HOME

TheInfoList



OR:

The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s. It is widely used in
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds made of atoms, molecules and ions: their composition, structure, proper ...
,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, and other sciences, and is generally seen as an
icon An icon () is a religious work of art, most commonly a painting, in the cultures of the Eastern Orthodox, Oriental Orthodox, and Catholic churches. They are not simply artworks; "an icon is a sacred image used in religious devotion". The mos ...
of chemistry. It is a graphic formulation of the
periodic law Periodic trends are specific patterns that are present in the periodic table that illustrate different aspects of a certain element. They were discovered by the Russian chemist Dmitri Mendeleev in the year 1863. Major periodic trends include atom ...
, which states that the properties of the chemical elements exhibit an approximate periodic dependence on their
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
s. The table is divided into four roughly rectangular areas called blocks. The rows of the table are called periods, and the columns are called
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
. Elements from the same group of the periodic table show similar chemical characteristics. Trends run through the periodic table, with
nonmetal In chemistry, a nonmetal is a chemical element that generally lacks a predominance of metallic properties; they range from colorless gases (like hydrogen) to shiny solids (like carbon, as graphite). The electrons in nonmetals behave differentl ...
lic character (keeping their own electrons) increasing from left to right across a period, and from down to up across a group, and
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
lic character (surrendering electrons to other atoms) increasing in the opposite direction. The underlying reason for these trends is
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
s of atoms. The periodic table exclusively lists electrically neutral atoms that have an equal number of positively charged protons and negatively charged electrons and puts
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
s (atoms with the same number of protons but different numbers of neutrons) at the same place. Other atoms, like
nuclide A nuclide (or nucleide, from atomic nucleus, nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was co ...
s and
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
s, are graphically collected in other tables like the tables of nuclides (often called Segrè charts). The first periodic table to become generally accepted was that of the Russian chemist
Dmitri Mendeleev Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February Old_Style_and_New_Style_dates">O.S._27_January.html" ;"title="O ...
in 1869: he formulated the periodic law as a dependence of chemical properties on atomic mass. Because not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to predict properties of some of the missing elements. The periodic law was recognized as a fundamental discovery in the late 19th century, and it was explained with the discovery of the atomic number and pioneering work in
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
of the early 20th century that illuminated the internal structure of the atom. With Glenn T. Seaborg's 1945 discovery that the
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s were in fact f-block rather than d-block elements, a recognisably modern form of the table was reached. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 exist; to go further, it was necessary to synthesise new elements in the laboratory. Today, all the first 118 elements are known, completing the first seven rows of the table, but chemical characterisation is still needed for the heaviest elements to confirm that their properties match their positions. It is not yet known how far the table will stretch beyond these seven rows and whether the patterns of the known part of the table will continue into this unknown region. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many alternative representations of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table.


Overview

The periodic table is a 2-dimensional structured table. The elements are placed in table cells, in reading order of ascending ''
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
''. The table is divided into four '' blocks'', reflecting the filling of electrons into types of subshell. The table columns are called ''
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
'', and the rows are called '' periods''. New periods begin when a new electron shell starts to fill: elements in the same group have the same number of electrons that can be used for chemistry (except for helium in the noble gas group), so that similar physical and chemical properties recur at regular intervals.


Atomic structure

The smallest constituents of all normal matter are known as
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s. Atoms are extremely small, being about one ten-billionth of a meter across; thus their internal structure is governed by
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
. Atoms consist of a small positively charged
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
, made of positively charged
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and uncharged
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s, surrounded by a cloud of negatively charged electrons; the charges cancel out, so atoms are neutral. Electrons participate in
chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking ...
s, but the nucleus does not. When atoms participate in chemical reactions, they either gain or lose electrons to form positively- or negatively-charged ions; or share electrons with each other. Atoms can be subdivided into different types based on the number of protons (and thus also electrons) they have. This is called the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
, often symbolised ''Z'' (for "Zahl" — German for "number"). Each distinct atomic number therefore corresponds to a class of atom: these classes are called the
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
s. The chemical elements are what the periodic table classifies and organises.
Hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
is the element with atomic number 1;
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
, atomic number 2;
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense soli ...
, atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter
chemical symbol Chemical symbols are the abbreviations used in chemistry for chemical elements, functional groups and chemical compounds. Element symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with ...
; those for hydrogen, helium, and lithium are respectively H, He, and Li. Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
s of the same chemical element. Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
s, defined as the average mass of a naturally occurring atom of that element. Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present. Of the 94 natural elements, eighty have a stable isotope and one more (
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs ...
) has an almost-stable isotope (with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
over a billion times the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
). Two more,
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
and
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
, have isotopes undergoing
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
with a half-life comparable to the
age of the Earth The age of Earth is estimated to be 4.54 ± 0.05 billion years This age may represent the age of Earth's accretion, or core formation, or of the material from which Earth formed. This dating is based on evidence from radiometric age-dating of ...
. The stable elements plus bismuth, thorium, and uranium make up the 83
primordial Primordial may refer to: * Primordial era, an era after the Big Bang. See Chronology of the universe * Primordial sea (a.k.a. primordial ocean, ooze or soup). See Abiogenesis * Primordial nuclide, nuclides, a few radioactive, that formed before t ...
elements that survived from the Earth's formation. The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium. All 24 known artificial elements are radioactive.


Electron configuration

The periodic table is a graphic description of the periodic law, which states that the properties and atomic structures of the chemical elements are a
periodic function A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to des ...
of their
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
. Elements are placed in the periodic table by their
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
s, which exhibit periodic recurrences that explain the trends of properties across the periodic table. An electron can be thought of as inhabiting an
atomic orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any ...
, which characterises the probability it can be found in any particular region of the atom. Their energies are quantised, which is to say that they can only take discrete values. Furthermore, electrons obey the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formula ...
: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally ...
, conventionally labeled "up" or "down". In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimised by occupying the lowest-energy orbitals available. Only the outermost electrons (so-called
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called core electrons. Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32. Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements. The subshell types are characterised by the
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can ...
s. Four numbers describe an orbital in an atom completely: the
principal quantum number In quantum mechanics, the principal quantum number (symbolized ''n'') is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from 1) making it a discrete variable. A ...
''n'', the
azimuthal quantum number The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe ...
ℓ (the orbital type), the
magnetic quantum number In atomic physics, the magnetic quantum number () is one of the four quantum numbers (the other three being the principal, azimuthal, and spin) which describe the unique quantum state of an electron. The magnetic quantum number distinguishes the ...
''m'', and the
spin quantum number In atomic physics, the spin quantum number is a quantum number (designated ) which describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. The phrase was originally used to describe t ...
''s''.


