HOME

TheInfoList



OR:

Serpins are a superfamily of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
s with similar structures that were first identified for their protease inhibition activity and are found in all
kingdoms of life In biology, a kingdom is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla. Traditionally, some textbooks from the United States and Canada used a system of six kingdoms (Animalia, Plant ...
. The acronym serpin was originally coined because the first serpins to be identified act on chymotrypsin-like
serine protease Serine proteases (or serine endopeptidases) are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. S ...
s (serine protease inhibitors). They are notable for their unusual mechanism of action, in which they irreversibly inhibit their target
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the form ...
by undergoing a large
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
to disrupt the target's active site. This contrasts with the more common competitive mechanism for protease inhibitors that bind to and block access to the protease active site. Protease inhibition by serpins controls an array of biological processes, including coagulation and
inflammation Inflammation (from la, wikt:en:inflammatio#Latin, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or Irritation, irritants, and is a protective response involving im ...
, and consequently these proteins are the target of
medical research Medical research (or biomedical research), also known as experimental medicine, encompasses a wide array of research, extending from " basic research" (also called ''bench science'' or ''bench research''), – involving fundamental scienti ...
. Their unique conformational change also makes them of interest to the structural biology and
protein folding Protein folding is the physical process by which a protein chain is translated to its native three-dimensional structure, typically a "folded" conformation by which the protein becomes biologically functional. Via an expeditious and reprodu ...
research communities. The conformational-change mechanism confers certain advantages, but it also has drawbacks: serpins are vulnerable to mutations that can result in serpinopathies such as protein misfolding and the formation of inactive long-chain
polymer A polymer (; Greek ''poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and ...
s. Serpin polymerisation not only reduces the amount of active inhibitor, but also leads to accumulation of the polymers, causing
cell death Cell death is the event of a biological cell ceasing to carry out its functions. This may be the result of the natural process of old cells dying and being replaced by new ones, as in programmed cell death, or may result from factors such as di ...
and organ failure. Although most serpins control proteolytic cascades, some proteins with a serpin structure are not
enzyme inhibitor An enzyme inhibitor is a molecule that binds to an enzyme and blocks its activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which substrate molecules are converted into products. An enzyme facilitates a s ...
s, but instead perform diverse functions such as
storage Storage may refer to: Goods Containers * Dry cask storage, for storing high-level radioactive waste * Food storage * Intermodal container, cargo shipping * Storage tank Facilities * Garage (residential), a storage space normally used to store car ...
(as in egg whiteovalbumin), transport as in hormone carriage proteins (
thyroxine-binding globulin Thyroxine-binding globulin (TBG) is a globulin protein that in humans is encoded by the ''SERPINA7'' gene. TBG binds thyroid hormones in circulation. It is one of three transport proteins (along with transthyretin and serum albumin) respon ...
,
cortisol-binding globulin Transcortin, also known as corticosteroid-binding globulin (CBG) or serpin A6, is a protein produced in the liver in animals. In humans it is encoded by the SERPINA6 gene. It is an alpha-globulin. Function This gene encodes an alpha-globulin pro ...
) and molecular chaperoning ( HSP47). The term ''serpin'' is used to describe these members as well, despite their non-inhibitory function, since they are evolutionarily related.


