HOME

TheInfoList



OR:

Financial economics, also known as finance, is the branch of
economics Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and intera ...
characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on ''both sides'' of a trade".
William F. Sharpe William Forsyth Sharpe (born June 16, 1934) is an American economist. He is the STANCO 25 Professor of Finance, Emeritus at Stanford University's Graduate School of Business, and the winner of the 1990 Nobel Memorial Prize in Economic Sciences. ...

"Financial Economics"
, in
Its concern is thus the interrelation of financial variables, such as share prices,
interest rate An interest rate is the amount of interest due per period, as a proportion of the amount lent, deposited, or borrowed (called the principal sum). The total interest on an amount lent or borrowed depends on the principal sum, the interest rate, th ...
s and exchange rates, as opposed to those concerning the
real economy The real economy concerns the production, purchase and flow of goods and services (like oil, bread and labour) within an economy. It is contrasted with the financial economy, which concerns the aspects of the economy that deal purely in transac ...
. It has two main areas of focus: Merton H. Miller, (1999). The History of Finance: An Eyewitness Account, ''Journal of Portfolio Management''. Summer 1999.
asset pricing In financial economics, asset pricing refers to a formal treatment and development of two main Price, pricing principles, outlined below, together with the resultant models. There have been many models developed for different situations, but cor ...
, commonly known as "Investments", and
corporate finance Corporate finance is the area of finance that deals with the sources of funding, the capital structure of corporations, the actions that managers take to increase the Value investing, value of the firm to the shareholders, and the tools and anal ...
; the first being the perspective of providers of capital, i.e. investors, and the second of users of capital. It thus provides the theoretical underpinning for much of
finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fina ...
. The subject is concerned with "the allocation and deployment of economic resources, both spatially and across time, in an uncertain environment".See Fama and Miller (1972), ''The Theory of Finance'', in Bibliography. It therefore centers on decision making under uncertainty in the context of the financial markets, and the resultant economic and financial models and principles, and is concerned with deriving testable or policy implications from acceptable assumptions. It is built on the foundations of
microeconomics Microeconomics is a branch of mainstream economics that studies the behavior of individuals and firms in making decisions regarding the allocation of scarce resources and the interactions among these individuals and firms. Microeconomics fo ...
and
decision theory Decision theory (or the theory of choice; not to be confused with choice theory) is a branch of applied probability theory concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical ...
.
Financial econometrics Financial econometrics is the application of statistical methods to financial market data. Financial econometrics is a branch of financial economics, in the field of economics. Areas of study include capital markets, financial institutions, corpo ...
is the branch of financial economics that uses
econometric Econometrics is the application of statistical methods to economic data in order to give empirical content to economic relationships. M. Hashem Pesaran (1987). "Econometrics," '' The New Palgrave: A Dictionary of Economics'', v. 2, p. 8 p. 8 ...
techniques to parameterise these relationships.


Underlying economics

Financial economics studies how rational investors would apply
decision theory Decision theory (or the theory of choice; not to be confused with choice theory) is a branch of applied probability theory concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical ...
to
investment management Investment management is the professional asset management of various securities, including shareholdings, bonds, and other assets, such as real estate, to meet specified investment goals for the benefit of investors. Investors may be institut ...
. The subject is thus built on the foundations of
microeconomics Microeconomics is a branch of mainstream economics that studies the behavior of individuals and firms in making decisions regarding the allocation of scarce resources and the interactions among these individuals and firms. Microeconomics fo ...
and derives several key results for the application of
decision making In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be either rati ...
under uncertainty to the
financial market A financial market is a market in which people trade financial securities and derivatives at low transaction costs. Some of the securities include stocks and bonds, raw materials and precious metals, which are known in the financial markets ...
s. The underlying economic logic yields the
Fundamental theorem of asset pricing The fundamental theorems of asset pricing (also: of arbitrage, of finance), in both financial economics and mathematical finance, provide necessary and sufficient conditions for a market to be arbitrage-free, and for a market to be complete. An ...
, which gives the conditions for
arbitrage In economics and finance, arbitrage (, ) is the practice of taking advantage of a difference in prices in two or more markets; striking a combination of matching deals to capitalise on the difference, the profit being the difference between the ...
-free asset pricing.


Present value, expectation and utility

Underlying all of financial economics are the concepts of
present value In economics and finance, present value (PV), also known as present discounted value, is the value of an expected income stream determined as of the date of valuation. The present value is usually less than the future value because money has inte ...
and expectation. Calculating their present value - X_/r - allows the decision maker to aggregate the cashflows (or other returns) to be produced by the asset in the future, to a single value at the date in question, and to thus more readily compare two opportunities; this concept is, therefore, the starting point for financial decision making. An immediate extension is to combine probabilities with present value, leading to the expected value criterion which sets asset value as a function of the sizes of the expected payouts and the probabilities of their occurrence, X_ and p_ respectively. This decision method, however, fails to consider
risk aversion In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more ce ...
("as any student of finance knows"). In other words, since individuals receive greater
utility As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosopher ...
from an extra dollar when they are poor and less utility when comparatively rich, the approach is to therefore "adjust" the weight assigned to the various outcomes ("states") correspondingly, Y_. See
Indifference price In finance, indifference pricing is a method of pricing financial securities with regard to a utility function. The indifference price is also known as the reservation price or private valuation. In particular, the indifference price is the pric ...
. (Some investors may in fact be
risk seeking In accounting, finance, and economics, a risk-seeker or risk-lover is a person who has a preference ''for'' risk. While most investors are considered risk ''averse'', one could view casino-goers as risk-seeking. A common example to explain risk-s ...
as opposed to
risk averse In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more c ...
, but the same logic would apply). Choice under uncertainty here may then be characterized as the maximization of
expected utility The expected utility hypothesis is a popular concept in economics that serves as a reference guide for decisions when the payoff is uncertain. The theory recommends which option rational individuals should choose in a complex situation, based on the ...
. More formally, the resulting
expected utility hypothesis The expected utility hypothesis is a popular concept in economics that serves as a reference guide for decisions when the payoff is uncertain. The theory recommends which option rational individuals should choose in a complex situation, based on the ...
states that, if certain axioms are satisfied, the subjective value associated with a gamble by an individual is ''that individual''s statistical expectation of the valuations of the outcomes of that gamble. The impetus for these ideas arise from various inconsistencies observed under the expected value framework, such as the
St. Petersburg paradox The St. Petersburg paradox or St. Petersburg lottery is a paradox involving the game of flipping a coin where the expected payoff of the theoretical lottery game approaches infinity but nevertheless seems to be worth only a very small amount to t ...
and the
Ellsberg paradox In decision theory, the Ellsberg paradox (or Ellsberg's paradox) is a paradox in which people's decisions are inconsistent with subjective expected utility theory. Daniel Ellsberg popularized the paradox in his 1961 paper, “Risk, Ambiguity, and ...
.