The order of subshell filling

The sequence in which the subshells are filled is given in most cases by the
Aufbau principle The aufbau principle , from the German ''Aufbauprinzip'' (building-up principle), also called the aufbau rule, states that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy, then they fill subshells ...
, also known as the Madelung or Klechkovsky rule (after
Erwin Madelung Erwin Madelung (18 May 1881 – 1 August 1972) was a German physicist. He was born in 1881 in Bonn. His father was the surgeon Otto Wilhelm Madelung. He earned a doctorate in 1905 from the University of Göttingen, specializing in crystal structu ...
and
Vsevolod Klechkovsky Vsevolod Mavrikievich Klechkovsky (russian: Все́волод Маври́киевич Клечко́вский; also transliterated as Klechkovskii and Klechkowski; November 28, 1900 – May 2, 1972) was a Soviet and Russian agricultural chemist ...
respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification. The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to: :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... Here the sign ≪ means "much less than" as opposed to < meaning just "less than". Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first. In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s-orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s-orbital, which corresponds to the beginning of a new shell. Thus, with the exception of the first row, each period length appears twice: :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d-orbitals enter the picture, and the order can shift slightly with atomic number and atomic charge. Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
, there is only one electron, which must go in the lowest-energy orbital 1s. This
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
is written 1s1, where the superscript indicates the number of electrons in the subshell.
Helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s2. Starting from the third element,
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense soli ...
, the first shell is full, so its third electron occupies a 2s orbital, giving a 1s2 2s1 configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms. Thus the filled first shell is called a " core shell" for this and all heavier elements. The 2s subshell is completed by the next element
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to for ...
(1s2 2s2). The following elements then proceed to fill the 2p subshell.
Boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has t ...
(1s2 2s2 2p1) puts its new electron in a 2p orbital;
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
(1s2 2s2 2p2) fills a second 2p orbital; and with
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
(1s2 2s2 2p3) all three 2p orbitals become singly occupied. This is consistent with Hund's rule, which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron.
Oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
(1s2 2s2 2p4),
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactiv ...
(1s2 2s2 2p5), and
neon Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypt ...
(1s2 2s2 2p6) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely. Starting from element 11,
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
, the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s2 2s2 2p6 3s1 for sodium. This configuration is abbreviated e3s1, where erepresents neon's configuration.
Magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
( e3s2) finishes this 3s orbital, and the following the six elements
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
,
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
,
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
, sulfur,
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
, and
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
fill the three 3p orbitals ( e3s2 3p1 through e3s2 3p6). This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates: at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.Scerri, p. 17 The first eighteen elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons. A period begins when a new shell starts filling. Finally, the colouring illustrates the blocks: the elements in the s-block (coloured red) are filling s-orbitals, while those in the p-block (coloured yellow) are filling p-orbitals. Starting the next row, for
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosph ...
and
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
the 4s subshell is the lowest in energy, and therefore they fill it. Potassium adds one electron to the 4s shell ( r4s1), and calcium then completes it ( r4s2). However, starting from
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
( r3d1 4s2) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at chromium the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable to have a r3d5 4s1 configuration than an r3d4 4s2 one. A similar anomaly occurs at
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
. These are violations of the Madelung rule. Such anomalies however do not have any chemical significance, as the various configurations are so close in energy to each otherPetrucci et al., p. 328 that the presence of a nearby atom can shift the balance. The periodic table therefore ignores these and considers only idealised configurations. At
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
( r3d10 4s2), the 3d orbitals are completely filled with a total of ten electrons. Next come the 4p orbitals, completing the row, which are filled progressively by gallium ( r3d10 4s2 4p1) through
krypton Krypton (from grc, κρυπτός, translit=kryptos 'the hidden one') is a chemical element with the symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is often ...
( r3d10 4s2 4p6), in a manner analogous to the previous p-block elements. From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry. The s- and p-block elements, which fill their outer shells, are called
main-group element In chemistry and atomic physics, the main group is the group of elements (sometimes called the representative elements) whose lightest members are represented by helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, and fluorine as arrange ...
s; the d-block elements (coloured blue below), which fill an inner shell, are called
transition element In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
s (or transition metals, since they are all metals).Petrucci et al., pp. 326–7 The next eighteen elements fill the 5s orbitals ( rubidium and strontium), then 4d (
yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in co ...
through
cadmium Cadmium is a chemical element with the symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of ...
, again with a few anomalies along the way), and then 5p (
indium Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts ...
through
xenon Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
). Again, from indium onward the 4d orbitals are in the core. Hence the fifth row has the same structure as the fourth. The sixth row of the table likewise starts with two s-block elements: caesium and barium. After this, the first f-block elements (coloured green below) begin to appear, starting with
lanthanum Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lant ...
. These are sometimes termed inner transition elements. As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations; this has resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle. Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons, its 4f orbitals are low enough in energy to participate in chemistry. At
ytterbium Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the othe ...
, the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements (
lutetium Lutetium is a chemical element with the symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted am ...
through mercury) follows, and finally six main-group elements (
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes an ...
through
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
) complete the period. From lutetium onwards the 4f orbitals are in the core, and from thallium onwards so are the 5d orbitals. The seventh row is analogous to the sixth row: 7s fills ( francium and
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
), then 5f (
actinium Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name ''emanium''; the element got its name by being wrongly identified with a substance An ...
to
nobelium Nobelium is a synthetic chemical element with the symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penul ...
), then 6d (
lawrencium Lawrencium is a synthetic chemical element with the symbol Lr (formerly Lw) and atomic number 103. It is named in honor of Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radio ...
to
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
), and finally 7p (
nihonium Nihonium is a synthetic chemical element with the symbol Nh and atomic number 113. It is extremely radioactive; its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide ...
to
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
). Starting from lawrencium the 5f orbitals are in the core, and probably the 6d orbitals join the core starting from nihonium. Again there are a few anomalies along the way:Petrucci et al., p. 331 for example, as single atoms neither actinium nor
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments. For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing elements beyond uranium started to be synthesised in the laboratory in 1940, when neptunium was made. The row was completed with the synthesis of
tennessine Tennessine is a synthetic chemical element with the symbol Ts and atomic number 117. It is the second-heaviest known element and the penultimate element of the 7th period of the periodic table. The discovery of tennessine was officially anno ...
in 2010 (the last element
oganesson Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scient ...
had already been made in 2002), and the last elements in this seventh row were given names in 2016. This completes the modern periodic table, with all seven rows completely filled to capacity.


Electron configuration table

The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments. The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking and therefore calculated configurations have been shown instead. Completely filled subshells have been greyed out.


Group names and numbers

Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering. Groups can also be named by their first element, e.g. the "scandium group" for group 3. Previously, groups were known by Roman numerals. In America, the Roman numerals were followed by either an "A" if the group was in the s- or
p-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
, or a "B" if the group was in the
d-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the
group 4 element Group 4 is the second group of transition metals in the periodic table. It contains the four elements titanium (Ti), zirconium (Zr), hafnium (Hf), and rutherfordium (Rf). The group is also called the titanium group or titanium family after its lig ...
s were group IVB, and the group 14 elements were group IVA). In Europe, the lettering was similar, except that "A" was used if the group was before
group 10 Group 10, numbered by current IUPAC style, is the group of chemical elements in the periodic table that consists of nickel (Ni), palladium (Pd), platinum (Pt), and darmstadtium (Ds). All are d-block transition metals. All known isotopes of darm ...
, and "B" was used for groups including and after group 10. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.


Presentation forms

32 columns 18 columns
For reasons of space, the periodic table is commonly presented with the f-block elements cut out and positioned placed as a distinct part below the main body. It reduces the number of element columns from 32 to 18. Both forms represent the same periodic table. The form with the f-block included in the main body is sometimes called the 32-column or long form; the form with the f-block cut out the 18-column or medium-long form. The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space. The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms. Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.


Periodic trends

As chemical reactions involve the valence electrons, elements with similar outer electron configurations may be expected to react similarly and form compounds with similar proportions of elements in them. Such elements are placed in the same group, and thus there tend to be clear similarities and trends in chemical behaviour as one proceeds down a group. As analogous configurations return at regular intervals, the properties of the elements thus exhibit periodic recurrences, hence the name of the periodic table and the periodic law. These periodic recurrences were noticed well before the underlying theory that explains them was developed.


Atomic radius

Historically, the physical size of atoms was unknown until the early 20th century. The first calculated estimate of the atomic radius of hydrogen was published by physicist Artur Haas in 1910 to within an order of magnitude (a factor of 10) of the accepted value, the
Bohr radius The Bohr radius (''a''0) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an ...
(~0.529 Å). In his model, Haas used a single-electron configuration based on the classical atomic model proposed by
J. J. Thomson Sir Joseph John Thomson (18 December 1856 – 30 August 1940) was a British physicist and Nobel Laureate in Physics, credited with the discovery of the electron, the first subatomic particle to be discovered. In 1897, Thomson showed that ...
in 1904, often called the
plum-pudding model The plum pudding model is one of several historical scientific models of the atom. First proposed by J. J. Thomson in 1904 soon after the discovery of the electron, but before the discovery of the atomic nucleus, the model tried to explain two pr ...
. Atomic radii (the size of atoms) are dependent on the sizes of their outermost orbitals.Siekierski and Burgess, pp. 23–26 They generally decrease going left to right along the main-group elements, because the nuclear charge increases but the outer electrons are still in the same shell. However, going down a column, the radii generally increase, because the outermost electrons are in higher shells that are thus further away from the nucleus. The first row of each block is abnormally small, due to an effect called kainosymmetry or primogenic repulsion: the 1s, 2p, 3d, and 4f subshells have no inner analogues that they would have to be orthogonal to. Higher s-, p-, d-, and f-subshells experience strong repulsion from their inner analogues, which have approximately the same angular distribution of charge, and must expand to avoid this. This makes significant differences arise between the small 2p elements, which prefer
multiple bond In chemistry, bond order, as introduced by Linus Pauling, is defined as the difference between the number of bonds and anti-bonds. The bond order itself is the number of electron pairs (covalent bonds) between two atoms. For example, in diat ...
ing, and the larger 3p and higher p-elements, which do not. Similar anomalies arise for the 1s, 2p, 3d, 4f, and the hypothetical elements: the degree of this first-row anomaly is highest for the s-block, is moderate for the p-block, and is less pronounced for the d- and f-blocks. In the transition elements, an inner shell is filling, but the size of the atom is still determined by the outer electrons. The increasing nuclear charge across the series and the increased number of inner electrons for shielding somewhat compensate each other, so the decrease in radius is smaller. The 4p and 5d atoms, coming immediately after new types of transition series are first introduced, are smaller than would have been expected,Greenwood and Earnshaw, p. 29 because the added core 3d and 4f subshells provide only incomplete shielding of the nuclear charge for the outer electrons. Hence for example gallium atoms are slightly smaller than aluminium atoms. Together with kainosymmetry, this results in an even-odd difference between the periods (except in the s-block) that is sometimes known as secondary periodicity: elements in even periods have smaller atomic radii and prefer to lose fewer electrons, while elements in odd periods (except the first) differ in the opposite direction. Thus for example many properties in the p-block show a zigzag rather than a smooth trend along the group. For example, phosphorus and antimony in odd periods of group 15 readily reach the +5 oxidation state, whereas nitrogen, arsenic, and bismuth in even periods prefer to stay at +3. Thallium and lead atoms are about the same size as indium and tin atoms respectively, but from bismuth to radon the 6p atoms are larger than the analogous 5p atoms. This happens because when atomic nuclei become highly charged,
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
becomes needed to gauge the effect of the nucleus on the electron cloud. These
relativistic effects Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
result in heavy elements increasingly having differing properties compared to their lighter homologues in the periodic table.
Spin–orbit interaction In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–or ...
splits the p-subshell: one p-orbital is relativistically stabilised and shrunken (it fills in thallium and lead), but the other two (filling in bismuth through radon) are relativistically destabilised and expanded. Relativistic effects also explain why
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
is golden and mercury is a liquid at room temperature. They are expected to become very strong in the late seventh period, potentially leading to a collapse of periodicity. Electron configurations are only clearly known until element 108 (
hassium Hassium is a chemical element with the symbol Hs and the atomic number 108. Hassium is highly radioactive; its most stable known isotopes have half-lives of approximately ten seconds. One of its isotopes, 270Hs, has magic numbers of both protons ...
), and experimental chemistry beyond 108 has only been done for 112 (
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
), 113 (
nihonium Nihonium is a synthetic chemical element with the symbol Nh and atomic number 113. It is extremely radioactive; its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide ...
), and 114 (
flerovium Flerovium is a Transactinide element, superheavy chemical element with Chemical symbol, symbol Fl and atomic number 114. It is an extremely radioactive synthetic element. It is named after the Flerov Laboratory of Nuclear Reactions of the Joint ...
), so the chemical characterisation of the heaviest elements remains a topic of current research.