History

Protease inhibitory activity in blood plasma was first reported in the late 1800s, but it was not until the 1950s that the serpins antithrombin and
alpha 1-antitrypsin Alpha-1 antitrypsin or α1-antitrypsin (A1AT, α1AT, A1A, or AAT) is a protein belonging to the serpin superfamily. It is encoded in humans by the ''SERPINA1'' gene. A protease inhibitor, it is also known as alpha1–proteinase inhibitor (A1PI) ...
were isolated, with the subsequent recognition of their close family homology in 1979. That they belonged to a new protein family became apparent on their further alignment with the non-inhibitory egg-white protein ovalbumin, to give what was initially called the ''alpha1-antitrypsin-antithrombin III-ovalbumin superfamily of serine proteinase inhibitors,'' but was subsequently succinctly renamed as the Serpins. The initial characterisation of the new family centred on alpha1-antitrypsin, a serpin present in high concentration in blood plasma, the common
genetic disorder A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorde ...
of which was shown to cause a predisposition to the lung disease
emphysema Emphysema, or pulmonary emphysema, is a lower respiratory tract disease, characterised by air-filled spaces ( pneumatoses) in the lungs, that can vary in size and may be very large. The spaces are caused by the breakdown of the walls of the a ...
and to liver
cirrhosis Cirrhosis, also known as liver cirrhosis or hepatic cirrhosis, and end-stage liver disease, is the impaired liver function caused by the formation of scar tissue known as fibrosis due to damage caused by liver disease. Damage causes tissue repai ...
. The identification of the S and Z mutations responsible for the genetic deficiency and the subsequent sequence alignments of alpha1-antitrypsin and antithrombin in 1982 led to the recognition of the close homologies of the active sites of the two proteins, centred on a methionine in alpha1-antitrypsin as an inhibitor of tissue elastase and on arginine in antithrombin as an inhibitor of thrombin. The critical role of the active centre residue in determining the specificity of inhibition of serpins was unequivocally confirmed by the finding that a natural mutation of the active centre methionine  in alpha1-antitrypsin to an arginine, as in antithrombin, resulted in a severe bleeding disorder. This active-centre specificity of inhibition was also evident in the many other families of protease inhibitors but the serpins differed from them in being much larger proteins and also in possessing what was soon apparent as an inherent ability to undergo a change in shape. The nature of this conformational change was revealed with the determination in 1984 of the first crystal structure of a serpin, that of post-cleavage alpha1-antitrypsin. This together with the subsequent solving of the structure of native (uncleaved) ovalbumin indicated that the inhibitory mechanism of the  serpins involved a remarkable conformational shift,  with the movement of the exposed peptide loop containing the reactive site and its incorporation as a middle strand in the main beta-pleated sheet that characterises the serpin molecule. Early evidence of the essential role of this loop movement in the inhibitory mechanism came from the finding that even minor aberrations in the amino acid residues that form the hinge of the movement in antithrombin resulted in thrombotic disease. Ultimate confirmation of the linked displacement of the target protease by this loop movement was provided  in 2000 by the structure of the post-inhibitory complex of alpha1-antitrypsin with trypsin, showing how the displacement results in the deformation and inactivation of the attached protease. Subsequent structural studies have revealed an additional advantage of the conformational mechanism in allowing the subtle modulation of inhibitory activity, as notably seen at tissue level with the functionally diverse serpins in human plasma. Over 1000 serpins have now been identified, including 36 human proteins, as well as molecules in all kingdoms of life—
animals Animals are multicellular, eukaryotic organisms in the Kingdom (biology), biological kingdom Animalia. With few exceptions, animals Heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, are Motilit ...
, plants,
fungi A fungus (plural, : fungi or funguses) is any member of the group of Eukaryote, eukaryotic organisms that includes microorganisms such as yeasts and Mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified ...
,
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
, and archaea—and some
viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room ...
. The central feature of all is a tightly conserved framework, which allows the precise alignment of their key structural and functional components based on the template structure of alpha1-antitrypsin. In the 2000s, a systematic nomenclature was introduced in order to categorise members of the serpin superfamily based on their evolutionary relationships. Serpins are therefore the largest and most diverse superfamily of protease inhibitors.


Activity

Most serpins are
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the form ...
inhibitors, targeting extracellular,
chymotrypsin Chymotrypsin (, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duod ...
-like
serine protease Serine proteases (or serine endopeptidases) are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. They are found ubiquitously in both eukaryotes and prokaryotes. S ...
s. These proteases possess a nucleophilic serine residue in a catalytic triad in their active site. Examples include thrombin,
trypsin Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting these long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the d ...
, and
human neutrophil elastase Neutrophil elastase (, ''leukocyte elastase'', ''ELANE'', ''ELA2'', ''elastase 2'', ''neutrophil'', ''elaszym'', ''serine elastase'', subtype ''human leukocyte elastase (HLE)'') is a serine proteinase in the same family as chymotrypsin and has br ...
. Serpins act as
irreversible Irreversible may refer to: * Irreversible process, in thermodynamics, a process that is not reversible *'' Irréversible'', a 2002 film * ''Irréversible'' (soundtrack), soundtrack to the film ''Irréversible'' * An album recorded by hip-hop artis ...
,
suicide inhibitor In biochemistry, suicide inhibition, also known as suicide inactivation or mechanism-based inhibition, is an irreversible form of enzyme inhibition that occurs when an enzyme binds a substrate analog and forms an irreversible complex with it thr ...
s by trapping an intermediate of the protease's catalytic mechanism. Some serpins inhibit other protease classes, typically cysteine proteases, and are termed "cross-class inhibitors". These enzymes differ from serine proteases in that they use a nucleophilic
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, s ...
residue, rather than a serine, in their active site. Nonetheless, the enzymatic chemistry is similar, and the mechanism of inhibition by serpins is the same for both classes of protease. Examples of cross-class inhibitory serpins include serpin B4 a squamous cell carcinoma antigen 1 (SCCA-1) and the avian serpin
myeloid and erythroid nuclear termination stage-specific protein Myeloid and erythroid nuclear termination stage-specific protein (MENT) is a member of the serpin family of protease inhibitor Inhibitor or inhibition may refer to: In biology * Enzyme inhibitor, a substance that binds to an enzyme and decrease ...
(MENT), which both inhibit papain-like cysteine proteases.