Arbitrage-free pricing and equilibrium

The concepts of
arbitrage In economics and finance, arbitrage (, ) is the practice of taking advantage of a difference in prices in two or more markets; striking a combination of matching deals to capitalise on the difference, the profit being the difference between the ...
-free, "rational", pricing and equilibrium are then coupled with the above to derive "classical"See Rubinstein (2006), under "Bibliography". (or "neo-classical") financial economics.
Rational pricing Rational pricing is the assumption in financial economics that asset prices - and hence asset pricing models - will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is use ...
is the assumption that asset prices (and hence asset pricing models) will reflect the arbitrage-free price of the asset, as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.
Economic equilibrium In economics, economic equilibrium is a situation in which economic forces such as supply and demand are balanced and in the absence of external influences the ( equilibrium) values of economic variables will not change. For example, in the st ...
is, in general, a state in which economic forces such as supply and demand are balanced, and, in the absence of external influences these equilibrium values of economic variables will not change.
General equilibrium In economics, general equilibrium theory attempts to explain the behavior of supply, demand, and prices in a whole economy with several or many interacting markets, by seeking to prove that the interaction of demand and supply will result in an ov ...
deals with the behavior of supply, demand, and prices in a whole economy with several or many interacting markets, by seeking to prove that a set of prices exists that will result in an overall equilibrium. (This is in contrast to partial equilibrium, which only analyzes single markets.) The two concepts are linked as follows: where market prices do not allow for profitable arbitrage, i.e. they comprise an arbitrage-free market, then these prices are also said to constitute an "arbitrage equilibrium". Intuitively, this may be seen by considering that where an arbitrage opportunity does exist, then prices can be expected to change, and are therefore not in equilibrium. An arbitrage equilibrium is thus a precondition for a general economic equilibrium. The immediate, and formal, extension of this idea, the
fundamental theorem of asset pricing The fundamental theorems of asset pricing (also: of arbitrage, of finance), in both financial economics and mathematical finance, provide necessary and sufficient conditions for a market to be arbitrage-free, and for a market to be complete. An ...
, shows that where markets are as described – and are additionally (implicitly and correspondingly)
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
– one may then make financial decisions by constructing a risk neutral probability measure corresponding to the market. "Complete" here means that there is a price for every asset in every possible state of the world, s, and that the complete set of possible bets on future states-of-the-world can therefore be constructed with existing assets (assuming no friction): essentially solving simultaneously for ''n'' (risk-neutral) probabilities, q_, given ''n'' prices. The formal derivation will proceed by arbitrage arguments.Freddy Delbaen and Walter Schachermayer. (2004)
"What is... a Free Lunch?"
(pdf). Notices of the AMS 51 (5): 526–528
For a simplified example see , where the economy has only two possible states – up and down – and where q_ and q_ (=1-q_) are the two corresponding (i.e. implied) probabilities, and in turn, the derived distribution, or "measure". With this measure in place, the expected, i.e. required, return of any security (or portfolio) will then equal the riskless return, plus an "adjustment for risk", i.e. a security-specific
risk premium A risk premium is a measure of excess return that is required by an individual to compensate being subjected to an increased level of risk. It is used widely in finance and economics, the general definition being the expected risky return less t ...
, compensating for the extent to which its cashflows are unpredictable. All pricing models are then essentially variants of this, given specific assumptions or conditions. This approach is consistent with the above, but with the expectation based on "the market" (i.e. arbitrage-free, and, per the theorem, therefore in equilibrium) as opposed to individual preferences. Thus, continuing the example, in pricing a derivative instrument its forecasted cashflows in the up- and down-states, X_ and X_, are multiplied through by q_ and q_, and are then
discounted Discounting is a financial mechanism in which a debtor obtains the right to delay payments to a creditor, for a defined period of time, in exchange for a charge or fee.See "Time Value", "Discount", "Discount Yield", "Compound Interest", "Efficient ...
at the risk-free interest rate; per the second equation above. In pricing a "fundamental", underlying, instrument (in equilibrium), on the other hand, a risk-appropriate premium over risk-free is required in the discounting, essentially employing the first equation with Y and r combined. In general, this may be derived by the
CAPM CAPM may refer to: * Capital asset pricing model, a fundamental model in finance * Certified Associate in Project Management, an entry-level credential for project managers {{Disambig ...
(or extensions) as will be seen under #Uncertainty. The difference is explained as follows: By construction, the value of the derivative will (must) grow at the risk free rate, and, by arbitrage arguments, its value must then be discounted correspondingly; in the case of an option, this is achieved by "manufacturing" the instrument as a combination of the
underlying In finance, a derivative is a contract that ''derives'' its value from the performance of an underlying entity. This underlying entity can be an asset, index, or interest rate, and is often simply called the "underlying". Derivatives can be use ...
and a risk free "bond"; see (and #Uncertainty below). Where the underlying is itself being priced, such "manufacturing" is of course not possible – the instrument being "fundamental", i.e. as opposed to "derivative" – and a premium is then required for risk. (Correspondingly, mathematical finance separates into two analytic regimes: risk and portfolio management (generally) use physical (or actual or actuarial) probability, denoted by "P"; while derivatives pricing uses risk-neutral probability (or arbitrage-pricing probability), denoted by "Q". In specific applications the lower case is used, as in the above equations.)


State prices

With the above relationship established, the further specialized
Arrow–Debreu model In mathematical economics, the Arrow–Debreu model suggests that under certain economic assumptions (convex preferences, perfect competition, and demand independence) there must be a set of prices such that aggregate supplies will equal aggreg ...
may be derived. This result suggests that, under certain economic conditions, there must be a set of prices such that aggregate supplies will equal aggregate demands for every commodity in the economy. The analysis here is often undertaken assuming a ''
representative agent Economists use the term representative agent to refer to the typical decision-maker of a certain type (for example, the typical consumer, or the typical firm). More technically, an economic model is said to have a representative agent if all agen ...
''. The Arrow–Debreu model applies to economies with maximally
complete market In economics, a complete market (aka Arrow-Debreu market or complete system of markets) is a market with two conditions: # Negligible transaction costs and therefore also perfect information, # there is a price for every asset in every possible st ...
s, in which there exists a market for every time period and forward prices for every commodity at all time periods. A direct extension, then, is the concept of a state price security (also called an Arrow–Debreu security), a contract that agrees to pay one unit of a numeraire (a currency or a commodity) if a particular state occurs ("up" and "down" in the simplified example above) at a particular time in the future and pays zero numeraire in all the other states. The price of this security is the ''state price'' \pi_ of this particular state of the world; also referred to as a "Risk Neutral Density". In the above example, the state prices, \pi_, \pi_would equate to the present values of $q_ and $q_: i.e. what one would pay today, respectively, for the up- and down-state securities; the
state price vector In financial economics, a state-price security, also called an Arrow–Debreu security (from its origins in the Arrow–Debreu model), a pure security, or a primitive security is a contract that agrees to pay one unit of a numeraire (a currency or ...
is the vector of state prices for all states. Applied to derivative valuation, the price today would simply be math>\pi_×X_ + \pi_×X_ the fourth formula (see above regarding the absence of a risk premium here). For a
continuous random variable In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon ...
indicating a continuum of possible states, the value is found by integrating over the state price "density". These concepts are extended to
martingale pricing Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options ...
and the related
risk-neutral measure In mathematical finance, a risk-neutral measure (also called an equilibrium measure, or ''equivalent martingale measure'') is a probability measure such that each share price is exactly equal to the discounted expectation of the share price und ...
. State prices find immediate application as a conceptual tool ("
contingent claim analysis In finance, a contingent claim is a derivative whose future payoff depends on the value of another “underlying” asset,Dale F. Gray, Robert C. Merton and Zvi Bodie. (2007). Contingent Claims Approach to Measuring and Managing Sovereign Credit Ri ...
"); but can also be applied to valuation problems.See de Matos, as well as Bossaerts and Ødegaard, under bibliography. Given the pricing mechanism described, one can decompose the derivative value – true in fact for "every security" – as a linear combination of its state-prices; i.e. back-solve for the state-prices corresponding to observed derivative prices. These recovered state-prices can then be used for valuation of other instruments with exposure to the underlyer, or for other decision making relating to the underlyer itself. Using the related stochastic discount factor - also called the pricing kernel - the asset price is computed by "discounting" the future cash flow by the stochastic factor \tilde, and then taking the expectation;See: David K. Backus (2015)
Fundamentals of Asset Pricing
Stern NYU
the third equation above. Essentially, this factor divides expected utility at the relevant future period - a function of the possible asset values realized under each state - by the utility due to today's wealth, and is then also referred to as "the intertemporal
marginal rate of substitution In economics, the marginal rate of substitution (MRS) is the rate at which a consumer can give up some amount of one good in exchange for another good while maintaining the same level of utility. At equilibrium consumption levels (assuming no exte ...
".