Ionisation energy

The first
ionisation energy Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
of an atom is the energy required to remove an electron from it. This varies with the atomic radius: ionisation energy increases left to right and down to up, because electrons that are closer to the nucleus are held more tightly and are more difficult to remove. Ionisation energy thus is minimised at the first element of each period – hydrogen and the alkali metals – and then generally rises until it reaches the
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
at the right edge of the period. There are some exceptions to this trend, such as oxygen, where the electron being removed is paired and thus interelectronic repulsion makes it easier to remove than expected.Greenwood and Earnshaw, pp. 24–5 In the transition series, the outer electrons are preferentially lost even though the inner orbitals are filling. For example, in the 3d series, the 4s electrons are lost first even though the 3d orbitals are being filled. The shielding effect of adding an extra 3d electron approximately compensates the rise in nuclear charge, and therefore the ionisation energies stay mostly constant, though there is a small increase especially at the end of each transition series. As metal atoms tend to lose electrons in chemical reactions, ionisation energy is generally correlated with chemical reactivity, although there are other factors involved as well.


Electron affinity

The opposite property to ionisation energy is the
electron affinity The electron affinity (''E''ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. ::X(g) + e− → X−(g) + energy Note that this is ...
, which is the energy released when adding an electron to the atom. A passing electron will be more readily attracted to an atom if it feels the pull of the nucleus more strongly, and especially if there is an available partially filled outer orbital that can accommodate it. Therefore, electron affinity tends to increase down to up and left to right. The exception is the last column, the noble gases, which have a full shell and have no room for another electron. This gives the halogens in the next-to-last column the highest electron affinities. Some atoms, like the noble gases, have no electron affinity: they cannot form stable gas-phase anions. The noble gases, having high ionisation energies and no electron affinity, have little inclination towards gaining or losing electrons and are generally unreactive. Some exceptions to the trends occur: oxygen and fluorine have lower electron affinities than their heavier homologues sulfur and chlorine, because they are small atoms and hence the newly added electron would experience significant repulsion from the already present ones. For the nonmetallic elements, electron affinity likewise somewhat correlates with reactivity, but not perfectly since other factors are involved. For example, fluorine has a lower electron affinity than chlorine, but is more reactive.


Valence and oxidation states

The valence of an element can be defined either as the number of hydrogen atoms that can combine with it to form a simple binary hydride, or as twice the number of oxygen atoms that can combine with it to form a simple binary oxide (that is, not a
peroxide In chemistry, peroxides are a group of compounds with the structure , where R = any element. The group in a peroxide is called the peroxide group or peroxo group. The nomenclature is somewhat variable. The most common peroxide is hydrogen ...
or a
superoxide In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of t ...
). The valences of the main-group elements are directly related to the group number: the hydrides in the main groups 1–2 and 13–17 follow the formulae MH, MH2, MH3, MH4, MH3, MH2, and finally MH. The highest oxides instead increase in valence, following the formulae M2O, MO, M2O3, MO2, M2O5, MO3, M2O7. Today the notion of valence has been extended by that of the
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
, which is the formal charge left on an element when all other elements in a compound have been removed as their ions. The electron configuration suggests a ready explanation from the number of electrons available for bonding, although a full explanation requires considering the energy that would be released in forming compounds with different valences rather than simply considering electron configurations alone.Greenwood and Earnshaw, p. 113 For example, magnesium forms Mg2+ rather than Mg+ cations when dissolved in water, because the latter would spontaneously disproportionate into Mg0 and Mg2+ cations. This is because the
enthalpy Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
of hydration (surrounding the cation with water molecules) increases in magnitude with the charge and radius of the ion. In Mg+, the outermost orbital (which determines ionic radius) is still 3s, so the hydration enthalpy is small and insufficient to compensate the energy required to remove the electron; but ionising again to Mg2+ uncovers the core 2p subshell, making the hydration enthalpy large enough to allow magnesium(II) compounds to form. For similar reasons, the common oxidation states of the heavier p-block elements (where the ns electrons become lower in energy than the np) tend to vary by steps of 2, because that is necessary to uncover an inner subshell and decrease the ionic radius (e.g. Tl+ uncovers 6s, and Tl3+ uncovers 5d, so once thallium loses two electrons it tends to lose the third one as well). Analogous arguments based on orbital hybridisation can be used for the less electronegative p-block elements. For example, GaCl requires gallium's 4s orbital to mix with only one 4p orbital, whereas GaCl2 and GaCl3 would both require it to mix with two. Hence no extra energy is needed between these last two steps to involve more orbitals, so gallium(II) is unstable while gallium(III) is stable.Siekierski and Burgess, pp. 45–54 For transition metals, common oxidation states are nearly always at least +2 for similar reasons (uncovering the next subshell); this holds even for the metals with anomalous dx+1s1 or dx+2s0 configurations (except for
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
), because repulsion between d-electrons means that the movement of the second electron from the s- to the d-subshell does not appreciably change its ionisation energy.Siekierski and Burgess, pp. 134–137 Because ionising the transition metals further does not uncover any new inner subshells, their oxidation states tend to vary by steps of 1 instead. The lanthanides and late actinides generally show a stable +3 oxidation state, removing the outer s-electrons and then (usually) one electron from the (n−2)f-orbitals, that are similar in energy to ns. The common and maximum oxidation states of the d- and f-block elements tend to depend on the ionisation energies. As the energy difference between the (n−1)d and ns orbitals rises along each transition series, it becomes less energetically favourable to ionise further electrons. Thus, the early transition metal groups tend to prefer higher oxidation states, but the +2 oxidation state becomes more stable for the late transition metal groups. The highest formal oxidation state thus increases from +3 at the beginning of each d-block row, to +7 or +8 in the middle (e.g. OsO4), and then to +2 at the end. The lanthanides and late actinides usually have high fourth ionisation energies and hence rarely surpass the +3 oxidation states, whereas early actinides have low fourth ionisation energies and so for example neptunium and plutonium can reach +7.Siekierski and Burgess, pp. 178–180 As elements in the same group share the same valence configurations, they usually exhibit similar chemical behaviour. For example, the alkali metals in the first group all have one valence electron, and form a very homogeneous class of elements: they are all soft and reactive metals. However, there are many factors involved, and groups can often be rather hetereogeneous. For instance, hydrogen also has one valence electron and is in the same group as the alkali metals, but its chemical behaviour is quite different. The stable elements of
group 14 The carbon group is a periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). It lies within the p-block. In modern IUPAC notation, it is called group 14. In the field of semicon ...
comprise a nonmetal (
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
), two semiconductors (
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
and germanium), and two metals (
tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
and
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
); they are nonetheless united by having four valence electrons.Scerri, pp. 14–15 This often leads to similarities in maximum and minimum oxidation states (e.g. sulfur and
selenium Selenium is a chemical element with the symbol Se and atomic number 34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium, ...
in
group 16 The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioa ...
both have maximum oxidation state +6, as in SO3 and SeO3, and minimum oxidation state −2, as in sulfides and
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
s); but not always (e.g.
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
is not known to form oxidation state +6, despite being in the same group as sulfur and selenium).


Electronegativity

Another important property of elements is their
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
. Atoms can form covalent bonds to each other by sharing electrons in pairs, creating an overlap of valence orbitals. The degree to which each atom attracts the shared electron pair depends on the atom's electronegativity – the tendency of an atom towards gaining or losing electrons. The more electronegative atom will tend to attract the electron pair more, and the less electronegative (or more electropositive) one will attract it less. In extreme cases, the electron can be thought of as having been passed completely from the more electropositive atom to the more electronegative one, though this is a simplification. The bond then binds two ions, one positive (having given up the electron) and one negative (having accepted it), and is termed an
ionic bond Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds ...
. Electronegativity depends on how strongly the nucleus can attract an electron pair, and so it exhibits a similar variation to the other properties already discussed: electronegativity tends to fall going up to down, and rise going left to right. The alkali and alkaline earth metals are among the most electropositive elements, while the chalcogens, halogens, and noble gases are among the most electronegative ones. Electronegativity is generally measured on the Pauling scale, on which the most electronegative reactive atom (
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactiv ...
) is given electronegativity 4.0, and the least electronegative atom ( caesium) is given electronegativity 0.79. (Theoretically
neon Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypt ...
would be more electronegative than fluorine, but the Pauling scale cannot measure its electronegativity because it does not form covalent bonds.) An element's electronegativity varies with the identity and number of the atoms it is bonded to, as well as how many electrons it has already lost: an atom becomes more electronegative when it has lost more electrons.Greenwood and Earnshaw, pp. 25–6 This sometimes makes a large difference: lead in the +2 oxidation state has electronegativity 1.87 on the Pauling scale, while lead in the +4 oxidation state has electronegativity 2.33.