Biological function and localization


Protease inhibition

Approximately two-thirds of human serpins perform extracellular roles, inhibiting proteases in the bloodstream in order to modulate their activities. For example, extracellular serpins regulate the proteolytic cascades central to blood clotting (antithrombin), the inflammatory and immune responses (antitrypsin, antichymotrypsin, and C1-inhibitor) and tissue remodelling (PAI-1). By inhibiting signalling cascade proteases, they can also affect development. The table of human serpins (below) provides examples of the range of functions performed by human serpin, as well as some of the diseases that result from serpin deficiency. The protease targets of intracellular inhibitory serpins have been difficult to identify, since many of these molecules appear to perform overlapping roles. Further, many human serpins lack precise functional equivalents in model organisms such as the mouse. Nevertheless, an important function of intracellular serpins may be to protect against the inappropriate activity of proteases inside the cell. For example, one of the best-characterised human intracellular serpins is Serpin B9, which inhibits the
cytotoxic Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa''). Cell physiology Treating ...
granule A granule is a large particle or grain. It can refer to: * Granule (cell biology), any of several submicroscopic structures, some with explicable origins, others noted only as cell type-specific features of unknown function ** Azurophilic granul ...
protease granzyme B. In doing so, Serpin B9 may protect against inadvertent release of granzyme B and premature or unwanted activation of
cell death Cell death is the event of a biological cell ceasing to carry out its functions. This may be the result of the natural process of old cells dying and being replaced by new ones, as in programmed cell death, or may result from factors such as di ...
pathways. Some
virus A virus is a wikt:submicroscopic, submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and ...
es use serpins to disrupt protease functions in their host. The cowpox viral serpin CrmA (cytokine response modifier A) is used in order to avoid inflammatory and
apoptotic Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes inc ...
responses of infected host cells. CrmA increases infectivity by suppressing its host's inflammatory response through inhibition of IL-1 and IL-18 processing by the cysteine protease
caspase Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cyst ...
-1. In
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
, a plant serpin inhibits both metacaspases and a papain-like cysteine protease.


Non-inhibitory roles

Non-inhibitory extracellular serpins also perform a wide array of important roles.
Thyroxine-binding globulin Thyroxine-binding globulin (TBG) is a globulin protein that in humans is encoded by the ''SERPINA7'' gene. TBG binds thyroid hormones in circulation. It is one of three transport proteins (along with transthyretin and serum albumin) respon ...
and transcortin transport the hormones thyroxine and cortisol, respectively. The non-inhibitory serpin ovalbumin is the most abundant protein in egg white. Its exact function is unknown, but it is thought to be a storage protein for the developing foetus. Heat shock serpin 47 is a chaperone, essential for proper folding of collagen. It acts by stabilising collagen's triple helix whilst it is being processed in the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
. Some serpins are both protease inhibitors and perform additional roles. For example, the nuclear cysteine protease inhibitor MENT, in
bird Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweig ...
s also acts as a chromatin remodelling molecule in a bird's red blood cells.


Structure

All serpins share a common structure (or fold), despite their varied functions. All typically have three β-sheets (named A, B and C) and eight or nine α-helices (named hA–hI). The most significant regions to serpin function are the A-sheet and the reactive centre loop (RCL). The A-sheet includes two β-strands that are in a parallel orientation with a region between them called the 'shutter', and upper region called the 'breach'. The RCL forms the initial interaction with the target protease in inhibitory molecules. Structures have been solved showing the RCL either fully exposed or partially inserted into the A-sheet, and serpins are thought to be in
dynamic equilibrium In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the ...
between these two states. The RCL also only makes temporary interactions with the rest of the structure, and is therefore highly flexible and exposed to the solvent. The serpin structures that have been determined cover several different conformations, which has been necessary for the understanding of their multiple-step mechanism of action. Structural biology has therefore played a central role in the understanding of serpin function and biology.