Resultant models

Applying the above economic concepts, we may then derive various economic- and financial models and principles. As above, the two usual areas of focus are Asset Pricing and Corporate Finance, the first being the perspective of providers of capital, the second of users of capital. Here, and for (almost) all other financial economics models, the questions addressed are typically framed in terms of "time, uncertainty, options, and information", as will be seen below. * Time: money now is traded for money in the future. * Uncertainty (or risk): The amount of money to be transferred in the future is uncertain. * Options: one party to the transaction can make a decision at a later time that will affect subsequent transfers of money. *
Information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random ...
: knowledge of the future can reduce, or possibly eliminate, the uncertainty associated with future monetary value (FMV). Applying this framework, with the above concepts, leads to the required models. This derivation begins with the assumption of "no uncertainty" and is then expanded to incorporate the other considerations. (This division sometimes denoted "
deterministic Determinism is a philosophical view, where all events are determined completely by previously existing causes. Deterministic theories throughout the history of philosophy have developed from diverse and sometimes overlapping motives and consi ...
" and "random", or "
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
".)


Certainty

The starting point here is "Investment under certainty", and usually framed in the context of a corporation. The
Fisher separation theorem In economics, the Fisher separation theorem asserts that the primary objective of a corporation will be the maximization of its present value, regardless of the preferences of its shareholders. The theorem therefore separates management's "product ...
, asserts that the objective of the corporation will be the maximization of its present value, regardless of the preferences of its shareholders. Related is the
Modigliani–Miller theorem The Modigliani–Miller theorem (of Franco Modigliani, Merton Miller) is an influential element of economic theory; it forms the basis for modern thinking on capital structure. The basic theorem states that in the absence of taxes, bankruptcy costs ...
, which shows that, under certain conditions, the value of a firm is unaffected by how that firm is financed, and depends neither on its dividend policy nor its decision to raise capital by issuing stock or selling debt. The proof here proceeds using arbitrage arguments, and acts as a benchmark for evaluating the effects of factors outside the model that do affect value. The mechanism for determining (corporate) value is provided by ''
The Theory of Investment Value John Burr Williams (November 27, 1900 – September 15, 1989) was an American economist, recognized as an important figure in the field of fundamental analysis, and for his analysis of stock prices as reflecting their " intrinsic value". He is ...
'', which proposes that the value of an asset should be calculated using "evaluation by the rule of present worth". Thus, for a common stock, the "intrinsic", long-term worth is the present value of its future net cashflows, in the form of
dividend A dividend is a distribution of profits by a corporation to its shareholders. When a corporation earns a profit or surplus, it is able to pay a portion of the profit as a dividend to shareholders. Any amount not distributed is taken to be re-in ...
s. What remains to be determined is the appropriate discount rate. Later developments show that, "rationally", i.e. in the formal sense, the appropriate discount rate here will (should) depend on the asset's riskiness relative to the overall market, as opposed to its owners' preferences; see below.
Net present value The net present value (NPV) or net present worth (NPW) applies to a series of cash flows occurring at different times. The present value of a cash flow depends on the interval of time between now and the cash flow. It also depends on the discount ...
(NPV) is the direct extension of these ideas typically applied to Corporate Finance decisioning. For other results, as well as specific models developed here, see the list of "Equity valuation" topics under .
Bond valuation Bond valuation is the determination of the fair price of a bond. As with any security or capital investment, the theoretical fair value of a bond is the present value of the stream of cash flows it is expected to generate. Hence, the value of a ...
, in that cashflows (coupons and return of principal) are deterministic, may proceed in the same fashion.See Luenberger's ''Investment Science'', under Bibliography. An immediate extension, Arbitrage-free bond pricing, discounts each cashflow at the market derived rate – i.e. at each coupon's corresponding zero-rate – as opposed to an overall rate. In many treatments bond valuation precedes
equity valuation In financial markets, stock valuation is the method of calculating theoretical values of companies and their stocks. The main use of these methods is to predict future market prices, or more generally, potential market prices, and thus to profit fr ...
, under which cashflows (dividends) are not "known" ''per se''. Williams and onward allow for forecasting as to these – based on historic ratios or published policy – and cashflows are then treated as essentially deterministic; see below under #Corporate finance theory. These "certainty" results are all commonly employed under corporate finance; uncertainty is the focus of "asset pricing models", as follows. Fisher's formulation of the theory here - developing an intertemporal equilibrium model - underpins also the below applications to uncertainty. See for the development.


