphate levels and hexokinase 2 activity, and this can lead indirectly to many changes within the cell in a chain of biochemical events. TIGAR is a fructose bisphosphatase which activates p53, in results of inhibiting the expression of glucose transporter and also regulating the expression of hexokinase and phosphoglycerate mutase. TIGAR also inhibit the Phosphofructokinase (PFK) by lowering the level of fructose-2,6,bisphosphate, therefore, glycolysis is inhibited and pentose phosphate pathway is promoted.


Fructose-2,6-bisphosphate regulation

TIGAR decreases cellular fructose-2,6-bisphosphate levels. It catalyses the removal of a phosphate group from fructose-2,6-bisphosphate (F-2,6-BP): Fructose-2,6-Bisphosphate->Fructose-6-phosphate (F-6-P) + phosphate F-2,6-BP is an allosteric regulator of cellular
glucose metabolism Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms. Carbohydrates are central to many essential metabolic pathways. Pla ...
pathways. Ordinarily F-2,6-BP binds to and increases the activity of
phosphofructokinase 1 Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes () of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of gl ...
. Phosphofructokinase-1 catalyses the addition of a phosphate to F-6-P to form Fructose-1,6-bisphosphate (F-1,6-BP). This is an essential step in the glycolysis pathway, which forms the first part of aerobic respiration in
mammals Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur o ...
. F-2,6-BP also binds to and decreases the activity of fructose-1,6-bisphosphatase. Fructose-1,6-bisphosphatase catalyses the removal of phosphate from F-1,6-BP to form F-6-P. This reaction is part of the gluconeogenesis pathway, which synthesizes
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
, and is the reverse of glycolysis. When TIGAR decreases F-2,6-BP levels, phosphofructokinase becomes less active whilst fructose-1,6-bisphosphatase activity increases. Fructose-6-phosphate levels build up, which has multiple effects inside the cell: *The rate of glycolysis decreases *The rate of gluconeogenesis increases *Excess fructose-6-phosphate is converted to glucose-6-phosphate in an
isomerization In chemistry, isomerization or isomerisation is the process in which a molecule, polyatomic ion or molecular fragment is transformed into an isomer with a different chemical structure. Enolization is an example of isomerization, as is tautomeriz ...
reaction *Excess glucose-6-phosphate enters the
pentose phosphate pathway The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt and the HMP Shunt) is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses (5-carbon sugars) as well as ribose 5-pho ...
. This ultimately leads to the removal of
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS) in the cell * The removal of ROS helps to prevent apoptosis (cell suicide), and may also reduce build-up of
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA d ...
over time.


DNA damage response and cell cycle arrest

TIGAR can act to prevent a cell progressing through the stages of its growth and division cycle by decreasing cellular ATP levels. This is known as
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
arrest. This function of TIGAR forms part of the p53 mediated
DNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA d ...
response where, under low levels of cellular stress, p53 initiates cell cycle arrest to allow the cell time for repair. Under high levels of cellular stress, p53 initiates apoptosis instead. In non-resting cells, the cell cycle consists of G0 -> G1 -> S -> G2 -> M phases, and is tightly regulated at checkpoints between the phases. If the cell has undergone stress, certain proteins are expressed that will prevent the specific sequence of
macromolecular A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The ...
interactions at the checkpoint required for progression to the next phase. TIGAR activity can prevent cells progressing into S phase through a checkpoint known in humans as the
restriction point The restriction point (R), also known as the Start or G1/S checkpoint, is a cell cycle checkpoint in the G1 phase, G1 phase of the animal cell cycle at which the cell becomes "committed" to the cell cycle, and after which extracellular cell signa ...
. At the very start of
G1 phase The G1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase, the cell synthesizes mRNA and proteins in preparation for subsequent steps lead ...
, a protein called
retinoblastoma Retinoblastoma (Rb) is a rare form of cancer that rapidly develops from the immature cells of a retina, the light-detecting tissue of the eye. It is the most common primary malignant intraocular cancer in children, and it is almost exclusively fo ...
(Rb) exists in an un-phosphorylated state. In this state, Rb binds to a protein transcription factor E2F and prevents E2F from activating transcription of proteins essential for
S-phase S phase (Synthesis Phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during ...
. During a normal cell cycle, as G1 progresses, Rb will become phosphorylated in a specific set of sequential steps by proteins called cyclin dependent kinases (cdks) bound to cyclin proteins. The specific complexes that phosphorylate Rb are
cyclin D Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle progression. The synthesis of cyclin D is initiated during G1 and drives the G1/S phase transition. Cyclin D protein is anywhere from 155 (in zebra mu ...
- cdk4 and
cyclin E Cyclin E is a member of the cyclin family. Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S phase of the cell cycle that determines initiation of DNA duplication. The Cyclin E/CDK2 complex phosphorylates p27K ...
-
cdk2 Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the ''CDK2'' gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein ...
. When Rb has been phosphorylated many times, it dissociates from E2F. E2F is free to activate expression of S-phase genes. TIGAR can indirectly prevent a cell passing through the Restriction Point by keeping Rb unphosphorylated. When expressed, TIGAR decreases cellular ATP levels through its phosphatase activity. Less ATP is available for Rb phosphorylation, so Rb remains un-phosphorylated and bound to E2F, which cannot activate S phase genes. Expression of cyclin D, ckd4, cyclin E and cdk2 decreases when TIGAR is active, due to a lack of ATP essential for their transcription and
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
. This TIGAR activity serves to arrest cells in G1.