Conformational change and inhibitory mechanism

Inhibitory serpins do not inhibit their target proteases by the typical competitive (''lock-and-key'') mechanism used by most small
protease inhibitors Protease inhibitors (PIs) are medications that act by interfering with enzymes that cleave proteins. Some of the most well known are antiviral drugs widely used to treat HIV/AIDS and hepatitis C. These protease inhibitors prevent viral repli ...
(e.g. Kunitz-type inhibitors). Instead, serpins use an unusual
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
, which disrupts the structure of the protease and prevents it from completing catalysis. The conformational change involves the RCL moving to the opposite end of the protein and inserting into β-sheet A, forming an extra antiparallel β-strand. This converts the serpin from a stressed state, to a lower-energy relaxed state (S to R transition). Serine and cysteine proteases catalyse peptide bond cleavage by a two-step process. Initially, the catalytic residue of the active site
triad Triad or triade may refer to: * a group of three Businesses and organisations * Triad (American fraternities), certain historic groupings of seminal college fraternities in North America * Triad (organized crime), a Chinese transnational orga ...
performs a nucleophilic attack on the peptide bond of the substrate. This releases the new
N-terminus The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
and forms a covalent
ester In chemistry, an ester is a compound derived from an oxoacid (organic or inorganic) in which at least one hydroxyl group () is replaced by an alkoxy group (), as in the substitution reaction of a carboxylic acid and an alcohol. Glycerides ...
-bond between the enzyme and the substrate. This covalent complex between enzyme and substrate is called an
acyl-enzyme intermediate Enzyme catalysis is the increase in the rate of a process by a biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, calle ...
. For standard substrates, the ester bond is hydrolysed and the new
C-terminus The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein i ...
is released to complete catalysis. However, when a serpin is cleaved by a protease, it rapidly undergoes the S to R transition before the acyl-enzyme intermediate is hydrolysed. The efficiency of inhibition depends on fact that the relative kinetic rate of the conformational change is several orders of magnitude faster than hydrolysis by the protease. Since the RCL is still covalently attached to the protease via the ester bond, the S to R transition pulls protease from the top to the bottom of the serpin and distorts the catalytic triad. The distorted protease can only hydrolyse the acyl enzyme intermediate extremely slowly and so the protease remains covalently attached for days to weeks. Serpins are classed as irreversible inhibitors and as
suicide inhibitor In biochemistry, suicide inhibition, also known as suicide inactivation or mechanism-based inhibition, is an irreversible form of enzyme inhibition that occurs when an enzyme binds a substrate analog and forms an irreversible complex with it thr ...
s since each serpin protein permanently inactivates a single protease, and can only function once.


Allosteric activation

The conformational mobility of serpins provides a key advantage over static lock-and-key protease inhibitors. In particular, the function of inhibitory serpins can be
regulated Regulation is the management of complex systems according to a set of rules and trends. In systems theory, these types of rules exist in various fields of biology and society, but the term has slightly different meanings according to context. F ...
by allosteric interactions with specific cofactors. The X-ray crystal structures of antithrombin, heparin cofactor II, MENT and murine antichymotrypsin reveal that these serpins adopt a conformation wherein the first two amino acids of the RCL are inserted into the top of the A β-sheet. The partially inserted conformation is important because co-factors are able to conformationally switch certain partially inserted serpins into a fully expelled form. This conformational rearrangement makes the serpin a more effective inhibitor. The archetypal example of this situation is antithrombin, which circulates in plasma in a partially inserted relatively inactive state. The primary specificity determining residue (the P1 arginine) points toward the body of the serpin and is unavailable to the protease. Upon binding a high-affinity pentasaccharide sequence within long-chain heparin, antithrombin undergoes a conformational change, RCL expulsion, and exposure of the P1 arginine. The heparin pentasaccharide-bound form of antithrombin is, thus, a more effective inhibitor of thrombin and factor Xa. Furthermore, both of these coagulation proteases also contain binding sites (called
exosite An exosite is a secondary binding site, remote from the active site, on an enzyme or other protein. This is similar to allosteric In biochemistry, allosteric regulation (or allosteric control) is the regulation of an enzyme by binding an e ...
s) for heparin. Heparin, therefore, also acts as a template for binding of both protease and serpin, further dramatically accelerating the interaction between the two parties. After the initial interaction, the final serpin complex is formed and the heparin moiety is released. This interaction is physiologically important. For example, after injury to the blood vessel wall, heparin is exposed, and antithrombin is activated to control the clotting response. Understanding of the molecular basis of this interaction enabled the development of Fondaparinux, a synthetic form of Heparin pentasaccharide used as an anti-clotting drug.


Latent conformation

Certain serpins spontaneously undergo the S to R transition without having been cleaved by a protease, to form a conformation termed the latent state. Latent serpins are unable to interact with proteases and so are no longer protease inhibitors. The conformational change to latency is not exactly the same as the S to R transition of a cleaved serpin. Since the RCL is still intact, the first strand of the C-sheet has to peel off to allow full RCL insertion. Regulation of the latency transition can act as a control mechanism in some serpins, such as PAI-1. Although PAI-1 is produced in the inhibitory S conformation, it "auto-inactivates" by changing to the latent state unless it is bound to the cofactor vitronectin. Similarly, antithrombin can also spontaneously convert to the latent state, as an additional modulation mechanism to its allosteric activation by heparin. Finally, the N-terminus of , a serpin from '' Thermoanaerobacter tengcongensis'', is required to lock the molecule in the native inhibitory state. Disruption of interactions made by the N-terminal region results in spontaneous conformational change of this serpin to the latent conformation.