Uncertainty

For "choice under uncertainty" the twin assumptions of rationality and
market efficiency The efficient-market hypothesis (EMH) is a hypothesis in financial economics that states that asset prices reflect all available information. A direct implication is that it is impossible to "beat the market" consistently on a risk-adjusted bas ...
, as more closely defined, lead to
modern portfolio theory Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of diversificatio ...
(MPT) with its
capital asset pricing model In finance, the capital asset pricing model (CAPM) is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified portfolio. The model takes into accou ...
(CAPM) – an ''equilibrium-based'' result – and to the Black–Scholes–Merton theory (BSM; often, simply Black–Scholes) for
option pricing In finance, a price (premium) is paid or received for purchasing or selling options. This article discusses the calculation of this premium in general. For further detail, see: for discussion of the mathematics; Financial engineering for the impl ...
– an ''arbitrage-free'' result. As above, the (intuitive) link between these, is that the latter derivative prices are calculated such that they are arbitrage-free with respect to the more fundamental, equilibrium determined, securities prices; see . Briefly, and intuitively – and consistent with #Arbitrage-free pricing and equilibrium above – the relationship between rationality and efficiency is as follows. Given the ability to profit from private information, self-interested traders are motivated to acquire and act on their private information. In doing so, traders contribute to more and more "correct", i.e. ''efficient'', prices: the
efficient-market hypothesis The efficient-market hypothesis (EMH) is a hypothesis in financial economics that states that asset prices reflect all available information. A direct implication is that it is impossible to "beat the market" consistently on a risk-adjusted bas ...
, or EMH. Thus, if prices of financial assets are (broadly) efficient, then deviations from these (equilibrium) values could not last for long. (See
Earnings response coefficient In financial economics, finance, and accounting, the earnings response coefficient, or ERC, is the estimated relationship between equity returns and the unexpected portion of (i.e., new information in) companies' earnings announcements. Developme ...
.) The EMH (implicitly) assumes that average expectations constitute an "optimal forecast", i.e. prices using all available information are identical to the ''best guess of the future'': the assumption of
rational expectations In economics, "rational expectations" are model-consistent expectations, in that agents inside the model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16 ...
. The EMH does allow that when faced with new information, some investors may overreact and some may underreact, but what is required, however, is that investors' reactions follow a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
– so that the net effect on market prices cannot be reliably exploited to make an abnormal profit. In the competitive limit, then, market prices will reflect all available information and prices can only move in response to news: the random walk hypothesis. This news, of course, could be "good" or "bad", minor or, less common, major; and these moves are then, correspondingly, normally distributed; with the price therefore following a log-normal distribution. Under these conditions, investors can then be assumed to act rationally: their investment decision must be calculated or a loss is sure to follow; correspondingly, where an arbitrage opportunity presents itself, then arbitrageurs will exploit it, reinforcing this equilibrium. Here, as under the certainty-case above, the specific assumption as to pricing is that prices are calculated as the present value of expected future dividends, Christopher L. Culp and John H. Cochrane. (2003).
"Equilibrium Asset Pricing and Discount Factors: Overview and Implications for Derivatives Valuation and Risk Management"
, in ''Modern Risk Management: A History''. Peter Field, ed. London: Risk Books, 2003.
as based on currently available information. What is required though, is a theory for determining the appropriate discount rate, i.e. "required return", given this uncertainty: this is provided by the MPT and its CAPM. Relatedly, rationality – in the sense of arbitrage-exploitation – gives rise to Black–Scholes; option values here ultimately consistent with the CAPM. In general, then, while portfolio theory studies how investors should balance risk and return when investing in many assets or securities, the CAPM is more focused, describing how, in equilibrium, markets set the prices of assets in relation to how risky they are. This result will be independent of the investor's level of risk aversion and assumed utility function, thus providing a readily determined discount rate for corporate finance decision makers
as above ''As Above...'' was an album released in 1982 by Þeyr, an Icelandic new wave and rock group. It was issued through the Shout record label on a 12" vinyl record. Consisting of 12 tracks, ''As above...'' contained English versions of the band' ...
, Jensen, Michael C. and Smith, Clifford W., "The Theory of Corporate Finance: A Historical Overview". In: ''The Modern Theory of Corporate Finance'', New York: McGraw-Hill Inc., pp. 2–20, 1984. and for other investors. The argument proceeds as follows: If one can construct an
efficient frontier In modern portfolio theory, the efficient frontier (or portfolio frontier) is an investment portfolio which occupies the "efficient" parts of the risk–return spectrum. Formally, it is the set of portfolios which satisfy the condition that no ...
– i.e. each combination of assets offering the best possible expected level of return for its level of risk, see diagram – then mean-variance efficient portfolios can be formed simply as a combination of holdings of the risk-free asset and the " market portfolio" (the
Mutual fund separation theorem In portfolio theory, a mutual fund separation theorem, mutual fund theorem, or separation theorem is a theorem stating that, under certain conditions, any investor's optimal portfolio can be constructed by holding each of certain mutual funds in ap ...
), with the combinations here plotting as the
capital market line Capital market line (CML) is the tangent line drawn from the point of the risk-free asset to the feasible region for risky assets. The tangency point M represents the market portfolio, so named since all rational investors (minimum variance criteri ...
, or CML. Then, given this CML, the required return on a risky security will be independent of the investor's
utility function As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosopher ...
, and solely determined by its
covariance In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the les ...
("beta") with aggregate, i.e. market, risk. This is because investors here can then maximize utility through leverage as opposed to pricing; see Separation property (finance), and CML diagram aside. As can be seen in the formula aside, this result is consistent with the preceding, equaling the riskless return plus an adjustment for risk. A more modern, direct, derivation is as described at the bottom of this section; which can be generalized to derive other pricing models. Black–Scholes provides a mathematical model of a financial market containing
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
instruments, and the resultant formula for the price of European-styled options. The model is expressed as the Black–Scholes equation, a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
describing the changing price of the option over time; it is derived assuming log-normal,
geometric Brownian motion A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It ...
(see
Brownian model of financial markets The Brownian motion models for financial markets are based on the work of Robert C. Merton and Paul A. Samuelson, as extensions to the one-period market models of Harold Markowitz and William F. Sharpe, and are concerned with defining the concept ...
). The key financial insight behind the model is that one can perfectly hedge the option by buying and selling the underlying asset in just the right way and consequently "eliminate risk", absenting the risk adjustment from the pricing (V, the value, or price, of the option, grows at r, the risk-free rate). This hedge, in turn, implies that there is only one right price – in an arbitrage-free sense – for the option. And this price is returned by the Black–Scholes option pricing formula. (The formula, and hence the price, is consistent with the equation, as the formula is the solution to the equation.) Since the formula is without reference to the share's expected return, Black–Scholes inheres risk neutrality; intuitively consistent with the "elimination of risk" here, and mathematically consistent with #Arbitrage-free pricing and equilibrium above. Relatedly, therefore, the pricing formula may also be derived directly via risk neutral expectation.
Itô's lemma In mathematics, Itô's lemma or Itô's formula (also called the Itô-Doeblin formula, especially in French literature) is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves a ...
provides the underlying mathematics, and, with
Itô calculus Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential equations. The centra ...
more generally, remains fundamental in quantitative finance. As mentioned, it can be shown that the two models are consistent; then, as is to be expected, "classical" financial economics is thus unified. Here, the Black Scholes equation can alternatively be derived from the CAPM, and the price obtained from the Black–Scholes model is thus consistent with the expected return from the CAPM.Don M. Chance (2008)
"Option Prices and Expected Returns"
Emanuel Derman
''A Scientific Approach to CAPM and Options Valuation''
The Black–Scholes theory, although built on Arbitrage-free pricing, is therefore consistent with the equilibrium based capital asset pricing. Both models, in turn, are ultimately consistent with the Arrow–Debreu theory, and can be derived via state-pricing – essentially, by expanding the fundamental result above – further explaining, and if required demonstrating, this unity. Rubinstein, Mark. (2005). "Great Moments in Financial Economics: IV. The Fundamental Theorem (Part I)", ''Journal of Investment Management'', Vol. 3, No. 4, Fourth Quarter 2005; ~ (2006). Part II, Vol. 4, No. 1, First Quarter 2006. See under "External links". Here, the CAPM is derived by linking Y, risk aversion, to overall market return, and setting the return on security j as X_j/Price_j; see . The Black-Scholes formula is found, in the limit, by attaching a
binomial probability In probability theory and statistics, the binomial distribution with parameters ''n'' and ''p'' is the discrete probability distribution of the number of successes in a sequence of ''n'' independent experiments, each asking a yes–no questi ...
to each of numerous possible spot-prices (states) and then rearranging for the terms corresponding to N(d_1) and N(d_2), per the boxed description; see .