Activity of hexokinase 2

Under low oxygen conditions known as hypoxia, a small amount of TIGAR travels to the mitochondria and increases the activity of Hexokinase 2 (HK2) by binding to it During hypoxia, a protein called Hif1α is activated and causes TIGAR to re-localise from the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
to the outer mitochondrial
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
. Here, HK2 is bound to an
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
channel in the outer mitochondrial membrane called VDAC. TIGAR binds hexokinase 2 and increases its activity by an as yet unknown mechanism. Hexokinase 2 (HK2) carries out the following reaction: Glucose + ATP -> Glucose-6-phosphate + ADP HK2 is believed to maintain the mitochondrial membrane potential by keeping ADP levels high. It also prevents apoptosis in several ways: it reduces mitochondrial ROS levels, and it prevents apoptosis-causing protein Bax from creating a channel with VDAC. This stops cytochrome C protein passing out through VDAC into the cytoplasm where it triggers apoptosis via a caspase protein cascade. TIGAR does not re-localise to the mitochondria and bind HK2 under normal cellular conditions, or if the cell is starved of glucose. Re-localisation to the mitochondria does not require TIGAR's phosphatase domain. Instead 4 amino acids at the
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
end of TIGAR are essential.


Protection from apoptosis

Increased expression of TIGAR protects cells from oxidative-stress induced apoptosis by decreasing the levels of ROS. TIGAR can indirectly reduce ROS in two distinctive ways. The
intracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
environment of the cell will determine which of these two modes of TIGAR action is more prevalent in the cell at any one time. The fructose-2,6-bisphosphatase activity of TIGAR reduces ROS by increasing the activity of the Pentose Phosphate Pathway (PPP). Glucose-6-phosphate builds up due to de-phosphorylation of F-2,6-BP by TIGAR and enters the PPP. This causes the PPP to generate more nicotinamide adenine dinucleotide ( NADPH). NADPH is a carrier of
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
that is used by the cell as a
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth me ...
in many anabolic reactions. NADPH produced by the PPP passes electrons to an
oxidized Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
glutathione Glutathione (GSH, ) is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources such as reactive oxygen species, free radicals, pe ...
molecule (GSSG) to form reduced glutathione (GSH). GSH becomes the
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth me ...
, and passes electrons on to the ROS
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%â ...
to form harmless water in the reaction: GSH + H2O2 -> H2O + GSSG The decrease in H2O2 as a result of TIGAR activity protects against apoptosis. TIGAR also reduces ROS by increasing the activity of HK2. HK2 reduces ROS levels indirectly by keeping ADP levels at the outer mitochondrial membrane high. If ADP levels fall, the rate of respiration decreases and causes the electron transport chain to become over-reduced with excess electrons. These excess electrons pass to oxygen and form ROS. The action of the TIGAR/HK2 complex only protects cells from apoptosis under low oxygen conditions. Under normal or glucose starved conditions, TIGAR mediated protection from apoptosis comes from its bis-phosphatase activity alone. TIGAR cannot prevent apoptosis via death pathways that are independent from ROS and p53. In some cells, TIGAR expression can push cells further towards apoptosis.
Interleukin Interleukins (ILs) are a group of cytokines (secreted proteins and signal molecules) that are expressed and secreted by white blood cells (leukocytes) as well as some other body cells. The human genome encodes more than 50 interleukins and related ...
3 (IL-3) is a
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regul ...
that can bind to receptors on a cell's surface and tells the cell to survive and grow. When IL-3 dependent cell lines are deprived of IL-3 they die due to decreased uptake and metabolism of glucose. When TIGAR is overexpressed in IL-3 deprived cells the rate of glycolysis decreases further which enhances the apoptosis rate.


