Pnictides
   HOME

TheInfoList



OR:

A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the elements nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), and moscovium (Mc). Since 1988, IUPAC calls it Group 15. Before that, in America it was called Group VA, owing to a text by H. C. Deming and the Sargent-Welch Scientific Company, while in Europe it was called Group VB and IUPAC recommended that in 1970. (Pronounced "group five A" and "group five B"; "V" is the Roman numeral 5). In semiconductor physics, it is still usually called Group V. The "five" ("V") in the historical names comes from the " pentavalency" of nitrogen, reflected by the
stoichiometry Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equal ...
of compounds such as N2O5. They have also been called the pentels.


Characteristics


Chemical

Like other groups, the members of this family show similar patterns in
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon atom ...
, especially in the outermost shells, resulting in trends in chemical behavior. This group has the defining characteristic that all the component elements have 5 electrons in their outermost shell, that is 2 electrons in the s subshell and 3 unpaired electrons in the p subshell. They are therefore 3 electrons short of filling their outermost electron shell in their non- ionized state. The Russell–Saunders term symbol of the ground state in all elements in the group is 4S. The most important elements of this group to life on Earth are nitrogen (N), which in its diatomic form is the principal component of air, and phosphorus (P), which, like nitrogen, is essential to all known forms of life.


Compounds

Binary compounds of the group can be referred to collectively as pnictides. Pnictide compounds tend to have exotic properties such as being diamagnetic and paramagnetic at room temperature, being transparent, or generating electricity when heated. Other pnictides include the ternary rare-earth (RE) main-group variety of pnictides. These are in the form of REaMbPnc, where M is a carbon group or boron group element and Pn is any pnictogen except nitrogen. These compounds are between ionic and covalent compounds and thus have unusual bonding properties."Pnicogen – Molecule of the Month"
University of Bristol
These elements are also noted for their stability in compounds due to their tendency to form covalent double bonds and triple bonds. This property of these elements leads to their potential toxicity, most evident in phosphorus, arsenic, and antimony. When these substances react with various chemicals of the body, they create strong free radicals that are not easily processed by the liver, where they accumulate. Paradoxically, this same strong bonding causes nitrogen's and bismuth's reduced toxicity (when in molecules), because these strong bonds with other atoms are difficult to split, creating very unreactive molecules. For example, N2, the
diatomic Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. Ot ...
form of nitrogen, is used as an inert gas in situations where using argon or another noble gas would be too expensive. Formation of multiple bonds is facilitated by their ''five'' valence electrons whereas the octet rule permits a pnictogen for accepting three electrons on covalent bonding. Because 5  3, it leaves unused two electrons in a
lone pair In chemistry, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bondIUPAC ''Gold Book'' definition''lone (electron) pair''/ref> and is sometimes called an unshared pair or non-bonding pair. Lone ...
unless there is a positive charge around (like in ). When a pnictogen forms only three
single bond In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond. When shared, each of th ...
s, effects of the lone pair typically result in trigonal pyramidal molecular geometry.


Oxidation states

The light pnictogens (nitrogen, phosphorus, and arsenic) tend to form −3 charges when reduced, completing their octet. When oxidized or ionized, pnictogens typically take an oxidation state of +3 (by losing all three p-shell electrons in the valence shell) or +5 (by losing all three p-shell and both s-shell electrons in the valence shell). However heavier pnictogens are more likely to form the +3 oxidation state than lighter ones due to the s-shell electrons becoming more stabilized.Boudreaux, Kevin A
"Group 5A — The Pnictogens"
Department of Chemistry, Angelo State University, Texas