Extensions

More recent work further generalizes and extends these models. As regards
asset pricing In financial economics, asset pricing refers to a formal treatment and development of two main Price, pricing principles, outlined below, together with the resultant models. There have been many models developed for different situations, but cor ...
, developments in equilibrium-based pricing are discussed under "Portfolio theory" below, while "Derivative pricing" relates to risk-neutral, i.e. arbitrage-free, pricing. As regards the use of capital, "Corporate finance theory" relates, mainly, to the application of these models.


Portfolio theory

The majority of developments here relate to required return, i.e. pricing, extending the basic CAPM. Multi-factor models such as the
Fama–French three-factor model In asset pricing and portfolio management the Fama–French three-factor model is a statistical model designed in 1992 by Eugene Fama and Kenneth French to describe stock returns. Fama and French were colleagues at the University of Chicago Booth ...
and the
Carhart four-factor model In portfolio management, the Carhart four-factor model is an extra factor addition in the Fama–French three-factor model, proposed by Mark Carhart. The Fama-French model, developed in the 1990, argued most stock market returns are explained ...
, propose factors other than market return as relevant in pricing. The
intertemporal CAPM Within mathematical finance, the Intertemporal Capital Asset Pricing Model, or ICAPM, is an alternative to the CAPM provided by Robert Merton. It is a linear factor model with wealth as state variable that forecast changes in the distribution of ...
and consumption-based CAPM similarly extend the model. With
intertemporal portfolio choice Intertemporal portfolio choice is the process of allocating one's investable wealth to various asset In financial accountancy, financial accounting, an asset is any resource owned or controlled by a business or an economic entity. It is anything ...
, the investor now repeatedly optimizes her portfolio; while the inclusion of consumption (in the economic sense) then incorporates all sources of wealth, and not just market-based investments, into the investor's calculation of required return. Whereas the above extend the CAPM, the
single-index model The single-index model (SIM) is a simple asset pricing model to measure both the risk and the return of a stock. The model has been developed by William Sharpe in 1963 and is commonly used in the finance industry. Mathematically the SIM is exp ...
is a more simple model. It assumes, only, a correlation between security and market returns, without (numerous) other economic assumptions. It is useful in that it simplifies the estimation of correlation between securities, significantly reducing the inputs for building the correlation matrix required for portfolio optimization. The
arbitrage pricing theory In finance, arbitrage pricing theory (APT) is a multi-factor model for asset pricing which relates various macro-economic (systematic) risk variables to the pricing of financial assets. Proposed by economist Stephen Ross in 1976, it is widely beli ...
(APT) similarly differs as regards its assumptions. APT "gives up the notion that there is one right portfolio for everyone in the world, and ...replaces it with an explanatory model of what drives asset returns." It returns the required (expected) return of a financial asset as a linear function of various macro-economic factors, and assumes that arbitrage should bring incorrectly priced assets back into line. As regards
portfolio optimization Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered, according to some objective. The objective typically maximizes factors such as expected return, and minimi ...
, the
Black–Litterman model In finance, the Black–Litterman model is a mathematical model for portfolio allocation developed in 1990 at Goldman Sachs by Fischer Black and Robert Litterman, and published in 1992. It seeks to overcome problems that institutional investors ha ...
departs from the original
Markowitz model In finance, the Markowitz model ─ put forward by Harry Markowitz in 1952 ─ is a portfolio optimization model; it assists in the selection of the most efficient portfolio by analyzing various possible portfolios of the given securities. Here ...
– i.e. of constructing portfolios via an
efficient frontier In modern portfolio theory, the efficient frontier (or portfolio frontier) is an investment portfolio which occupies the "efficient" parts of the risk–return spectrum. Formally, it is the set of portfolios which satisfy the condition that no ...
. Black–Litterman instead starts with an equilibrium assumption, and is then modified to take into account the 'views' (i.e., the specific opinions about asset returns) of the investor in question to arrive at a bespoke asset allocation. Where factors additional to volatility are considered (kurtosis, skew...) then
multiple-criteria decision analysis Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings ...
can be applied; here deriving a
Pareto efficient Pareto efficiency or Pareto optimality is a situation where no action or allocation is available that makes one individual better off without making another worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian civil engin ...
portfolio. The universal portfolio algorithm applies
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
to asset selection, learning adaptively from historical data.
Behavioral portfolio theory Behavioral portfolio theory (BPT), put forth in 2000 by Shefrin and Statman,SHEFRIN, H., AND M. STATMAN (2000): "Behavioral Portfolio Theory," ''Journal of Financial and Quantitative Analysis'', 35(2), 127–151. provides an alternative to the assu ...
recognizes that investors have varied aims and create an investment portfolio that meets a broad range of goals. Copulas have lately been applied here; recently this is the case also for genetic algorithms and Machine learning, more generally. (Tail)
risk parity Risk parity (or risk premia parity) is an approach to investment management which focuses on allocation of risk, usually defined as volatility, rather than allocation of capital. The risk parity approach asserts that when asset allocations are ad ...
focuses on allocation of risk, rather than allocation of capital. See for other techniques and objectives, and for discussion.