Conformational change in non-inhibitory functions

Certain non-inhibitory serpins also use the serpin conformational change as part of their function. For example, the native (S) form of
thyroxine-binding globulin Thyroxine-binding globulin (TBG) is a globulin protein that in humans is encoded by the ''SERPINA7'' gene. TBG binds thyroid hormones in circulation. It is one of three transport proteins (along with transthyretin and serum albumin) respon ...
has high affinity for thyroxine, whereas the cleaved (R) form has low affinity. Similarly, transcortin has higher affinity for cortisol when in its native (S) state, than its cleaved (R) state. Thus, in these serpins, RCL cleavage and the S to R transition has been commandeered to allow for ligand release, rather than protease inhibition. In some serpins, the S to R transition can activate cell signalling events. In these cases, a serpin that has formed a complex with its target protease, is then recognised by a receptor. The binding event then leads to downstream signalling by the receptor. The S to R transition is therefore used to alert cells to the presence of protease activity. This differs from the usual mechanism whereby serpins affect signalling simply by inhibiting proteases involved in a signalling cascade.


Degradation

When a serpin inhibits a target protease, it forms a permanent complex, which needs to be disposed of. For extracellular serpins, the final serpin-enzyme complexes are rapidly cleared from circulation. One mechanism by which this occurs in mammals is via the low-density lipoprotein receptor-related protein ( LRP), which binds to inhibitory complexes made by antithrombin, PA1-1, and neuroserpin, causing cellular uptake. Similarly, the ''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many s ...
'' serpin, necrotic, is degraded in the lysosome after being trafficked into the cell by the Lipophorin Receptor-1 (homologous to the mammalian LDL receptor family).


Disease and serpinopathies

Serpins are involved in a wide array of physiological functions, and so mutations in genes encoding them can cause a range of diseases. Mutations that change the activity, specificity or aggregation properties of serpins all affect how they function. The majority of serpin-related diseases are the result of serpin polymerisation into aggregates, though several other types of disease-linked mutations also occur. The disorder alpha-1 antitrypsin deficiency is one of the most common hereditary diseases.


Inactivity or absence

Since the stressed serpin fold is high-energy, mutations can cause them to incorrectly change into their lower-energy conformations (e.g. relaxed or latent) before they have correctly performed their inhibitory role. Mutations that affect the rate or the extent of RCL insertion into the A-sheet can cause the serpin to undergo its S to R conformational change before having engaged a protease. Since a serpin can only make this conformational change once, the resulting misfired serpin is inactive and unable to properly control its target protease. Similarly, mutations that promote inappropriate transition to the monomeric latent state cause disease by reducing the amount of active inhibitory serpin. For example, the disease-linked antithrombin variants ''wibble'' and ''wobble'', both promote formation of the latent state. The structure of the disease-linked mutant of antichymotrypsin (L55P) revealed another, inactive "δ-conformation". In the δ-conformation, four residues of the RCL are inserted into the top of β-sheet A. The bottom half of the sheet is filled as a result of one of the α-helices (the F-helix) partially switching to a β-strand conformation, completing the β-sheet hydrogen bonding. It is unclear whether other serpins can adopt this conformer, and whether this conformation has a functional role, but it is speculated that the δ-conformation may be adopted by Thyroxine-binding globulin during thyroxine release. The non-inhibitory proteins related to serpins can also cause diseases when mutated. For example, mutations in SERPINF1 cause osteogenesis imperfecta type VI in humans. In the absence of a required serpin, the protease that it normally would regulate is over-active, leading to pathologies. Consequently, simple deficiency of a serpin (e.g. a null mutation) can result in disease. Gene knockouts, particularly in mice, are used experimentally to determine the normal functions of serpins by the effect of their absence.


Specificity change

In some rare cases, a single amino acid change in a serpin's RCL alters its specificity to target the wrong protease. For example, the Antitrypsin-Pittsburgh mutation (M358R) causes the
α1-antitrypsin Alpha-1 antitrypsin or α1-antitrypsin (A1AT, α1AT, A1A, or AAT) is a protein belonging to the serpin superfamily. It is encoded in humans by the ''SERPINA1'' gene. A protease inhibitor, it is also known as alpha1–proteinase inhibitor (A1PI) ...
serpin to inhibit thrombin, causing a bleeding disorder.