=−3 oxidation state

= Pnictogens can react with hydrogen to form pnictogen hydrides such as ammonia. Going down the group, to
phosphane Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting f ...
(phosphine),
arsane Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in ...
(arsine), stibane (stibine), and finally
bismuthane Bismuthine (IUPAC name: bismuthane) is the chemical compound with the formula BiH3. As the heaviest analogue of ammonia (a pnictogen hydride), BiH3 is unstable, decomposing to bismuth metal well below 0 °C. This compound adopts the expected ...
(bismuthine), each pnictogen hydride becomes progressively less stable (more unstable), more toxic, and has a smaller hydrogen-hydrogen angle (from 107.8° in ammonia to 90.48° in bismuthane). (Also, technically, only ammonia and phosphane have the pnictogen in the −3 oxidation state because, for the rest, the pnictogen is less electronegative than hydrogen.) Crystal solids featuring pnictogens fully reduced include yttrium nitride, calcium phosphide,
sodium arsenide Sodium arsenide, also known as trisodium arsenide, is the inorganic compound of sodium and arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and ...
, indium antimonide, and even
double salt A double salt is a salt that contains two or more different cations or anions. Examples of double salts include alums (with the general formula ) and Tutton's salts (with the general formula ). Other examples include potassium sodium tartrate, ammo ...
s like
aluminum gallium indium phosphide Aluminium gallium indium phosphide (, also AlInGaP, InGaAlP, GaInP, etc.) is a semiconductor material that provides a platform for the development of novel Multi-junction solar cell, multi-junction photovoltaics and optoelectronic devices, as it ...
. These include III-V semiconductors, including
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
, the second-most widely-used semiconductor after silicon.


=+3 oxidation state

= Nitrogen forms a limited number of stable III compounds.
Nitrogen(III) oxide Dinitrogen trioxide is the chemical compound with the formula N2O3. It is one of the simple nitrogen oxides. It forms upon mixing equal parts of nitric oxide and nitrogen dioxide and cooling the mixture below −21 °C (−6 °F): :NO + ...
can only be isolated at low temperatures, and nitrous acid is unstable.
Nitrogen trifluoride Nitrogen trifluoride () is an inorganic, colorless, non-flammable, toxic gas with a slightly musty odor. It finds increasing use within the manufacturing of flat-panel displays, photovoltaics, LEDs and other microelectronics. Nitrogen trifluori ...
is the only stable nitrogen trihalide, with
nitrogen trichloride Nitrogen trichloride, also known as trichloramine, is the chemical compound with the formula NCl3. This yellow, oily, pungent-smelling and explosive liquid is most commonly encountered as a byproduct of chemical reactions between ammonia-derivative ...
,
nitrogen tribromide Nitrogen tribromide is a chemical compound with the formula NBr3. It is extremely explosive in its pure form, even at −100 °C, and was not isolated until 1975. It is a deep-red and volatile solid. Preparation NBr3 was first prepared by r ...
, and
nitrogen triiodide Nitrogen triiodide is an inorganic compound with the formula N I3. It is an extremely sensitive contact explosive: small quantities explode with a loud, sharp snap when touched even lightly, releasing a purple cloud of iodine vapor; it can even b ...
being explosive—nitrogen triiodide being so shock-sensitive that the touch of a feather detonates it (the last three actually feature nitrogen in the -3 oxidation state). Phosphorus forms a +III oxide which is stable at room temperature, phosphorous acid, and several trihalides, although the triiodide is unstable. Arsenic forms +III compounds with oxygen as arsenites,
arsenous acid Arsenous acid (or arsenious acid) is the inorganic compound with the formula H3AsO3. It is known to occur in aqueous solutions, but it has not been isolated as a pure material, although this fact does not detract from the significance of As(OH)3. ...
, and
arsenic(III) oxide Arsenic trioxide, sold under the brand name Trisenox among others, is an inorganic compound and medication. As an industrial chemical, whose major uses include in the manufacture of wood preservatives, pesticides, and glass. As a medication, i ...
, and it forms all four trihalides. Antimony forms
antimony(III) oxide Antimony(III) oxide is the inorganic compound with the formula Sb2O3. It is the most important commercial compound of antimony. It is found in nature as the minerals valentinite and senarmontite. Like most polymeric oxides, Sb2O3 dissolves i ...
and
antimonite In chemistry, antimonite refers to a salt of antimony(III), such as NaSb(OH)4 and NaSbO2 (meta-antimonite), which can be prepared by reacting alkali with antimony trioxide, Sb2O3.Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemist ...
but not oxyacids. Its trihalides, antimony trifluoride, antimony trichloride,
antimony tribromide Antimony tribromide ( Sb Br3) is a chemical compound containing antimony in its +3 oxidation state. Production It may be made by the reaction of antimony with elemental bromine, or by the reaction of antimony trioxide with hydrobromic acid. Al ...
, and antimony triiodide, like all pnictogen trihalides, each have trigonal pyramidal molecular geometry. The +3 oxidation state is bismuth's most common oxidation state because its ability to form the +5 oxidation state is hindered by relativistic properties on heavier elements, effects that are even more pronounced concerning moscovium. Bismuth(III) forms an oxide, an oxychloride, an oxynitrate, and a sulfide. Moscovium(III) is predicted to behave similarly to bismuth(III). Moscovium is predicted to form all four trihalides, of which all but the trifluoride are predicted to be soluble in water. It is also predicted to form an oxychloride and oxybromide in the +III oxidation state.