Derivative pricing

In pricing derivatives, the
binomial options pricing model In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based) model of the varying price over time of the underlying f ...
provides a discretized version of Black–Scholes, useful for the valuation of American styled options. Discretized models of this type are built – at least implicitly – using state-prices (
as above ''As Above...'' was an album released in 1982 by Þeyr, an Icelandic new wave and rock group. It was issued through the Shout record label on a 12" vinyl record. Consisting of 12 tracks, ''As above...'' contained English versions of the band' ...
); relatedly, a large number of researchers have used options to extract state-prices for a variety of other applications in financial economics.Don M. Chance (2008)
"Option Prices and State Prices"
For path dependent derivatives,
Monte Carlo methods for option pricing In mathematical finance, a Monte Carlo option model uses Monte Carlo methodsAlthough the term 'Monte Carlo method' was coined by Stanislaw Ulam in the 1940s, some trace such methods to the 18th century French naturalist Buffon, and a question he as ...
are employed; here the modelling is in continuous time, but similarly uses risk neutral expected value. Various other numeric techniques have also been developed. The theoretical framework too has been extended such that
martingale pricing Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options ...
is now the standard approach. Drawing on these techniques, models for various other underlyings and applications have also been developed, all based on the same logic (using "
contingent claim analysis In finance, a contingent claim is a derivative whose future payoff depends on the value of another “underlying” asset,Dale F. Gray, Robert C. Merton and Zvi Bodie. (2007). Contingent Claims Approach to Measuring and Managing Sovereign Credit Ri ...
").
Real options valuation Real options valuation, also often termed real options analysis,Adam Borison (Stanford University)''Real Options Analysis: Where are the Emperor's Clothes?'' (ROV or ROA) applies option valuation techniques to capital budgeting decisions.Campbe ...
allows that option holders can influence the option's underlying; models for employee stock option valuation explicitly assume non-rationality on the part of option holders;
Credit derivative In finance, a credit derivative refers to any one of "various instruments and techniques designed to separate and then transfer the ''credit risk''"The Economist ''Passing on the risks'' 2 November 1996 or the risk of an event of default of a cor ...
s allow that payment obligations or delivery requirements might not be honored.
Exotic derivative An exotic derivative, in finance, is a derivative which is more complex than commonly traded "vanilla" products. This complexity usually relates to determination of payoff; see option style. The category may also include derivatives with a non-s ...
s are now routinely valued. Multi-asset underlyers are handled via simulation or copula based analysis. Similarly, the various
short-rate model A short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written r_t \,. The short rate Under a sh ...
s allow for an extension of these techniques to fixed income- and
interest rate derivative In finance, an interest rate derivative (IRD) is a derivative whose payments are determined through calculation techniques where the underlying benchmark product is an interest rate, or set of different interest rates. There are a multitude of diff ...
s. (The Vasicek and CIR models are equilibrium-based, while Ho–Lee and subsequent models are based on arbitrage-free pricing.) The more general HJM Framework describes the dynamics of the full forward-rate curve – as opposed to working with short rates – and is then more widely applied. The valuation of the underlying instrument – additional to its derivatives – is relatedly extended, particularly for hybrid securities, where credit risk is combined with uncertainty re future rates; see and . Following the
Crash of 1987 Black Monday is the name commonly given to the global, sudden, severe, and largely unexpected stock market crash on Monday, October 19, 1987. In Australia and New Zealand, the day is also referred to as ''Black Tuesday'' because of the time z ...
, equity options traded in American markets began to exhibit what is known as a "
volatility smile Volatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given exp ...
"; that is, for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices, and thus implied volatilities, than what is suggested by BSM. (The pattern differs across various markets.) Modelling the volatility smile is an active area of research, and developments here – as well as implications re the standard theory – are discussed in the next section. After the
financial crisis of 2007–2008 Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fi ...
, a further development:Didier Kouokap Youmbi (2017).
Derivatives Pricing after the 2007-2008 Crisis: How the Crisis Changed the Pricing Approach
,
Bank of England The Bank of England is the central bank of the United Kingdom and the model on which most modern central banks have been based. Established in 1694 to act as the English Government's banker, and still one of the bankers for the Government of ...
Prudential Regulation Authority
(
over the counter Over-the-counter (OTC) drugs are medicines sold directly to a consumer without a requirement for a prescription from a healthcare professional, as opposed to prescription drugs, which may be supplied only to consumers possessing a valid prescr ...
) derivative pricing had relied on the BSM risk neutral pricing framework, under the assumptions of funding at the risk free rate and the ability to perfectly replicate cashflows so as to fully hedge. This, in turn, is built on the assumption of a credit-risk-free environment – called into question during the crisis. Addressing this, therefore, issues such as
counterparty credit risk A credit risk is risk of default on a debt that may arise from a borrower failing to make required payments. In the first resort, the risk is that of the lender and includes lost principal and interest, disruption to cash flows, and increased ...
, funding costs and costs of capital are now additionally considered when pricing, and a
credit valuation adjustment Credit valuation adjustments (CVAs) are accounting adjustments made to reserve a portion of profits on uncollateralized financial derivatives. They are charged by a bank to a risky (capable of default) counterparty to compensate the bank for taking ...
, or CVA – and potentially other ''valuation adjustments'', collectively
xVA An X-Value Adjustment (XVA, xVA) is an umbrella term referring to a number of different “valuation adjustments” that banks must make when assessing the value of derivative contracts that they have entered into. The purpose of these is twofold: ...
– is generally added to the risk-neutral derivative value. A related, and perhaps more fundamental change, is that discounting is now on the Overnight Index Swap (OIS) curve, as opposed to
LIBOR The London Inter-Bank Offered Rate is an interest-rate average calculated from estimates submitted by the leading banks in London. Each bank estimates what it would be charged were it to borrow from other banks. The resulting average rate is u ...
as used previously. This is because post-crisis, the
overnight rate The overnight rate is generally the interest rate that large banks use to borrow and lend from one another in the overnight market. In some countries (the United States, for example), the overnight rate may be the rate targeted by the central bank ...
is considered a better proxy for the "risk-free rate". (Also, practically, the interest paid on cash
collateral Collateral may refer to: Business and finance * Collateral (finance), a borrower's pledge of specific property to a lender, to secure repayment of a loan * Marketing collateral, in marketing and sales Arts, entertainment, and media * ''Collate ...
is usually the overnight rate; OIS discounting is then, sometimes, referred to as "
CSA CSA may refer to: Arts and media * Canadian Screen Awards, annual awards given by the Academy of Canadian Cinema & Television * Commission on Superhuman Activities, a fictional American government agency in Marvel Comics * Crime Syndicate of Amer ...
discounting".) Swap pricing – and, therefore,
yield curve In finance, the yield curve is a graph which depicts how the yields on debt instruments - such as bonds - vary as a function of their years remaining to maturity. Typically, the graph's horizontal or x-axis is a time line of months or ye ...
construction – is further modified: previously, swaps were valued off a single "self discounting" interest rate curve; whereas post crisis, to accommodate OIS discounting, valuation is now under a "
multi-curve framework In finance, an interest rate swap (IRS) is an interest rate derivative (IRD). It involves exchange of interest rates between two parties. In particular it is a "linear" IRD and one of the most liquid, benchmark products. It has associations with ...
" where "forecast curves" are constructed for each floating-leg LIBOR tenor, with discounting on the ''common'' OIS curve.