Metallicity

A simple substance is a substance formed from atoms of one chemical element. The simple substances of the more electronegative atoms tend to share electrons (form covalent bonds) with each other. They form either small molecules (like hydrogen or oxygen, whose atoms bond in pairs) or giant structures stretching indefinitely (like carbon or silicon). The noble gases simply stay as single atoms, as they already have a full shell. Substances composed of discrete molecules or single atoms are held together by weaker attractive forces between the molecules, such as the
London dispersion force London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds or loosely as van der Waals forces) are a type of intermolecular force acting between a ...
: as electrons move within the molecules, they create momentary imbalances of electrical charge, which induce similar imbalances on nearby molecules and create synchronised movements of electrons across many neighbouring molecules. The more electropositive atoms, however, tend to instead lose electrons, creating a "sea" of electrons engulfing cations. The outer orbitals of one atom overlap to share electrons with all its neighbours, creating a giant structure of molecular orbitals extending over all the atoms. This negatively charged "sea" pulls on all the ions and keeps them together in a
metallic bond Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be des ...
. Elements forming such bonds are often called
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
s; those which do not are often called
nonmetal In chemistry, a nonmetal is a chemical element that generally lacks a predominance of metallic properties; they range from colorless gases (like hydrogen) to shiny solids (like carbon, as graphite). The electrons in nonmetals behave differentl ...
s. Some elements can form multiple simple substances with different structures: these are called allotropes. For example,
diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, ...
and
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
are two allotropes of carbon. The metallicity of an element can be predicted from electronic properties. When atomic orbitals overlap during metallic or covalent bonding, they create both bonding and antibonding
molecular orbital In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of findin ...
s of equal capacity, with the antibonding orbitals of higher energy. Net bonding character occurs when there are more electrons in the bonding orbitals than there are in the antibonding orbitals. Metallic bonding is thus possible when the number of electrons delocalised by each atom is less than twice the number of orbitals contributing to the overlap. This is the situation for elements in groups 1 through 13; they also have too few valence electrons to form giant covalent structures where all atoms take equivalent positions, and so almost all of them metallise. The exceptions are hydrogen and boron, which have too high an ionisation energy. Hydrogen thus forms a covalent H2 molecule, and boron forms a giant covalent structure based on icosahedral B12 clusters. In a metal, the bonding and antibonding orbitals have overlapping energies, creating a single band that electrons can freely flow through, allowing for electrical conduction.Siekierski and Burgess, pp. 60–66 In group 14, both metallic and covalent bonding become possible. In a diamond crystal, covalent bonds between carbon atoms are strong, because they have a small atomic radius and thus the nucleus has more of a hold on the electrons. Therefore, the bonding orbitals that result are much lower in energy than the antibonding orbitals, and there is no overlap, so electrical conduction becomes impossible: carbon is a nonmetal. However, covalent bonding becomes weaker for larger atoms and the energy gap between the bonding and antibonding orbitals decreases. Therefore, silicon and germanium have smaller
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
s and are
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
s: electrons can cross the gap when thermally excited. The band gap disappears in tin, so that tin and lead become metals. Elements in groups 15 through 17 have too many electrons to form giant covalent molecules that stretch in all three dimensions. For the lighter elements, the bonds in small diatomic molecules are so strong that a condensed phase is disfavoured: thus nitrogen (N2), oxygen (O2), white phosphorus (P4), sulfur (S8), and the stable halogens (F2, Cl2, Br2, and I2) readily form covalent molecules with few atoms. The heavier ones tend to form long chains (e.g. red phosphorus, grey selenium, tellurium) or layered structures (e.g. carbon as graphite, black phosphorus, grey arsenic, grey antimony, bismuth) that only extend in one or two rather than three dimensions. As these structures do not use all their orbitals for bonding, they end up with bonding, nonbonding, and antibonding bands in order of increasing energy. Similarly to group 14, the band gaps shrink for the heavier elements and free movement of electrons between the chains or layers becomes possible. Thus for example black phosphorus, black arsenic, grey selenium, tellurium, and iodine are semiconductors; grey arsenic, grey antimony, and bismuth are
semimetal A semimetal is a material with a very small overlap between the bottom of the conduction band and the top of the valence band. According to electronic band theory, solids can be classified as insulators, semiconductors, semimetals, or metals ...
s (exhibiting quasi-metallic conduction, with a very small band overlap); and polonium and probably astatine are true metals. Finally, the natural group 18 elements all stay as individual atoms. The dividing line between metals and nonmetals is roughly diagonal from top left to bottom right, with the transition series appearing to the left of this diagonal (as they have many available orbitals for overlap). This is expected, as metallicity tends to be correlated with electropositivity and the willingness to lose electrons, which increases right to left and up to down. Thus the metals greatly outnumber the nonmetals. Elements near the borderline are difficult to classify: they tend to have properties that are intermediate between those of metals and nonmetals, and may have some properties characteristic of both. They are often termed semimetals or metalloids. The term "semimetal" used in this sense should not be confused with its strict physical sense having to do with band structure: bismuth is physically a semimetal, but is generally considered a metal by chemists. The following table considers the most stable allotropes at standard conditions. The elements coloured yellow form simple substances that are well-characterised by metallic bonding. Elements coloured light blue form giant covalent structures, whereas those coloured dark blue form small covalently bonded molecules that are held together by weaker
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
s. The noble gases are coloured in violet: their molecules are single atoms and no covalent bonding occurs. Greyed-out cells are for elements which have not been prepared in sufficient quantities for their most stable allotropes to have been characterised in this way. Theoretical considerations and current experimental evidence suggest that all of those elements would metallise if they could form condensed phases, except perhaps for oganesson. File:Iron electrolytic and 1cm3 cube.jpg, Iron, a metal Sulfur - El Desierto mine, San Pablo de Napa, Daniel Campos Province, Potosí, Bolivia.jpg, Sulfur, a nonmetal Arsen 1a.jpg, Arsenic, an element often called a semi-metal or metalloid Generally, metals are shiny and dense. They usually have high melting and boiling points due to the strength of the metallic bond, and are often malleable and ductile (easily stretched and shaped) because the atoms can move relative to each other without breaking the metallic bond. They conduct electricity because their electrons are free to move in all three dimensions. Similarly, they conduct heat, which is transferred by the electrons as extra
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
: they move faster. These properties persist in the liquid state, as although the crystal structure is destroyed on melting, the atoms still touch and the metallic bond persists, though it is weakened. Metals tend to be reactive towards nonmetals. Some exceptions can be found to these generalisations: for example, manganese, arsenic, antimony, and bismuth are brittle; chromium is extremely hard; gallium, rubidium, caesium, and mercury are liquid at or close to room temperature; and
noble metal A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals ( ruthenium, rhodium, palladium, o ...
s such as gold are chemically very inert. Nonmetals exhibit different properties. Those forming giant covalent crystals exhibit high melting and boiling points, as it takes considerable energy to overcome the strong covalent bonds. Those forming discrete molecules are held together mostly by dispersion forces, which are more easily overcome; thus they tend to have lower melting and boiling points, and many are liquids or gases at room temperature. Nonmetals are often dull-looking. They tend to be reactive towards metals, except for the noble gases, which are inert towards most substances. They are brittle when solid as their atoms are held tightly in place. They are less dense and conduct electricity poorly, because there are no mobile electrons. Near the borderline, band gaps are small and thus many elements in that region are semiconductors, such as silicon, germanium, selenium, and tellurium. Again there are exceptions; for example, diamond has the highest thermal conductivity of all known materials, greater than any metal. It is common to designate a class of metalloids straddling the boundary between metals and nonmetals, as elements in that region are intermediate in both physical and chemical properties. However, no consensus exists in the literature for precisely which elements should be so designated. When such a category is used, silicon, germanium, arsenic, and tellurium are almost always included, and boron and antimony usually are; but most sources include other elements as well, without agreement on which extra elements should be added, and some others subtract from this list instead.