Polymerisation and aggregation

The majority of serpin diseases are due to protein aggregation and are termed "serpinopathies". Serpins are vulnerable to disease-causing mutations that promote formation of misfolded polymers due to their inherently unstable structures. Well-characterised serpinopathies include α1-antitrypsin deficiency (alpha-1), which may cause familial
emphysema Emphysema, or pulmonary emphysema, is a lower respiratory tract disease, characterised by air-filled spaces ( pneumatoses) in the lungs, that can vary in size and may be very large. The spaces are caused by the breakdown of the walls of the a ...
, and sometimes liver cirrhosis, certain familial forms of thrombosis related to antithrombin deficiency, types 1 and 2 hereditary angioedema (HAE) related to deficiency of C1-inhibitor, and familial encephalopathy with neuroserpin inclusion bodies (FENIB; a rare type of
dementia Dementia is a disorder which manifests as a set of related symptoms, which usually surfaces when the brain is damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, which negatively affe ...
caused by neuroserpin polymerisation). Each monomer of the serpin aggregate exists in the inactive, relaxed conformation (with the RCL inserted into the A-sheet). The polymers are therefore hyperstable to temperature and unable to inhibit proteases. Serpinopathies therefore cause pathologies similarly to other proteopathies (e.g.
prion Prions are misfolded proteins that have the ability to transmit their misfolded shape onto normal variants of the same protein. They characterize several fatal and transmissible neurodegenerative diseases in humans and many other animals. It ...
diseases) via two main mechanisms. First, the lack of active serpin results in uncontrolled protease activity and tissue destruction. Second, the hyperstable polymers themselves clog up the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
of cells that synthesize serpins, eventually resulting in cell death and tissue damage. In the case of antitrypsin deficiency, antitrypsin polymers cause the death of liver cells, sometimes resulting in liver damage and
cirrhosis Cirrhosis, also known as liver cirrhosis or hepatic cirrhosis, and end-stage liver disease, is the impaired liver function caused by the formation of scar tissue known as fibrosis due to damage caused by liver disease. Damage causes tissue repai ...
. Within the cell, serpin polymers are slowly removed via degradation in the endoplasmic reticulum. However, the details of how serpin polymers cause cell death remains to be fully understood. Physiological serpin polymers are thought to form via domain swapping events, where a segment of one serpin protein inserts into another. Domain-swaps occur when mutations or environmental factors interfere with the final stages of serpin folding to the native state, causing high-energy intermediates to misfold. Both dimer and trimer domain-swap structures have been solved. In the dimer (of antithrombin), the RCL and part of the A-sheet incorporates into the A-sheet of another serpin molecule. The domain-swapped trimer (of antitrypsin) forms via the exchange of an entirely different region of the structure, the B-sheet (with each molecule's RCL inserted into its own A-sheet). It has also been proposed that serpins may form domain-swaps by inserting the RCL of one protein into the A-sheet of another (A-sheet polymerisation). These domain-swapped dimer and trimer structures are thought to be the building blocks of the disease-causing polymer aggregates, but the exact mechanism is still unclear.


Therapeutic strategies

Several therapeutic approaches are in use or under investigation to treat the most common serpinopathy: antitrypsin deficiency. Antitrypsin augmentation therapy is approved for severe antitrypsin deficiency-related emphysema. In this therapy, antitrypsin is purified from the plasma of blood donors and administered intravenously (first marketed as Prolastin). To treat severe antitrypsin deficiency-related disease, lung and liver transplantation has proven effective. In animal models, gene targeting in
induced pluripotent stem cell Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed ...
s has been successfully used to correct an antitrypsin polymerisation defect and to restore the ability of the mammalian liver to secrete active antitrypsin. Small molecules have also been developed that block antitrypsin polymerisation ''in vitro''.


Evolution

Serpins are the most widely distributed and largest superfamily of protease inhibitors. They were initially believed to be restricted to
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
organisms, but have since been found in
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
, archaea and some
viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room ...
. It remains unclear whether prokaryote genes are the descendants of an ancestral prokaryotic serpin or the product of
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring ( reproduction). ...
from eukaryotes. Most intracellular serpins belong to a single
phylogenetic In biology, phylogenetics (; from Greek φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups o ...
clade, whether they come from plants or animals, indicating that the intracellular and extracellular serpins may have diverged before the plants and animals. Exceptions include the intracellular heat shock serpin HSP47, which is a chaperone essential for proper folding of collagen, and cycles between the cis-Golgi and the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
. Protease-inhibition is thought to be the ancestral function, with non-inhibitory members the results of evolutionary
neofunctionalisation Neofunctionalization, one of the possible outcomes of functional divergence, occurs when one gene copy, or paralog, takes on a totally new function after a gene duplication event. Neofunctionalization is an adaptive mutation process; meaning one ...
of the structure. The S to R conformational change has also been adapted by some binding serpins to regulate affinity for their targets.