=+5 oxidation state

= For nitrogen, the +5 state is typically serves as only a formal explanation of molecules like N2O5, as the high electronegativity of nitrogen causes the electrons to be shared almost evenly. Pnictogen compounds with coordination number 5 are hypervalent. Nitrogen(V) fluoride is only theoretical and has not been synthesized. The "true" +5 state is more common for the essentially non-relativistic typical pnictogens phosphorus, arsenic, and antimony, as shown in their oxides, phosphorus(V) oxide,
arsenic(V) oxide Arsenic pentoxide is the inorganic compound with the formula As2O5. This glassy, white, deliquescent solid is relatively unstable, consistent with the rarity of the As(V) oxidation state. More common, and far more important commercially, is ars ...
, and
antimony(V) oxide Antimony pentoxide (molecular formula: Sb2O5) is a chemical compound of antimony and oxygen. It contains antimony in the +5 oxidation state. Structure Antimony pentoxide has the same structure as the ''B'' form of niobium pentoxide and can be der ...
, and their fluorides, phosphorus(V) fluoride, arsenic(V) fluoride,
antimony(V) fluoride Antimony pentafluoride is the inorganic compound with the formula Sb F5. This colourless, viscous liquid is a valuable Lewis acid and a component of the superacid fluoroantimonic acid, formed when mixing liquid HF with liquid SbF5 in a 2:1 ratio. ...
. At least two also form related fluoride-anions, hexafluorophosphate and
hexafluoroantimonate Antimony pentafluoride is the inorganic compound with the formula Sb F5. This colourless, viscous liquid is a valuable Lewis acid and a component of the superacid fluoroantimonic acid, formed when mixing liquid HF with liquid SbF5 in a 2:1 ratio. ...
, that function as
non-coordinating anions Anions that interact weakly with cations are termed non-coordinating anions, although a more accurate term is weakly coordinating anion. Non-coordinating anions are useful in studying the reactivity of electrophilic cations. They are commonly fou ...
. Phosphorus even forms mixed oxide-halides, known as oxyhalides, like phosphorus oxychloride, and mixed pentahalides, like
phosphorus trifluorodichloride Phosphorus trifluorodichloride is a chemical compound with the chemical formula PF3Cl2. The covalent molecule trigonal bipyramidal molecular geometry. The central phosphorus atom has sp3d hybridization, and the molecule has an asymmetric charge d ...
. Pentamethylpnictogen(V) compounds exist for arsenic, antimony, and bismuth. However, for bismuth, the +5 oxidation state becomes rare due to the relativistic stabilization of the 6s orbitals known as the inert pair effect, so that the 6s electrons are reluctant to bond chemically. This causes
bismuth(V) oxide Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs na ...
to be unstable and bismuth(V) fluoride to be more reactive than the other pnictogen pentafluorides, making it an extremely powerful
fluorinating agent In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, ...
. This effect is even more pronounced for moscovium, prohibiting it from attaining a +5 oxidation state.