Autophagy

Autophagy is when a cell digests some of its own organelles by lysosomal degradation. Autophagy is employed to remove damaged organelles, or under starvation conditions to provide additional nutrients. Normally, autophagy occurs by the TSC-Mtor pathway, but can be induced by ROS. TIGAR, even at very low levels, inhibits autophagy by decreasing ROS levels. The mechanism by which TIGAR does this is independent from the Mtor pathway, but the exact details are unknown.


Possible roles in cancer

TIGAR can promote development or inhibition of several
cancers Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bl ...
depending on the cellular context. TIGAR can have some effect on three characteristics of cancer; the ability to evade apoptosis, uncontrolled
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ar ...
, and altered metabolism. Many cancer cells have altered metabolism where the rate of glycolysis and
anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing r ...
are very high whilst oxidative respiration is low, which is called the Warburg Effect (or
aerobic glycolysis Aerobic fermentation or aerobic glycolysis is a metabolic process by which cells metabolize sugars via fermentation in the presence of oxygen and occurs through the repression of normal respiratory metabolism. It is referred to as the Crabtree effec ...
). This allows cancer cells to survive under low oxygen conditions, and use molecules from respiratory pathways to synthesise amino acids and
nucleic acids Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
to maintain rapid growth. In
Glioma A glioma is a type of tumor that starts in the glial cells of the brain or the spine. Gliomas comprise about 30 percent of all brain tumors and central nervous system tumours, and 80 percent of all malignant brain tumours. Signs and symptoms ...
, a type of brain cancer, TIGAR can be over-expressed where it has oncogenic-like effects. In this case, TIGAR acts to maintain energy levels for increased growth by increasing respiration (conferring altered metabolism), and also protects glioma cells against hypoxia-induced apoptosis by decreasing ROS (conferring evasion of apoptosis). TIGAR is also overexpressed in some breast cancers. In multiple myeloma, TIGAR expression is linked to the activity of MUC-1. MUC-1 is an
oncoprotein An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
that is overexpressed in multiple myeloma and protects these cells from ROS-induced apoptosis by maintaining TIGAR activity. When MUC-1 activity is removed, levels of TIGAR decline and cells undergo ROS-induced apoptosis. In a type of head and neck cancer known as
nasopharyngeal The pharynx (plural: pharynges) is the part of the throat behind the mouth and nasal cavity, and above the oesophagus and trachea (the tubes going down to the stomach and the lungs). It is found in vertebrates and invertebrates, though its struct ...
cancer, the onco-protein kinase
c-Met c-Met, also called tyrosine-protein kinase Met or hepatocyte growth factor receptor (HGFR), is a protein that in humans is encoded by the ''MET'' gene. The protein possesses tyrosine kinase activity. The primary single chain precursor protein i ...
maintains TIGAR expression. TIGAR increases glycolytic rate and NADPH levels which allows the cancer cells to maintain fast growth rates. However, TIGAR may also have an inhibitory effect on cancer development by preventing cellular proliferation through its role in p53 -mediated cell cycle arrest.


References


Further reading

* * * * {{refend Apoptosis Glycolysis Human proteins