Distribution


Animal


Human

The human genome encodes 16 serpin clades, termed through , including 29 inhibitory and 7 non-inhibitory serpin proteins. The human serpin naming system is based upon a
phylogenetic In biology, phylogenetics (; from Greek φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups o ...
analysis of approximately 500 serpins from 2001, with proteins named , where X is the clade of the protein and Y the number of the protein within that clade. The functions of human serpins have been determined by a combination of biochemical studies, human
genetic disorder A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorde ...
s, and knockout mouse models.


Specialised mammalian serpins

Many mammalian serpins have been identified that share no obvious orthology with a human serpin counterpart. Examples include numerous
rodent Rodents (from Latin , 'to gnaw') are mammals of the Order (biology), order Rodentia (), which are characterized by a single pair of continuously growing incisors in each of the upper and lower jaws. About 40% of all mammal species are roden ...
serpins (particularly some of the murine intracellular serpins) as well as the
uterine serpin Uterine serpins are members of the A clade of the serine protease inhibitor ( serpin) superfamily of proteins and are encoded by the SERPINA14 gene. Uterine serpins are produced by the endometrium of a restricted group of mammals under the i ...
s. The term uterine serpin refers to members of the serpin A clade that are encoded by the SERPINA14 gene. Uterine serpins are produced by the endometrium of a restricted group of mammals in the Laurasiatheria clade under the influence of progesterone or
estrogen Estrogen or oestrogen is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three major endogenous estrogens that have estrogenic hormonal a ...
. They are probably not functional proteinase inhibitors and may function during pregnancy to inhibit maternal immune responses against the conceptus or to participate in transplacental transport.


Insect

The ''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the " vinegar fly" or " pomace fly". Starting with ...
'' genome contains 29 serpin encoding genes. Amino acid sequence analysis has placed 14 of these serpins in serpin clade Q and three in serpin clade K with the remaining twelve classified as orphan serpins not belonging to any clade. The clade classification system is difficult to use for ''Drosophila'' serpins and instead a nomenclature system has been adopted that is based on the position of serpin genes on the ''Drosophila''
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins ar ...
s. Thirteen of the ''Drosophila'' serpins occur as isolated genes in the genome (including Serpin-27A, see below), with the remaining 16 organised into five gene clusters that occur at chromosome positions 28D (2 serpins), 42D (5 serpins), 43A (4 serpins), 77B (3 serpins) and 88E (2 serpins). Studies on ''Drosophila'' serpins reveal that Serpin-27A inhibits the Easter protease (the final protease in the Nudel, Gastrulation Defective, Snake and Easter proteolytic cascade) and thus controls dorsoventral patterning. Easter functions to cleave Spätzle (a chemokine-type ligand), which results in toll-mediated signaling. As well as its central role in embryonic patterning, toll signaling is also important for the
innate immune response The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is th ...
in insects. Accordingly, serpin-27A also functions to control the insect immune response. In ''Tenebrio molitor'' (a large beetle), a protein (SPN93) comprising two discrete tandem serpin domains functions to regulate the toll proteolytic cascade.


Nematode

The genome of the nematode worm ''
C. elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' ( ...
'' contains 9 serpins, all of which lack signal sequences and so are likely intracellular. However, only 5 of these serpins appear to function as protease inhibitors. One, SRP-6, performs a protective function and guards against stress-induced calpain-associated lysosomal disruption. Further, SRP-6 inhibits lysosomal cysteine proteases released after lysosomal rupture. Accordingly, worms lacking SRP-6 are sensitive to stress. Most notably, SRP-6 knockout worms die when placed in water (the hypo-osmotic stress lethal phenotype or Osl). It has therefore been suggested that lysosomes play a general and controllable role in determining cell fate.