=Other oxidation states

= * Nitrogen forms a variety of compounds with oxygen in which the nitrogen can take on a variety of oxidation states, including +II, +IV, and even some mixed-valence compounds and very unstable +VI oxidation state. * In
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
, diphosphane, and organic derivatives of the two, the nitrogen or phosphorus atoms have the −2 oxidation state. Likewise, diimide, which has two nitrogen atoms double-bonded to each other, and its organic derivatives have nitrogen in the oxidation state of −1. ** Similarly, realgar has arsenic–arsenic bonds, so the arsenic's oxidation state is +II. ** A corresponding compound for antimony is Sb2(C6H5)4, where the antimony's oxidation state is +II. * Phosphorus has the +1 oxidation state in
hypophosphorous acid Hypophosphorous acid (HPA), or phosphinic acid, is a phosphorus oxyacid and a powerful reducing agent with molecular formula H3PO2. It is a colorless low-melting compound, which is soluble in water, dioxane and alcohols. The formula for this ...
and the +4 oxidation state in
hypophosphoric acid Hypophosphoric acid is a mineral acid with the formula H4P2O6, with phosphorus in a formal oxidation state of +4. In the solid state it is present as the dihydrate, H4P2O6·2H2O. In hypophosphoric acid the phosphorus atoms are identical and join ...
. *
Antimony tetroxide Antimony tetroxide is an inorganic compound with the formula Sb2O4. This material, which exists as the mineral cervantite, is white but reversibly yellows upon heating. The material, with empirical formula SbO2, is called antimony tetroxide to s ...
is a mixed-valence compound, where half of the antimony atoms are in the +3 oxidation state, and the other half are in the +5 oxidation state. * It is expected that moscovium will have an inert pair effect for both the 7s and the 7p1/2 electrons, as the binding energy of the lone 7p3/2 electron is noticeably lower than that of the 7p1/2 electrons. This is predicted to cause +I to be a common oxidation state for moscovium, although it also occurs to a lesser extent for bismuth and nitrogen.


Physical

The pnictogens consist of two non-metals (one gas, one solid), two
metalloid A metalloid is a type of chemical element which has a preponderance of material property, properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on ...
s, one metal, and one element with unknown chemical properties. All the elements in the group are solids at
room temperature Colloquially, "room temperature" is a range of air temperatures that most people prefer for indoor settings. It feels comfortable to a person when they are wearing typical indoor clothing. Human comfort can extend beyond this range depending on ...
, except for nitrogen which is gaseous at room temperature. Nitrogen and bismuth, despite both being pnictogens, are very different in their physical properties. For instance, at STP nitrogen is a transparent non-metallic gas, while bismuth is a silvery-white metal. The
densities Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek language, Greek letter Rho (letter), rho), although the Latin letter ''D'' ca ...
of the pnictogens increase towards the heavier pnictogens. Nitrogen's density is 0.001251 g/cm3 at STP. Phosphorus's density is 1.82 g/cm3 at STP, arsenic's is 5.72 g/cm3, antimony's is 6.68 g/cm3, and bismuth's is 9.79 g/cm3. Nitrogen's melting point is −210 °C and its boiling point is −196 °C. Phosphorus has a melting point of 44 °C and a boiling point of 280 °C. Arsenic is one of only two elements to sublimate at standard pressure; it does this at 603 °C. Antimony's melting point is 631 °C and its boiling point is 1587 °C. Bismuth's melting point is 271 °C and its boiling point is 1564 °C. Nitrogen's crystal structure is hexagonal. Phosphorus's crystal structure is
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
. Arsenic, antimony, and bismuth all have rhombohedral crystal structures.