Further manifestations of periodicity

There are some other relationships throughout the periodic table between elements that are not in the same group, such as the
diagonal relationship A diagonal relationship is said to exist between certain pairs of diagonally adjacent elements in the second and third periods (first 20 elements) of the periodic table. These pairs (lithium (Li) and magnesium (Mg), beryllium (Be) and aluminium ...
s between elements that are diagonally adjacent (e.g. lithium and magnesium).Scerri, pp. 407–420 Some similarities can also be found between the main groups and the transition metal groups, or between the early actinides and early transition metals, when the elements have the same number of valence electrons. Thus uranium somewhat resembles chromium and tungsten in group 6, as all three have six valence electrons. Relationships between elements with the same number of valence electrons but different types of valence orbital have been called secondary or isodonor relationships: they usually have the same maximum oxidation states, but not the same minimum oxidation states. For example, chlorine and manganese both have +7 as their maximum oxidation state (e.g. Cl2O7 and Mn2O7), but their respective minimum oxidation states are −1 (e.g.
HCl HCL may refer to: Science and medicine * Hairy cell leukemia, an uncommon and slowly progressing B cell leukemia * Harvard Cyclotron Laboratory, from 1961 to 2002, a proton accelerator used for research and development * Hollow-cathode lamp, a spe ...
) and −3 (K2 n(CO)4. Elements with the same number of valence vacancies but different numbers of valence electrons are related by a tertiary or isoacceptor relationship: they have similar minimum but not maximum oxidation states. For example, hydrogen and chlorine both have −1 as their minimum oxidation state (in
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride ...
s and
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride sa ...
s), but hydrogen's maximum oxidation state is +1 (e.g. H2O) while chlorine's is +7. Many other physical properties of the elements exhibit periodic variation in accordance with the periodic law, such as
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
s, boiling points, heats of fusion, heats of vaporisation,
atomisation energy In chemistry, the enthalpy of atomization (also atomisation in British English) is the enthalpy change that accompanies the total separation of all atoms in a chemical substance (either an element or a compound). This is often represented by t ...
, and so on. Similar periodic variations appear for the compounds of the elements, which can be observed by comparing hydrides, oxides, sulfides, halides, and so on. Chemical properties are more difficult to describe quantitatively, but likewise exhibit their own periodicities. Examples include the variation in the acidic and basic properties of the elements and their compounds, the stabilities of compounds, and methods of isolating the elements. Periodicity is and has been used very widely to predict the properties of unknown new elements and new compounds, and is central to modern chemistry.Greenwood and Earnshaw, pp. 29–31


Classification of elements

Many terms have been used in the literature to describe sets of elements that behave similarly. The group names ''alkali metal'', ''alkaline earth metal'', ''pnictogen'', ''chalcogen'', ''halogen'', and ''noble gas'' are acknowledged by IUPAC; the other groups can be referred to by their number, or by their first element (e.g., group 6 is the chromium group). Some divide the p-block elements from groups 13 to 16 by metallicity, although there is neither an IUPAC definition nor a precise consensus on exactly which elements should be considered metals, nonmetals, or semi-metals (sometimes called metalloids). Neither is there a consensus on what the metals succeeding the transition metals ought to be called, with ''post-transition metal'' and ''poor metal'' being among the possibilities having been used. Some advanced monographs exclude the elements of group 12 from the transition metals on the grounds of their sometimes quite different chemical properties, but this is not a universal practice. The ''lanthanides'' are considered to be the elements La–Lu, which are all very similar to each other: historically they included only Ce–Lu, but lanthanum became included by common usage. The '' rare earth elements'' (or rare earth metals) add scandium and yttrium to the lanthanides. Analogously, the ''actinides'' are considered to be the elements Ac–Lr (historically Th–Lr), although variation of properties in this set is much greater than within the lanthanides. IUPAC recommends the names ''lanthanoids'' and ''actinoids'' to avoid ambiguity, as the -ide suffix typically denotes a negative ion; however ''lanthanides'' and ''actinides'' remain common. Some authors who consider lutetium and lawrencium to be group 3 elements prefer to define the lanthanides as La–Yb and the actinides as Ac–No, matching the f-block. Many more categorisations exist and are used according to certain disciplines. In astrophysics, a metal is defined as any element with atomic number greater than 2, i.e. anything except hydrogen and helium. The term "semimetal" has a different definition in physics than it does in chemistry: bismuth is a semimetal by physical definitions, but chemists generally consider it a metal. A few terms are widely used, but without any very formal definition, such as " heavy metal", which has been given such a wide range of definitions that it has been criticised as "effectively meaningless". The scope of terms varies significantly between authors. For example, according to IUPAC, the noble gases extend to include the whole group, including the very radioactive superheavy element oganesson. However, among those who specialise in the superheavy elements, this is not often done: in this case "noble gas" is typically taken to imply the unreactive behaviour of the lighter elements of the group. Since calculations generally predict that oganesson should not be particularly inert due to relativistic effects, and may not even be a gas at room temperature if it could be produced in bulk, its status as a noble gas is often questioned in this context. Furthermore, national variations are sometimes encountered: in Japan, alkaline earth metals often do not include beryllium and magnesium as their behaviour is different from the heavier group 2 metals.


History


Early history

In 1817, German physicist
Johann Wolfgang Döbereiner Johann Wolfgang Döbereiner (13 December 1780 – 24 March 1849) was a German chemist who is best known for work that foreshadowed the periodic law for the chemical elements, and for inventing the first lighter, which was known as the Döbere ...
began to formulate one of the earliest attempts to classify the elements. In 1829, he found that he could form some of the elements into groups of three, with the members of each group having related properties. He termed these groups triads. Chlorine, bromine, and iodine formed a triad; as did calcium, strontium, and barium; lithium, sodium, and potassium; and sulfur, selenium, and tellurium. Today, all these triads form part of modern-day groups. Various chemists continued his work and were able to identify more and more relationships between small groups of elements. However, they could not build one scheme that encompassed them all. German chemist
Lothar Meyer Julius Lothar Meyer (19 August 1830 – 11 April 1895) was a German chemist. He was one of the pioneers in developing the earliest versions of the periodic table of the chemical elements. Russian chemist Dmitri Mendeleev (his chief rival) and he ...
noted the sequences of similar chemical and physical properties repeated at periodic intervals. According to him, if the atomic weights were plotted as ordinates (i.e. vertically) and the atomic volumes as abscissas (i.e. horizontally)—the curve obtained a series of maximums and minimums—the most
electropositive Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
elements would appear at the peaks of the curve in the order of their atomic weights. In 1864, a book of his was published; it contained an early version of the periodic table containing 28 elements, and classified elements into six families by their valence—for the first time, elements had been grouped according to their valence. Works on organizing the elements by atomic weight had until then been stymied by inaccurate measurements of the atomic weights.Meyer, Julius Lothar; Die modernen Theorien der Chemie (1864)
table on page 137
In 1868, he revised his table, but this revision was published as a draft only after his death.


Mendeleev

The definitive breakthrough came from the Russian chemist
Dmitri Mendeleev Dmitri Ivanovich Mendeleev (sometimes transliterated as Mendeleyev or Mendeleef) ( ; russian: links=no, Дмитрий Иванович Менделеев, tr. , ; 8 February Old_Style_and_New_Style_dates">O.S._27_January.html" ;"title="O ...
. Although other chemists (including Meyer) had found some other versions of the periodic system at about the same time, Mendeleev was the most dedicated to developing and defending his system, and it was his system that most impacted the scientific community. On 17 February 1869 (1 March 1869 in the Gregorian calendar), Mendeleev began arranging the elements and comparing them by their atomic weights. He began with a few elements, and over the course of the day his system grew until it encompassed most of the known elements. After finding a consistent arrangement, his printed table appeared in May 1869 in the journal of the Russian Chemical Society.Scerri, pp. 117–123 When elements did not appear to fit in the system, he boldly predicted that either valencies or atomic weights had been measured incorrectly, or that there was a missing element yet to be discovered. In 1871, Mendeleev published a long article, including an updated form of his table, that made his predictions for unknown elements explicit. Mendeleev predicted the properties of three of these unknown elements in detail: as they would be missing heavier homologues of boron, aluminium, and silicon, he named them eka-boron, eka-aluminium, and eka-silicon ("eka" being Sanskrit for "one"). In 1875, the French chemist
Paul-Émile Lecoq de Boisbaudran Paul-Émile Lecoq de Boisbaudran, also called François Lecoq de Boisbaudran (18 April 1838 – 28 May 1912), was a French chemist known for his discoveries of the chemical elements gallium, samarium and dysprosium. He developed methods for s ...
, working without knowledge of Mendeleev's prediction, discovered a new element in a sample of the mineral sphalerite, and named it gallium. He isolated the element and began determining its properties. Mendeleev, reading de Boisbaudran's publication, sent a letter claiming that gallium was his predicted eka-aluminium. Although Lecoq de Boisbaudran was initially sceptical, and suspected that Mendeleev was trying to take credit for his discovery, he later admitted that Mendeleev was correct. In 1879, the Swedish chemist Lars Fredrik Nilson discovered a new element, which he named scandium: it turned out to be eka-boron. Eka-silicon was found in 1886 by German chemist
Clemens Winkler Clemens Alexander Winkler (December 26, 1838 – October 8, 1904) was a German chemist who discovered the element germanium in 1886, solidifying Dmitri Mendeleev's theory of periodicity. Life Winkler was born in 1838 in Freiberg, Kingdom ...
, who named it germanium. The properties of gallium, scandium, and germanium matched what Mendeleev had predicted. In 1889, Mendeleev noted at the Faraday Lecture to the Royal Institution in London that he had not expected to live long enough "to mention their discovery to the Chemical Society of Great Britain as a confirmation of the exactitude and generality of the periodic law". Even the discovery of the noble gases at the close of the 19th century, which Mendeleev had not predicted, fitted neatly into his scheme as an eighth main group.Scerri, pp. 164–169 Mendeleev nevertheless had some trouble fitting the known lanthanides into his scheme, as they did not exhibit the periodic change in valencies that the other elements did. After much investigation, the Czech chemist
Bohuslav Brauner Bohuslav Brauner (May 8, 1855 – February 15, 1935) was a Czech chemist from the University of Prague, who investigated the properties of the rare earth elements, especially the determination of their atomic weights. Brauner predicted the ...
suggested in 1902 that the lanthanides could all be placed together in one group on the periodic table. He named this the "asteroid hypothesis" as an astronomical analogy: just as there is an
asteroid belt The asteroid belt is a torus-shaped region in the Solar System, located roughly between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies, of many sizes, but much smaller than planets, c ...
instead of a single planet between Mars and Jupiter, so the place below yttrium was occupied by all the lanthanides instead of just one element.