Plant

Plant Plants are predominantly Photosynthesis, photosynthetic eukaryotes of the Kingdom (biology), kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all curr ...
serpins were amongst the first members of the superfamily that were identified. The serpin barley protein Z is highly abundant in barley grain, and one of the major protein components in beer. The genome of the model plant, '' Arabidopsis thaliana'' contain 18 serpin-like genes, although only 8 of these are full-length serpin sequences. Plant serpins are potent inhibitors of mammalian chymotrypsin-like serine proteases ''in vitro'', the best-studied example being barley serpin Zx (BSZx), which is able to inhibit trypsin and chymotrypsin as well as several blood coagulation factors. However, close relatives of chymotrypsin-like serine proteases are absent in plants. The RCL of several serpins from wheat grain and rye contain poly-Q repeat sequences similar to those present in the prolamin storage proteins of the endosperm. It has therefore been suggested that plant serpins may function to inhibit proteases from insects or microbes that would otherwise digest grain storage proteins. In support of this hypothesis, specific plant serpins have been identified in the phloem sap of pumpkin (CmPS-1) and cucumber plants. Although an inverse correlation between up-regulation of CmPS-1 expression and aphid survival was observed, ''in vitro'' feeding experiments revealed that recombinant CmPS-1 did not appear to affect insect survival. Alternative roles and protease targets for plant serpins have been proposed. The ''Arabidopsis'' serpin, AtSerpin1 (At1g47710; ), mediates set-point control over programmed cell death by targeting the 'Responsive to Desiccation-21' (RD21) papain-like cysteine protease. AtSerpin1 also inhibits metacaspase-like proteases ''in vitro''. Two other ''Arabidopsis'' serpins, AtSRP2 (At2g14540) and AtSRP3 (At1g64030) appear to be involved in responses to DNA damage.


Fungal

A single fungal serpin has been characterized to date: from '' Piromyces'' spp. strain E2. ''Piromyces'' is a
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial n ...
of anaerobic fungi found in the gut of ruminants and is important for digesting plant material. is predicted to be inhibitory and contains two N-terminal dockerin domains in addition to its serpin domain. Dockerins are commonly found in proteins that localise to the fungal cellulosome, a large extracellular multiprotein complex that breaks down cellulose. It is therefore suggested that may protect the cellulosome against plant proteases. Certain bacterial serpins similarly localize to the cellulosome.


Prokaryotic

Predicted serpin genes are sporadically distributed in
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Con ...
s. ''In vitro'' studies on some of these molecules have revealed that they are able to inhibit proteases, and it is suggested that they function as inhibitors ''in vivo''. Several prokaryote serpins are found in
extremophile An extremophile (from Latin ' meaning "extreme" and Greek ' () meaning "love") is an organism that is able to live (or in some cases thrive) in extreme environments, i.e. environments that make survival challenging such as due to extreme tempe ...
s. Accordingly, and in contrast to mammalian serpins, these molecules possess elevated resistance to heat denaturation. The precise role of most bacterial serpins remains obscure, although '' Clostridium thermocellum'' serpin localises to the cellulosome. It is suggested that the role of cellulosome-associated serpins may be to prevent unwanted protease activity against the cellulosome.


Viral

Serpins are also expressed by
virus A virus is a wikt:submicroscopic, submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and ...
es as a way to evade the host's immune defense. In particular, serpins expressed by pox viruses, including
cow pox Cowpox is an infectious disease caused by the ''cowpox virus'' (CPXV). It presents with large blisters in the skin, a fever and swollen glands, historically typically following contact with an infected cow, though in the last several decades more ...
(vaccinia) and rabbit pox (myxoma), are of interest because of their potential use as novel therapeutics for immune and inflammatory disorders as well as transplant therapy. Serp1 suppresses the TLR-mediated innate immune response and allows indefinite cardiac allograft survival in rats. Crma and Serp2 are both cross-class inhibitors and target both serine (granzyme B; albeit weakly) and cysteine proteases (caspase 1 and caspase 8). In comparison to their mammalian counterparts, viral serpins contain significant deletions of elements of secondary structure. Specifically, crmA lacks the D-helix as well as significant portions of the A- and E-helices.


References


External links

*
Merops protease inhibitor claudication (Family I4)
*
James Whisstock laboratory
at
Monash University Monash University () is a public research university based in Melbourne, Victoria, Australia. Named for prominent World War I general Sir John Monash, it was founded in 1958 and is the second oldest university in the state. The university h ...

Jim Huntington laboratory
at
University of Cambridge , mottoeng = Literal: From here, light and sacred draughts. Non literal: From this place, we gain enlightenment and precious knowledge. , established = , other_name = The Chancellor, Masters and Schola ...

Frank Church laboratory
at
University of North Carolina at Chapel Hill A university () is an institution of higher (or tertiary) education and research which awards academic degrees in several academic disciplines. ''University'' is derived from the Latin phrase ''universitas magistrorum et scholarium'', which r ...

Paul Declerck laboratory
at Katholieke Universiteit Leuven
Tom Roberts laboratory
at
University of Sydney The University of Sydney (USYD), also known as Sydney University, or informally Sydney Uni, is a public university, public research university located in Sydney, Australia. Founded in 1850, it is the oldest university in Australia and is one o ...

Robert Fluhr laboratory
at Weizmann Institute of Science
Peter Gettins laboratory
at University of Illinois at Chicago * {{Serpins * Protein superfamilies