History

The nitrogen compound sal ammoniac (ammonium chloride) has been known since the time of the Ancient Egyptians. In the 1760s two scientists, Henry Cavendish and Joseph Priestley, isolated nitrogen from air, but neither realized the presence of an undiscovered element. It was not until several years later, in 1772, that Daniel Rutherford realized that the gas was indeed nitrogen. The
alchemist Alchemy (from Arabic: ''al-kīmiyā''; from Ancient Greek: χυμεία, ''khumeía'') is an ancient branch of natural philosophy, a philosophical and protoscience, protoscientific tradition that was historically practiced in Chinese alchemy, C ...
Hennig Brandt Hennig Brand (; c. 1630c. 1692 or c. 1710) was a German alchemist who lived and worked in Hamburg. In 1669, Brand accidentally discovered the chemical element phosphorus while searching for the "philosopher's stone", a substance which was believed ...
first discovered phosphorus in Hamburg in 1669. Brandt produced the element by heating evaporated urine and condensing the resulting phosphorus vapor in water. Brandt initially thought that he had discovered the Philosopher's Stone, but eventually realized that this was not the case. Arsenic compounds have been known for at least 5000 years, and the ancient Greek Theophrastus recognized the arsenic minerals called realgar and orpiment. Elemental arsenic was discovered in the 13th century by Albertus Magnus. Antimony was well known to the ancients. A 5000-year-old vase made of nearly pure antimony exists in the Louvre. Antimony compounds were used in dyes in the
Babylon ''Bābili(m)'' * sux, 𒆍𒀭𒊏𒆠 * arc, 𐡁𐡁𐡋 ''Bāḇel'' * syc, ܒܒܠ ''Bāḇel'' * grc-gre, Βαβυλών ''Babylṓn'' * he, בָּבֶל ''Bāvel'' * peo, 𐎲𐎠𐎲𐎡𐎽𐎢 ''Bābiru'' * elx, 𒀸𒁀𒉿𒇷 ''Babi ...
ian times. The antimony mineral stibnite may have been a component of
Greek fire Greek fire was an incendiary weapon used by the Eastern Roman Empire beginning . Used to set fire to enemy ships, it consisted of a combustible compound emitted by a flame-throwing weapon. Some historians believe it could be ignited on contact w ...
. Bismuth was first discovered by an alchemist in 1400. Within 80 years of bismuth's discovery, it had applications in printing and decorated
caskets A casket jewelry box is a container that is usually smaller than a chest, and in the past were typically decorated. Whereas cremation jewelry is a small container, usually in the shape of a pendant or bracelet, to hold a small amount of ashes. ...
. The Incas were also using bismuth in knives by 1500. Bismuth was originally thought to be the same as lead, but in 1753,
Claude François Geoffroy Claude François Geoffroy (1729 – 18 June 1753) was a French chemist. In 1753 he proved the chemical element bismuth to be distinct from lead, becoming the official discoverer of the element. Before this time, bismuth-containing minerals were ...
proved that bismuth was different from lead. Moscovium was successfully produced in 2003 by bombarding
americium-243 Americium (95Am) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no known stable isotopes. The first isotope Isotopes are two or more types of atoms that have the same atomic ...
atoms with calcium-48 atoms.


Names and etymology

The term "pnictogen" (or "pnigogen") is derived from the ancient Greek word () meaning "to choke", referring to the choking or stifling property of nitrogen gas. It can also be used as a mnemonic for the two most common members, P and N. The term "pnictogen" was suggested by the Dutch chemist
Anton Eduard van Arkel Anton Eduard van Arkel, (19 November 1893 – 14 March 1976) was a Dutch chemist. Van Arkel suggested the names "pnictogen" and "pnictide" to refer to chemical elements in group 15 (the nitrogen group or nitrogen family) of the periodic table. ...
in the early 1950s. It is also spelled "pnicogen" or "pnigogen". The term "pnicogen" is rarer than the term "pnictogen", and the ratio of academic research papers using "pnictogen" to those using "pnicogen" is 2.5 to 1. It comes from the Greek root (choke, strangle), and thus the word "pnictogen" is also a reference to the Dutch and German names for nitrogen ( and '','' respectively, "suffocating substance": i.e., substance in air, unsupportive of breathing). Hence, "pnictogen" could be translated as "suffocation maker". The word "pnictide" also comes from the same root. The name pentels (from Greek , , five) also at one time stood for this group.