Atomic number

After the internal structure of the atom was probed, amateur Dutch physicist Antonius van den Broek proposed in 1913 that the nuclear charge determined the placement of elements in the periodic table. The New Zealand physicist
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
coined the word "atomic number" for this nuclear charge. In van der Broek's published article he illustrated the first electronic periodic table showing the elements arranged according to the number of their electrons. Rutherford confirmed in his 1914 paper that Bohr had accepted the view of van der Broek. The same year, English physicist
Henry Moseley Henry Gwyn Jeffreys Moseley (; 23 November 1887 – 10 August 1915) was an English physicist, whose contribution to the science of physics was the justification from physical laws of the previous empirical and chemical concept of the atomic num ...
using
X-ray spectroscopy X-ray spectroscopy is a general term for several spectroscopic techniques for characterization of materials by using x-ray radiation. Characteristic X-ray spectroscopy When an electron from the inner shell of an atom is excited by the energy o ...
confirmed van den Broek's proposal experimentally. Moseley determined the value of the nuclear charge of each element from
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
to
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
and showed that Mendeleev's ordering actually places the elements in sequential order by nuclear charge. Nuclear charge is identical to
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
count and determines the value of the
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
(''Z'') of each element. Using atomic number gives a definitive, integer-based sequence for the elements. Moseley's research immediately resolved discrepancies between atomic weight and chemical properties; these were cases such as tellurium and iodine, where atomic number increases but atomic weight decreases. Although Moseley was soon killed in World War I, the Swedish physicist
Manne Siegbahn Karl Manne Georg Siegbahn FRS(For) HFRSE (3 December 1886 – 26 September 1978) was a Swedish physicist who was awarded the Nobel Prize in Physics in 1924 "for his discoveries and research in the field of X-ray spectroscopy". Biography Siegbahn ...
continued his work up to
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
, and established that it was the element with the highest atomic number then known (92). Based on Moseley and Siegbahn's research, it was also known which atomic numbers corresponded to missing elements yet to be found.


Electron shells

The Danish physicist
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
applied
Max Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
's idea of quantisation to the atom. He concluded that the energy levels of electrons were quantised: only a discrete set of stable energy states were allowed. Bohr then attempted to understand periodicity through electron configurations, surmising in 1913 that the inner electrons should be responsible for the chemical properties of the element. In 1913, he produced the first electronic periodic table based on a quantum atom.Scerri, pp. 208–218 Bohr called his electron shells "rings" in 1913: atomic orbitals within shells did not exist at the time of his planetary model. Bohr explains in Part 3 of his famous 1913 paper that the maximum electrons in a shell is eight, writing, "We see, further, that a ring of n electrons cannot rotate in a single ring round a nucleus of charge ne unless n < 8." For smaller atoms, the electron shells would be filled as follows: "rings of electrons will only join if they contain equal numbers of electrons; and that accordingly the numbers of electrons on inner rings will only be 2, 4, 8." However, in larger atoms the innermost shell would contain eight electrons: "on the other hand, the periodic system of the elements strongly suggests that already in neon N = 10 an inner ring of eight electrons will occur." His proposed electron configurations for the light atoms (shown to the right) do not always accord with those now known. The first one to systematically expand and correct the chemical potentials of Bohr's atomic theory was
Walther Kossel Walther Ludwig Julius Kossel (4 January 1888 – 22 May 1956) was a German physicist known for his theory of the chemical bond (ionic bond/octet rule), Sommerfeld–Kossel displacement law of atomic spectra, the Kossel-Stranski model for crysta ...
in 1914 and in 1916. Kossel explained that in the periodic table new elements would be created as electrons were added to the outer shell. In Kossel's paper, he writes: "This leads to the conclusion that the electrons, which are added further, should be put into concentric rings or shells, on each of which ... only a certain number of electrons—namely, eight in our case—should be arranged. As soon as one ring or shell is completed, a new one has to be started for the next element; the number of electrons, which are most easily accessible, and lie at the outermost periphery, increases again from element to element and, therefore, in the formation of each new shell the chemical periodicity is repeated." In a 1919 paper, Irving Langmuir postulated the existence of "cells" which we now call orbitals, which could each only contain two electrons each, and these were arranged in "equidistant layers" which we now call shells. He made an exception for the first shell to only contain two electrons. The chemist
Charles Rugeley Bury Charles Rugeley Bury (29 June 1890 – 30 December 1968) was an English physical chemist who proposed an early model of the atom with the arrangement of electrons, which explained their chemical properties, alongside the more dominant model of Nie ...
suggested in 1921 that eight and eighteen electrons in a shell form stable configurations. Bury proposed that the electron configurations in transitional elements depended upon the valence electrons in their outer shell. He introduced the word ''transition'' to describe the elements now known as
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
s or transition elements. Prompted by Bohr,
Wolfgang Pauli Wolfgang Ernst Pauli (; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics ...
took up the problem of electron configurations in 1923. Pauli extended Bohr's scheme to use four
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can ...
s, and formulated his exclusion principle which stated that no two electrons could have the same four quantum numbers. This explained the lengths of the periods in the periodic table (2, 8, 18, and 32), which corresponded to the number of electrons that each shell could occupy.Scerri, pp. 218–23 In 1925,
Friedrich Hund Friedrich Hermann Hund (4 February 1896 – 31 March 1997) was a German physicist from Karlsruhe known for his work on atoms and molecules. Scientific career Hund worked at the Universities of Rostock, Leipzig, Jena, Frankfurt am Main, and Göt ...
arrived at configurations close to the modern ones. As a result of these advances, periodicity became based on the number of chemically active or valence electrons rather than by the valences of the elements. The
Aufbau principle The aufbau principle , from the German ''Aufbauprinzip'' (building-up principle), also called the aufbau rule, states that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy, then they fill subshells ...
that describes the electron configurations of the elements was first empirically observed by
Erwin Madelung Erwin Madelung (18 May 1881 – 1 August 1972) was a German physicist. He was born in 1881 in Bonn. His father was the surgeon Otto Wilhelm Madelung. He earned a doctorate in 1905 from the University of Göttingen, specializing in crystal structu ...
in 1926, though the first to publish it was
Vladimir Karapetoff Vladimir Karapetoff (January 8, 1876 in Saint Petersburg, Russian Empire – January 11, 1948) was a Russian-American electrical engineer, inventor, professor, and author. Life He was the son of Nikita Ivanovich Karapetov and Anna Joakimovna Kara ...
in 1930. In 1961,
Vsevolod Klechkovsky Vsevolod Mavrikievich Klechkovsky (russian: Все́волод Маври́киевич Клечко́вский; also transliterated as Klechkovskii and Klechkowski; November 28, 1900 – May 2, 1972) was a Soviet and Russian agricultural chemist ...
derived the first part of the Madelung rule (that orbitals fill in order of increasing ''n'' + ℓ) from the Thomas–Fermi model; the complete rule was derived from a similar potential in 1971 by Yury N. Demkov and Valentin N. Ostrovsky. The quantum theory clarified the transition metals and lanthanides as forming their own separate groups, transitional between the main groups, although some chemists had already proposed tables showing them this way before then: the English chemist Henry Bassett did so in 1892, the Danish chemist Julius Thomsen in 1895, and the Swiss chemist Alfred Werner in 1905. Bohr used Thomsen's form in his 1922 Nobel Lecture; Werner's form is very similar to the modern 32-column form. In particular, this supplanted Brauner's asteroidal hypothesis. The exact position of the lanthanides, and thus the composition of group 3, remained under dispute for decades longer because their electron configurations were initially measured incorrectly.Scerri, pp. 392−401 In 2021 IUPAC released a provisional report suggesting that group 3 should contain scandium, yttrium, lutetium, and lawrencium. This matches the classification Bassett and Werner adopted over a century earlier as well as the Madelung rule.