Corporate finance theory

Corporate finance theory has also been extended: mirroring the above developments, asset-valuation and decisioning no longer need assume "certainty".
Monte Carlo methods in finance Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the dist ...
allow financial analysts to construct "
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
" or
probabilistic Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
corporate finance models, as opposed to the traditional static and
deterministic Determinism is a philosophical view, where all events are determined completely by previously existing causes. Deterministic theories throughout the history of philosophy have developed from diverse and sometimes overlapping motives and consi ...
models; see . Relatedly, Real Options theory allows for owner – i.e. managerial – actions that impact underlying value: by incorporating option pricing logic, these actions are then applied to a distribution of future outcomes, changing with time, which then determine the "project's" valuation today. More traditionally,
decision tree A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains condit ...
s – which are complementary – have been used to evaluate projects, by incorporating in the valuation (all) possible events (or states) and consequent management decisions;
Aswath Damodaran Aswath Damodaran (born 24 September 1957), is a Professor of Finance at the Stern School of Business at New York University (Kerschner Family Chair in Finance Education), where he teaches corporate finance and equity valuation. Background Know ...
(2007)
"Probabilistic Approaches: Scenario Analysis, Decision Trees and Simulations"
In ''Strategic Risk Taking: A Framework for Risk Management''. Prentice Hall.
the correct discount rate here reflecting each point's "non-diversifiable risk looking forward." Related to this, is the treatment of forecasted cashflows in
equity valuation In financial markets, stock valuation is the method of calculating theoretical values of companies and their stocks. The main use of these methods is to predict future market prices, or more generally, potential market prices, and thus to profit fr ...
. In many cases, following Williams above, the average (or most likely) cash-flows were discounted, as opposed to a more correct state-by-state treatment under uncertainty; see comments under Financial modeling § Accounting. In more modern treatments, then, it is the ''expected'' cashflows (in the mathematical sense: ) combined into an overall value per forecast period which are discounted. "Capital Budgeting Applications and Pitfalls"
. Ch 13 in
Ivo Welch Ivo Welch, a German-born economist and finance academic. He is the J. Fred Weston Professor of Finance at UCLA Anderson School of Management. He completed his BA in computer science in 1985 at Columbia University, and both his MBA and PhD in f ...
(2017). ''Corporate Finance'': 4th Edition
And using the CAPM – or extensions – the discounting here is at the risk-free rate plus a premium linked to the uncertainty of the entity or project cash flows (essentially, Y and r combined). Other developments here include
agency theory Agency may refer to: Organizations * Institution, governmental or others ** Advertising agency or marketing agency, a service business dedicated to creating, planning and handling advertising for its clients ** Employment agency, a business that s ...
, which analyses the difficulties in motivating corporate management (the "agent") to act in the best interests of shareholders (the "principal"), rather than in their own interests; here emphasizing the issues interrelated with capital structure.
Clean surplus accounting The clean surplus accounting method provides elements of a forecasting model that yields price as a function of earnings, expected returns, and change in book value. Ohlson, J. A. (1995)"Earnings, Book Values and Dividends in Equity Valuation" Con ...
and the related
residual income valuation Residual income valuation (RIV; also, residual income ''model'' and residual income ''method'', RIM) is an approach to equity valuation that formally accounts for the cost of equity capital. Here, "residual" means in excess of any opportunity cos ...
provide a model that returns price as a function of earnings, expected returns, and change in
book value In accounting, book value is the value of an asset according to its balance sheet account balance. For assets, the value is based on the original cost of the asset less any depreciation, amortization or impairment costs made against the asset. Tra ...
, as opposed to dividends. This approach, to some extent, arises due to the implicit contradiction of seeing value as a function of dividends, while also holding that dividend policy cannot influence value per Modigliani and Miller's " Irrelevance principle"; see . "Corporate finance" as a discipline more generally, per Fisher above, relates to the long term objective of maximizing the value of the firm - and its return to shareholders - and thus also incorporates the areas of
capital structure In corporate finance, capital structure refers to the mix of various forms of external funds, known as capital, used to finance a business. It consists of shareholders' equity, debt (borrowed funds), and preferred stock, and is detailed in the ...
and dividend policy. Extensions of the theory here then also consider these latter, as follows: (i) optimization re capitalization structure, and theories here as to corporate choices and behavior:
Capital structure substitution theory In finance, the capital structure substitution theory (CSS) describes the relationship between earnings, stock price and capital structure of public companies. The CSS theory hypothesizes that managements of public companies manipulate capital stru ...
,
Pecking order theory In corporate finance, the pecking order theory (or pecking order model) postulates that the cost of financing increases with asymmetric information. Financing comes from three sources, internal funds, debt and new equity. Companies prioritize their ...
,
Market timing hypothesis The market timing hypothesis is a theory of how firms and corporations in the economy decide whether to finance their investment with equity or with debt instruments. It is one of many such corporate finance theories, and is often contrasted with t ...
, Trade-off theory; (ii) considerations and analysis re dividend policy, additional to - and sometimes contrasting with - Modigliani-Miller, include: the
Walter model Otto Moritz Walter Model (; 24 January 1891 – 21 April 1945) was a German field marshal during World War II. Although he was a hard-driving, aggressive panzer commander early in the war, Model became best known as a practitioner of defen ...
, Lintner model, and Residuals theory, as well as discussion re the observed
clientele effect The clientele effect is the idea that the set of investors attracted to a particular kind of security will affect the price A price is the (usually not negative) quantity of payment or compensation given by one party to another in retur ...
and
dividend puzzle {{More footnotes, date=May 2021 The dividend puzzle is a concept in finance in which companies that pay dividends are rewarded by investors with higher valuations, even though, according to many economists, it should not matter to investors whether ...
. As described, the typical application of real options is to
capital budgeting Capital budgeting in corporate finance is the planning process used to determine whether an organization's long term capital investments such as new machinery, replacement of machinery, new plants, new products, and research development project ...
type problems. However, here, they are also applied to problems of capital structure and dividend policy, and to the related design of corporate securities; Kenneth D. Garbade (2001). ''Pricing Corporate Securities as Contingent Claims.''
MIT Press The MIT Press is a university press affiliated with the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts (United States). It was established in 1962. History The MIT Press traces its origins back to 1926 when MIT publish ...
.
and since stockholder and bondholders have different objective functions, in the analysis of the related agency problems. In all of these cases, state-prices can provide the market-implied information relating to the corporate,
as above ''As Above...'' was an album released in 1982 by Þeyr, an Icelandic new wave and rock group. It was issued through the Shout record label on a 12" vinyl record. Consisting of 12 tracks, ''As above...'' contained English versions of the band' ...
, which is then applied to the analysis. For example,
convertible bond In finance, a convertible bond or convertible note or convertible debt (or a convertible debenture if it has a maturity of greater than 10 years) is a type of bond that the holder can convert into a specified number of shares of common stock in ...
s can (must) be priced consistent with the (recovered) state-prices of the corporate's equity.See Kruschwitz and Löffler under Bibliography.


Challenges and criticism

As above, there is a very close link between (i) the random walk hypothesis, with the associated belief that price changes should follow a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
, on the one hand, and (ii) market efficiency and
rational expectations In economics, "rational expectations" are model-consistent expectations, in that agents inside the model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16 ...
, on the other. Wide departures from these are commonly observed, and there are thus, respectively, two main sets of challenges.