Occurrence

Nitrogen makes up 25 parts per million of the
Earth's crust Earth's crust is Earth's thin outer shell of rock, referring to less than 1% of Earth's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The ...
, 5 parts per million of soil on average, 100 to 500 parts per trillion of seawater, and 78% of dry air. The majority of nitrogen on earth is in the form of nitrogen gas, but some nitrate minerals do exist. Nitrogen makes up 2.5% of a typical human by weight. Phosphorus makes up 0.1% of the earth's crust, making it the 11th most abundant element there. Phosphorus makes up 0.65 parts per million of soil, and 15 to 60 parts per billion of seawater. There are 200 Mt of accessible phosphates on earth. Phosphorus makes up 1.1% of a typical human by weight. Phosphorus occurs in minerals of the
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common e ...
family which are the main components of the phosphate rocks. Arsenic makes up 1.5 parts per million of the earth's crust, making it the 53rd most abundant element there. The soils contain 1 to 10 parts per million of arsenic, and seawater contains 1.6 parts per billion of arsenic. Arsenic makes up 100 parts per billion of a typical human by weight. Some arsenic exists in elemental form, but most arsenic is found in the arsenic minerals orpiment, realgar, arsenopyrite, and enargite. Antimony makes up 0.2 parts per million of the earth's crust, making it the 63rd most abundant element there. The soils contain 1 part per million of antimony on average, and seawater contains 300 parts per trillion of antimony on average. A typical human contains 28 parts per billion of antimony by weight. Some elemental antimony occurs in silver deposits. Bismuth makes up 48 parts per billion of the earth's crust, making it the 70th most abundant element there. The soils contain approximately 0.25 parts per million of bismuth, and seawater contains 400 parts per trillion of bismuth. Bismuth most commonly occurs as the mineral bismuthinite, but bismuth also occurs in elemental form or in sulfide ores. Moscovium is produced several atoms at a time in particle accelerators.


Production


Nitrogen

Nitrogen can be produced by
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation to ...
of air.


Phosphorus

The principal method for producing phosphorus is to
reduce Reduction, reduced, or reduce may refer to: Science and technology Chemistry * Reduction (chemistry), part of a reduction-oxidation (redox) reaction in which atoms have their oxidation state changed. ** Organic redox reaction, a redox react ...
phosphates with carbon in an electric arc furnace.


Arsenic

Most arsenic is prepared by heating the mineral arsenopyrite in the presence of air. This forms As4O6, from which arsenic can be extracted via carbon reduction. However, it is also possible to make metallic arsenic by heating arsenopyrite at 650 to 700 °C without oxygen.


Antimony

With sulfide ores, the method by which antimony is produced depends on the amount of antimony in the raw ore. If the ore contains 25% to 45% antimony by weight, then crude antimony is produced by smelting the ore in a
blast furnace A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
. If the ore contains 45% to 60% antimony by weight, antimony is obtained by heating the ore, also known as liquidation. Ores with more than 60% antimony by weight are chemically displaced with iron shavings from the molten ore, resulting in impure metal. If an oxide ore of antimony contains less than 30% antimony by weight, the ore is reduced in a blast furnace. If the ore contains closer to 50% antimony by weight, the ore is instead reduced in a reverberatory furnace. Antimony ores with mixed sulfides and oxides are smelted in a blast furnace.Butterman, C.; Carlin, Jr., J.F. (2003)
Mineral Commodity Profiles: Antimony
United States Geological Survey.


Bismuth

Bismuth minerals do occur, in particular in the form of sulfides and oxides, but it is more economic to produce bismuth as a by-product of the smelting of lead ores or, as in China, of tungsten and zinc ores.


Moscovium

Moscovium is produced a few atoms at a time in
particle accelerators A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
by firing a beam of Calcium-48 ions at Americium until the nuclei fuse.


Applications

*
Liquid nitrogen Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is wide ...
is a commonly used
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
liquid. *Nitrogen in the form of ammonia is a nutrient critical to most plants' survival. Synthesis of ammonia accounts for about 1–2% of the world's energy consumption and the majority of reduced nitrogen in food. *Phosphorus is used in matches and incendiary bombs. * Phosphate fertilizer helps feed much of the world. *Arsenic was historically used as a Paris green pigment, but is not used this way anymore due to its extreme toxicity. *Arsenic in the form of
organoarsenic compounds Organoarsenic chemistry is the chemistry of compounds containing a chemical bond between arsenic and carbon. A few organoarsenic compounds, also called "organoarsenicals," are produced industrially with uses as insecticides, herbicides, and fungic ...
is sometimes used in chicken feed. *Antimony is alloyed with lead to produce some bullets. *Antimony currency was briefly used in the 1930s in parts of China, but this use was discontinued as antimony is both soft and toxic. * Bismuth subsalicylate is the active ingredient in Pepto-Bismol. *Bismuth chalcogenides are being studied in cancerous mice as a candidate for use in improving radiation therapy in human cancer patients.