Synthetic elements

By 1936, the pool of missing elements from hydrogen to uranium had shrunk to four: elements 43, 61, 85, and 87 remained missing. Element 43 eventually became the first element to be synthesised artificially via nuclear reactions rather than discovered in nature. It was discovered in 1937 by Italian chemists
Emilio Segrè Emilio Gino Segrè (1 February 1905 – 22 April 1989) was an Italian-American physicist and Nobel laureate, who discovered the elements technetium and astatine, and the antiproton, a subatomic antiparticle, for which he was awarded the Nobe ...
and Carlo Perrier, who named their discovery
technetium Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
, after the Greek word for "artificial". Elements 61 ( promethium) and 85 (
astatine Astatine is a chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-li ...
) were likewise produced artificially; element 87 ( francium) became the last element to be discovered in nature, by French chemist
Marguerite Perey Marguerite Catherine Perey (19 October 1909 – 13 May 1975) was a French physicist and a student of Marie Curie. In 1939, Perey discovered the element francium by purifying samples of lanthanum that contained actinium. In 1962, she was the firs ...
. The elements beyond uranium were likewise discovered artificially, starting with
Edwin McMillan Edwin Mattison McMillan (September 18, 1907 – September 7, 1991) was an American physicist credited with being the first-ever to produce a transuranium element, neptunium. For this, he shared the 1951 Nobel Prize in Chemistry with Glenn Seab ...
and
Philip Abelson Philip, also Phillip, is a male given name, derived from the Greek (''Philippos'', lit. "horse-loving" or "fond of horses"), from a compound of (''philos'', "dear", "loved", "loving") and (''hippos'', "horse"). Prominent Philips who popularize ...
's 1940 discovery of
neptunium Neptunium is a chemical element with the symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after the planet Uranus, led to it bein ...
(via bombardment of uranium with neutrons).Scerri, p. 354–6 Glenn T. Seaborg and his team at the Lawrence Berkeley National Laboratory (LBNL) continued discovering transuranium elements, starting with
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, and discovered that contrary to previous thinking, the elements from actinium onwards were congeners of the lanthanides rather than transition metals. Bassett (1892), Werner (1905), and the French engineer
Charles Janet Charles Janet (; 15 June 1849 – 7 February 1932) was a French engineer, company director, inventor and biologist. He is also known for his innovative ''left-step'' presentation of the periodic table of chemical elements. Life and work Janet gra ...
(1928) had previously suggested this, but their ideas did not then receive general acceptance. Seaborg thus called them the actinides. Elements up to 101 (named mendelevium in honour of Mendeleev) were synthesised either through neutron or alpha-particle irradiation, or in nuclear explosions in the cases of 99 (einsteinium) and 100 (fermium). A significant controversy arose with elements 102 through 106 in the 1960s and 1970s, as competition arose between the LBNL team (now led by
Albert Ghiorso Albert Ghiorso (July 15, 1915 – December 26, 2010) was an American nuclear scientist and co-discoverer of a record 12 chemical elements on the periodic table. His research career spanned six decades, from the early 1940s to the late 1990s. Biog ...
) and a team of Soviet scientists at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
(JINR) led by
Georgy Flyorov Georgii Nikolayevich Flyorov (also spelled Flerov, rus, Гео́ргий Никола́евич Флёров, p=gʲɪˈorgʲɪj nʲɪkɐˈlajɪvʲɪtɕ ˈflʲɵrəf; 2 March 1913 – 19 November 1990) was a Soviet physicist who is known for h ...
. Each team claimed discovery, and in some cases each proposed their own name for the element, creating an
element naming controversy The currently accepted names and symbols of the chemical elements are determined by the International Union of Pure and Applied Chemistry (IUPAC), usually following recommendations by the recognized discoverers of each element. However the names o ...
that lasted decades. These elements were made by bombardment of actinides with light ions. IUPAC at first adopted a hands-off approach, preferring to wait and see if a consensus would be forthcoming. Unfortunately, it was also the height of the Cold War, and it became clear after some time that this would not happen. As such, IUPAC and the
International Union of Pure and Applied Physics The International Union of Pure and Applied Physics (IUPAP ) is an international non-governmental organization whose mission is to assist in the worldwide development of physics, to foster international cooperation in physics, and to help in the ...
(IUPAP) created a Transfermium Working Group (TWG, fermium being element 100) in 1985 to set out criteria for discovery, which were published in 1991. After some further controversy, these elements received their final names in 1997, including seaborgium (106) in honour of Seaborg. The TWG's criteria were used to arbitrate later element discovery claims from LBNL and JINR, as well as from research institutes in Germany ( GSI) and Japan ( Riken). Currently, consideration of discovery claims is performed by a
IUPAC/IUPAP Joint Working Party The IUPAC/IUPAP Joint Working Party is a group convened periodically by the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Pure and Applied Physics (IUPAP) to consider claims for discovery and naming of new ...
. After priority was assigned, the elements were officially added to the periodic table, and the discoverers were invited to propose their names. By 2016, this had occurred for all elements up to 118, therefore completing the periodic table's first seven rows. The discoveries of elements beyond 106 were made possible by techniques devised by
Yuri Oganessian Yuri Tsolakovich Oganessian (russian: Юрий Цолакович Оганесян ; ''Yuri Ts'olaki Hovhannisyan'' . Oganessian is the Russified version of the Armenian last name Hovhannisyan. The article on Oganessian in the ''Armenian Sovie ...
at the JINR: cold fusion (bombardment of lead and bismuth by heavy ions) made possible the 1981–2004 discoveries of elements 107 through 112 at GSI and 113 at Riken, and he led the JINR team (in collaboration with American scientists) to discover elements 114 through 118 using hot fusion (bombardment of actinides by calcium ions) in 1998–2010.() The heaviest known element, oganesson (118), is named in Oganessian's honour. Element 114 is named flerovium in honour of his predecessor and mentor Flyorov. In celebration of the periodic table's 150th anniversary, the
United Nations The United Nations (UN) is an intergovernmental organization whose stated purposes are to maintain international peace and security, develop friendly relations among nations, achieve international cooperation, and be a centre for harmoniz ...
declared the year 2019 as the International Year of the Periodic Table, celebrating "one of the most significant achievements in science". The discovery criteria set down by the TWG were updated in 2020 in response to experimental and theoretical progress that had not been foreseen in 1991. Today, the periodic table is among the most recognisable icons of chemistry. IUPAC is involved today with many processes relating to the periodic table: the recognition and naming of new elements, recommending group numbers and collective names, determining which elements belong to group 3, and the updating of atomic weights.


Current questions

Although the modern periodic table is standard today, some variation can be found in period 1 and group 3. Discussion is ongoing about the placements of the relevant elements.


Period 1

Some variation can be found on the placements of the period 1 elements hydrogen and helium. Following electron configurations, hydrogen would be placed in group 1, and helium would be placed in group 2. The group 1 placement of hydrogen is common, but helium is almost always placed in group 18 with the other noble gases. The debate has to do with conflicting understandings of whether chemical or electronic properties should primarily decide periodic table placement, and conflicting views of how the evidence should be used. Like the group 1 metals, hydrogen has one electron in its outermost shellGray, p. 12 and typically loses its only electron in chemical reactions. It has some metal-like chemical properties, being able to displace some metals from their
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively c ...
. But hydrogen forms a diatomic nonmetallic gas at standard conditions, unlike the alkali metals which are reactive solid metals. This and hydrogen's formation of
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride ...
s, in which it gains an electron, brings it close to the properties of the halogens which do the same (though it is rarer for hydrogen to form H than H+). Moreover, the lightest two halogens (
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactiv ...
and
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
) are gaseous like hydrogen at standard conditions. Some properties of hydrogen are not a good fit for either group: hydrogen is neither highly oxidising nor highly reducing and is not reactive with water. Hydrogen thus has properties corresponding to both those of the alkali metals and the halogens, but matches neither group perfectly, and is thus difficult to place by its chemistry. Therefore, while the electronic placement of hydrogen in group 1 predominates, some rarer arrangements show either hydrogen in group 17, duplicate hydrogen in both groups 1 and 17, or float it separately from all groups.Greenwood & Earnshaw, throughout the book Helium is an unreactive noble gas at standard conditions, and has a full outer shell: these properties are like the noble gases in group 18, but not at all like the reactive alkaline earth metals of group 2. Therefore, helium is nearly universally placed in group 18 which its properties best match. However, helium only has two electrons in its outermost shell, whereas the other noble gases have eight; and it is an s-block element, whereas all other noble gases are p-block elements. Also, solid helium crystallises in a
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
structure, which matches beryllium and magnesium in group 2, but not the other noble gases in group 18. In these ways helium better matches the alkaline earth metals and it is occasionally placed to head group 2. Some chemists have advocated placing helium in group 2 on the grounds of the first-row anomaly trend, as helium as the first s2 element before the alkaline earth metals stands out as anomalous in a way that helium as the first noble gas does not. Thus for example a large difference in atomic radii between the first and second members of each main group is seen in groups 1 and 13–17: it exists between neon and argon, and between helium and beryllium, but not between helium and neon. Moving helium to group 2 makes this trend consistent in groups 2 and 18 as well. Tables that float both hydrogen and helium outside all groups may also rarely be encountered.