Biological role

Nitrogen is a component of molecules critical to life on earth, such as DNA and
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
.
Nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
s occur in some plants, due to bacteria present in the nodes of the plant. This is seen in leguminous plants such as peas or spinach and lettuce. A typical 70 kg human contains 1.8 kg of nitrogen. Phosphorus in the form of phosphates occur in compounds important to life, such as DNA and
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
. Humans consume approximately 1 g of phosphorus per day. Phosphorus is found in foods such as fish, liver, turkey, chicken, and eggs. Phosphate deficiency is a problem known as hypophosphatemia. A typical 70 kg human contains 480 g of phosphorus. Arsenic promotes growth in chickens and rats, and may be essential for humans in small quantities. Arsenic has been shown to be helpful in metabolizing the amino acid
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the am ...
. There are 7 mg of arsenic in a typical 70 kg human. Antimony is not known to have a biological role. Plants take up only trace amounts of antimony. There are approximately 2 mg of antimony in a typical 70 kg human. Bismuth is not known to have a biological role. Humans ingest on average less than 20 μg of bismuth per day. There is less than 500 μg of bismuth in a typical 70 kg human.


Toxicity

Nitrogen gas is completely non-toxic, but breathing in pure nitrogen gas is deadly, because it causes
nitrogen asphyxiation Inert gas asphyxiation is a form of asphyxiation which results from breathing a physiologically inert gas in the absence of oxygen, or a low amount of oxygen, rather than atmospheric air (which is composed largely of nitrogen and oxygen). Examples ...
. The build-up of nitrogen bubbles in the blood, such as those that may occur during scuba diving, can cause a condition known as the "bends" ( decompression sickness). Many nitrogen compounds such as
hydrogen cyanide Hydrogen cyanide, sometimes called prussic acid, is a chemical compound with the formula HCN and structure . It is a colorless, extremely poisonous, and flammable liquid that boils slightly above room temperature, at . HCN is produced on an ...
and nitrogen-based
explosive An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An expl ...
s are also highly dangerous. White phosphorus, an
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
of phosphorus, is toxic, with 1 mg per kg bodyweight being a lethal dose. White phosphorus usually kills humans within a week of ingestion by attacking the liver. Breathing in phosphorus in its gaseous form can cause an industrial disease called " phossy jaw", which eats away the jawbone. White phosphorus is also highly flammable. Some organophosphorus compounds can fatally block certain enzymes in the human body. Elemental arsenic is toxic, as are many of its
inorganic compound In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemist ...
s; however some of its organic compounds can promote growth in chickens. The lethal dose of arsenic for a typical adult is 200 mg and can cause diarrhea, vomiting, colic, dehydration, and coma. Death from arsenic poisoning typically occurs within a day. Antimony is mildly toxic. Additionally, wine steeped in antimony containers can induce vomiting. When taken in large doses, antimony causes vomiting in a victim, who then appears to recover before dying several days later. Antimony attaches itself to certain enzymes and is difficult to dislodge.
Stibine Stibine (IUPAC name: stibane) is a chemical compound with the formula SbH3. A pnictogen hydride, this colourless, highly toxic gas is the principal covalent hydride of antimony, and a heavy analogue of ammonia. The molecule is pyramidal with H–S ...
, or SbH3, is far more toxic than pure antimony. Bismuth itself is largely non-toxic, although consuming too much of it can damage the liver. Only one person has ever been reported to have died from bismuth poisoning. However, consumption of soluble bismuth salts can turn a person's gums black. Moscovium is too unstable to conduct any toxicity chemistry.


See also

* Oxypnictide, including superconductors discovered in 2008 *
Iron-based superconductor Iron-based superconductors (FeSC) are iron-containing chemical compounds whose superconducting properties were discovered in 2006. In 2008, led by recently discovered iron pnictide compounds (originally known as oxypnictides), they were in the firs ...
, ferropnictide and oxypnictide superconductors


References

{{Authority control Periodic table Groups (periodic table)