Group 3

Published periodic tables show variation regarding the heavier members of group 3, which begins with scandium and yttrium. They are commonly shown as lanthanum and actinium, but there is significant physical and chemical evidence that this is incorrect, and that the correct elements in those places are lutetium and lawrencium. The spaces below yttrium are sometimes left blank as a third option, but there is confusion in the literature on whether this format implies that group 3 contains only scandium and yttrium, or if it also contains all the lanthanides and actinides. The dispute arose because the electron configurations of the lanthanides were first measured incorrectly. The incorrect configurations first measured suggested that Sc-Y-La-Ac was better, but the correct ones now known suggest instead Sc-Y-Lu-Lr. The Soviet scientists
Lev Landau Lev Davidovich Landau (russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet-Azerbaijani physicist of Jewish descent who made fundamental contributions to many areas of theoretical physics. His ac ...
and
Evgeny Lifshitz Evgeny Mikhailovich Lifshitz (russian: Евге́ний Миха́йлович Ли́фшиц; February 21, 1915, Kharkiv, Russian Empire – October 29, 1985, Moscow, Russian SFSR) was a leading Soviet physicist and brother of the physicist ...
were the first to point out (in 1948) that the corrected configurations indicated that lutetium was a d-block and not an f-block element, and other authors subsequently rediscovered the recommended change and applied it to all the relevant elements. Although individual atoms of lanthanum and actinium do lack f-electrons, and on that basis it has been argued that they cannot be f-block elements, the same is true of thorium which is never disputed as an f-block element. Indeed, such exceptions to the Madelung rule have never been considered as relevant for positioning any other elements on the periodic table. The more relevant fact for placement is that lanthanum and actinium (like thorium) have valence f-orbitals that can become occupied in chemical environments, whereas lutetium and lawrencium do not. Thus the relationship between yttrium and lanthanum is only a secondary relationship between elements with the same number of valence electrons but different kinds of valence orbitals, such as that between chromium and uranium; whereas the relationship between yttrium and lutetium is primary, sharing both valence electron count and valence orbital type. In 2015, a IUPAC project chaired by
Eric Scerri Eric R. Scerri is a chemist, writer and philosopher of science of Maltese origin. He is a lecturer at the University of California, Los Angeles; and the founder and editor-in-chief of '' Foundations of Chemistry'', an international peer reviewed ...
was set up to decide the question, giving only Sc-Y-La-Ac and Sc-Y-Lu-Lr as possible resolutions. In 2021, it decided on Sc-Y-Lu-Lr on the basis of three ''desiderata'': displaying all elements in order of increasing atomic number, avoiding a split of the d-block into "two highly uneven portions", and having the blocks follow the widths quantum mechanics demands of them (2, 6, 10, and 14). The Sc-Y-La-Ac form forces a split in the d-block between lanthanum and hafnium (and between actinium and rutherfordium), and the form with blank spaces under yttrium makes the f-block 15 elements wide even though quantum mechanics requires it to be 14 elements wide. While it was noted that 15-element-wide f-blocks are supported by some practitioners of a specialised branch of
relativistic quantum mechanics In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light  ...
focusing on the properties of
superheavy element Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the l ...
s, the project's opinion was that such interest-dependent concerns should not have any bearing on how the periodic table is presented to "the general chemical and scientific community".


Future extension beyond the seventh period

The most recently named elements – nihonium (113), moscovium (115), tennessine (117), and oganesson (118) – completed the seventh row of the periodic table. Future elements would have to begin an eighth row. These elements may be referred to either by their atomic numbers (e.g. "element 119"), or by the IUPAC
systematic element name A systematic element name is the temporary name assigned to an unknown or recently synthesized chemical element. A systematic symbol is also derived from this name. In chemistry, a transuranic element receives a permanent name and symbol only a ...
s which directly relate to the atomic numbers (e.g. "ununennium" for element 119, derived from Latin ''unus'' "one", Greek ''ennea'' "nine", and the traditional ''-ium'' suffix for metallic elements). All attempts to synthesise such elements have failed so far. An attempt to make element 119 has been ongoing since 2018 at the Riken research institute in Japan. The Joint Institute for Nuclear Research in Russia also plans to make its own attempts at synthesising the first few period 8 elements. Currently, discussion continues regarding whether this future eighth period should follow the pattern set by the earlier periods or not, as calculations predict that by this point relativistic effects should result in significant deviations from the Madelung rule. Various different models have been suggested. All agree that the eighth period should begin like the previous ones with two 8s elements, and that there should then follow a new series of g-block elements filling up the orbitals, but the precise configurations calculated for these elements vary widely between sources. Beyond this series, calculations do not agree on what exactly should follow. Filling of the , 6f, 7d, and 8p shells is expected to occur in approximately that order, but they are likely to be intermingled with each other and with the 9s and 9p subshells, so that it is not clear which elements should go in which groups anymore. Scerri has raised the question of whether an extended periodic table should take into account the failure of the Madelung rule in this region, or if such exceptions should be ignored. The shell structure may also be fairly formal at this point: already the electron distribution in an oganesson atom is expected to be rather uniform, with no discernible shell structure. Nuclear stability will likely prove a decisive factor constraining the number of possible elements. It depends on the balance between the electric repulsion between protons and the strong force binding protons and neutrons together. Protons and neutrons are arranged in shells, just like electrons, and so a closed shell can significantly increase stability: the known superheavy nuclei exist because of such a shell closure. They are probably close to a predicted island of stability, where superheavy nuclides should have significantly longer half-lives: predictions range from minutes or days, to millions or billions of years. However, as the number of protons increases beyond about 126, this stabilising effect should vanish as a closed shell is passed. It is not clear if any further-out shell closures exist, due to an expected smearing out of distinct nuclear shells (as is already expected for the electron shells at oganesson). Furthermore, even if later shell closures exist, it is not clear if they would allow such heavy elements to exist.Scerri, p. 386 As such, it may be that the periodic table practically ends around element 120, as elements become too short-lived to observe; the era of discovering new elements would thus be close to its end. Alternatively,
quark matter Quark matter or QCD matter (quantum chromodynamic) refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences ...
may become stable at high mass numbers, in which the nucleus is composed of freely flowing up and
down quark The down quark or d quark (symbol: d) is the second-lightest of all quarks, a type of elementary particle, and a major constituent of matter. Together with the up quark, it forms the neutrons (one up quark, two down quarks) and protons (two up ...
s instead of binding them into protons and neutrons; this would create a continent of stability instead of an island. Other effects may come into play: for example, in very heavy elements the 1s electrons are likely to spend a significant amount of time so close to the nucleus that they are actually inside it, which would make them vulnerable to
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
. Even if eighth-row elements can exist, producing them is likely to be difficult, and it should become even more difficult as atomic number rises. Although the 8s elements are expected to be reachable with present means, the first few elements are expected to require new technology, if they can be produced at all. Experimentally characterising these elements chemically would also pose a great challenge.


Alternative periodic tables

The periodic law may be represented in multiple ways, of which the standard periodic table is only one. Within 100 years of the appearance of Mendeleev's table in 1869, Edward G. Mazurs had collected an estimated 700 different published versions of the periodic table. Many forms retain the rectangular structure, including
Charles Janet Charles Janet (; 15 June 1849 – 7 February 1932) was a French engineer, company director, inventor and biologist. He is also known for his innovative ''left-step'' presentation of the periodic table of chemical elements. Life and work Janet gra ...
's left-step periodic table (pictured below), and the modernised form of Mendeleev's original 8-column layout that is still common in Russia. Other periodic table formats have been shaped much more exotically, such as spirals (
Otto Theodor Benfey Otto Theodor Benfey (born 31 October 1925) is a chemist and historian of science. Sent to England to escape Nazi Germany at age 10, he completed his education as a chemist at University College London before moving to the United States. A Quak ...
's pictured to the right), circles, triangles, and even elephants. Alternative periodic tables are often developed to highlight or emphasize chemical or physical properties of the elements that are not as apparent in traditional periodic tables, with different ones skewed more towards emphasizing chemistry or physics at either end.Scerri, pp. 402–3 The standard form, which remains by far the most common, is somewhere in the middle. The many different forms of the periodic table have prompted the questions of whether there is an optimal or definitive form of the periodic table, and if so, what it might be. There are no current consensus answers to either question. Janet's left-step table is being increasingly discussed as a candidate for being the optimal or most fundamental form; Scerri has written in support of it, as it clarifies helium's nature as an s-block element, increases regularity by having all period lengths repeated, faithfully follows Madelung's rule by making each period correspond to one value of + , and regularises atomic number triads and the first-row anomaly trend. While he notes that its placement of helium atop the alkaline earth metals can be seen a disadvantage from a chemical perspective, he counters this by appealing to the first-row anomaly, pointing out that the periodic table "fundamentally reduces to quantum mechanics", and that it is concerned with "abstract elements" and hence atomic properties rather than macroscopic properties.


Notes


References


Bibliography

* * * * Scerri, Eric R (2020). ''The Periodic Table, Its Story and Its Significance'', 2nd edition, Oxford University Press, New York, .


Further reading

* * * * * * * * * *


External links


Periodic Table
featured topic page on
Science History Institute The Science History Institute is an institution that preserves and promotes understanding of the history of science. Located in Philadelphia, Pennsylvania, it includes a library, museum, archive, research center and conference center. It was f ...
br>Digital Collections
featuring select visual representations of the periodic table of the elements, with an emphasis on alternative layouts including circular, cylindrical, pyramidal, spiral, and triangular forms.
IUPAC Periodic Table of the Elements

Dynamic periodic table
with interactive layouts
Eric Scerri
leading philosopher of science specializing in the history and philosophy of the periodic table
The Internet Database of Periodic Tables



Periodic table of samples

Periodic table of videos

WebElements

The Periodic Graphics of Elements
{{Authority control 1869 works Dmitri Mendeleev Russian inventions Science education materials