Departures from normality

As discussed, the assumptions that market prices follow a
random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
and that asset returns are normally distributed are fundamental. Empirical evidence, however, suggests that these assumptions may not hold, and that in practice, traders, analysts and risk managers frequently modify the "standard models" (see
Kurtosis risk In statistics and decision theory, kurtosis risk is the risk that results when a statistical model assumes the normal distribution, but is applied to observations that have a tendency to occasionally be much farther (in terms of number of standar ...
,
Skewness risk Skewness risk in financial modeling is the risk that results when observations are not spread symmetrically around an average value, but instead have a skewed distribution. As a result, the mean and the median can be different. Skewness risk ca ...
,
Long tail In statistics and business, a long tail of some probability distribution, distributions of numbers is the portion of the distribution having many occurrences far from the "head" or central part of the distribution. The distribution could involv ...
,
Model risk In finance, model risk is the risk of loss resulting from using insufficiently accurate models to make decisions, originally and frequently in the context of valuing financial securities. However, model risk is more and more prevalent in activitie ...
). In fact,
Benoit Mandelbrot Benoit B. Mandelbrot (20 November 1924 – 14 October 2010) was a Polish-born French-American mathematician and polymath with broad interests in the practical sciences, especially regarding what he labeled as "the art of roughness" of phy ...
had discovered already in the 1960s that changes in financial prices do not follow a
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
, the basis for much option pricing theory, although this observation was slow to find its way into mainstream financial economics.
Financial models with long-tailed distributions and volatility clustering Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fina ...
have been introduced to overcome problems with the realism of the above "classical" financial models; while jump diffusion models allow for (option) pricing incorporating "jumps" in the
spot price In finance, a spot contract, spot transaction, or simply spot, is a contract of buying or selling a commodity, security or currency for immediate settlement (payment and delivery) on the spot date, which is normally two business days after the ...
. Risk managers, similarly, complement (or substitute) the standard
value at risk Value at risk (VaR) is a measure of the risk of loss for investments. It estimates how much a set of investments might lose (with a given probability), given normal market conditions, in a set time period such as a day. VaR is typically used by ...
models with historical simulations,
mixture models In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation ...
,
principal component analysis Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and ...
,
extreme value theory Extreme value theory or extreme value analysis (EVA) is a branch of statistics dealing with the extreme deviations from the median of probability distributions. It seeks to assess, from a given ordered sample of a given random variable, the pr ...
, as well as models for
volatility clustering In finance, volatility clustering refers to the observation, first noted by Mandelbrot (1963), that "large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes." A quantitative manifes ...
. For further discussion see , and . Portfolio managers, likewise, have modified their optimization criteria and algorithms; see #Portfolio theory above. Closely related is the
volatility smile Volatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given exp ...
, where, as above,
implied volatility In financial mathematics, the implied volatility (IV) of an option contract is that value of the volatility of the underlying instrument which, when input in an option pricing model (such as Black–Scholes), will return a theoretical value equ ...
– the volatility corresponding to the BSM price – is observed to ''differ'' as a function of
strike price In finance, the strike price (or exercise price) of an option is a fixed price at which the owner of the option can buy (in the case of a call), or sell (in the case of a put), the underlying security or commodity. The strike price may be set b ...
(i.e.
moneyness In finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the disc ...
), true only if the price-change distribution is non-normal, unlike that assumed by BSM. The term structure of volatility describes how (implied) volatility differs for related options with different maturities. An implied volatility surface is then a three-dimensional surface plot of volatility smile and term structure. These empirical phenomena negate the assumption of constant volatility – and
log-normal In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable is log-normally distributed, then has a normal ...
ity – upon which Black–Scholes is built. Within institutions, the function of Black-Scholes is now, largely, to ''communicate'' prices via implied volatilities, much like bond prices are communicated via YTM; see . In consequence traders ( and risk managers) now, instead, use "smile-consistent" models, firstly, when valuing derivatives not directly mapped to the surface, facilitating the pricing of other, i.e. non-quoted, strike/maturity combinations, or of non-European derivatives, and generally for hedging purposes. The two main approaches are
local volatility A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level S_t and of time t . As such, it is a generalisation of the Black–Sch ...
and
stochastic volatility In statistics, stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. They are used in the field of mathematical finance to evaluate derivative securities, such as options. The name ...
. The first returns the volatility which is "local" to each spot-time point of the finite difference- or simulation-based valuation; i.e. as opposed to implied volatility, which holds overall. In this way calculated prices – and numeric structures – are market-consistent in an arbitrage-free sense. The second approach assumes that the volatility of the underlying price is a stochastic process rather than a constant. Models here are first calibrated to observed prices, and are then applied to the valuation or hedging in question; the most common are
Heston Heston is a suburban area and part of the Hounslow district in the London Borough of Hounslow. The residential settlement covers a slightly smaller area than its predecessor farming village, 10.8 miles (17.4 km) west south-west of Charing ...
,
SABR The Society for American Baseball Research (SABR) is a membership organization dedicated to fostering the research and dissemination of the history and record of baseball primarily through the use of statistics. Established in Cooperstown, New ...
and CEV. This approach addresses certain problems identified with hedging under local volatility. Related to local volatility are the
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
-based implied-binomial and -trinomial trees – essentially a discretization of the approach – which are similarly, but less commonly, used for pricing; these are built on state-prices recovered from the surface.
Edgeworth binomial tree In finance, a lattice model is a technique applied to the valuation of derivatives, where a discrete time model is required. For equity options, a typical example would be pricing an American option, where a decision as to option exercise is ...
s allow for a specified (i.e. non-Gaussian)
skew Skew may refer to: In mathematics * Skew lines, neither parallel nor intersecting. * Skew normal distribution, a probability distribution * Skew field or division ring * Skew-Hermitian matrix * Skew lattice * Skew polygon, whose vertices do not ...
and
kurtosis In probability theory and statistics, kurtosis (from el, κυρτός, ''kyrtos'' or ''kurtos'', meaning "curved, arching") is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Like skewness, kurtosi ...
in the spot price; priced here, options with differing strikes will return differing implied volatilities, and the tree can be calibrated to the smile as required. Similarly purposed (and derived) closed-form models were also developed. As discussed, additional to assuming log-normality in returns, "classical" BSM-type models also (implicitly) assume the existence of a credit-risk-free environment, where one can perfectly replicate cashflows so as to fully hedge, and then discount at "the" risk-free-rate. And therefore, post crisis, the various x-value adjustments must be employed, effectively correcting the risk-neutral value for counterparty- and funding-related risk. These xVA are ''additional'' to any smile or surface effect. This is valid as the surface is built on price data relating to fully collateralized positions, and there is therefore no " double counting" of credit risk (etc.) when appending xVA. (Were this not the case, then each counterparty would have its own surface...) As mentioned at top, mathematical finance (and particularly
financial engineering Financial engineering is a multidisciplinary field involving financial theory, methods of engineering, tools of mathematics and the practice of programming. It has also been defined as the application of technical methods, especially from mathema ...
) is more concerned with mathematical consistency (and market realities) than compatibility with economic theory, and the above "extreme event" approaches, smile-consistent modeling, and valuation adjustments should then be seen in this light. Recognizing this,
James Rickards James G. Rickards is an American lawyer, economist, investment banker, speaker, media commentator, and author on matters of finance and precious metals. He is the author of ''Currency Wars: The Making of the Next Global Crisis'' (2011) and six ot ...
, amongst other critics of financial economics, suggests that, instead, the theory needs revisiting almost entirely: :"The current system, based on the idea that risk is distributed in the shape of a bell curve, is flawed... The problem is hat economists and practitioners never abandon the bell curve. They are like medieval astronomers who believe the sun revolves around the earth and are furiously tweaking their geo-centric math in the face of contrary evidence. They will never get this right; they need their Copernicus."


Departures from rationality

As seen, a common assumption is that financial decision makers act rationally; see
Homo economicus The term ''Homo economicus'', or economic man, is the portrayal of humans as agents who are consistently rational and narrowly self-interested, and who pursue their subjectively defined ends optimally. It is a word play on ''Homo sapiens'', u ...
. Recently, however, researchers in
experimental economics Experimental economics is the application of experimental methods to study economic questions. Data collected in experiments are used to estimate effect size, test the validity of economic theories, and illuminate market mechanisms. Economic expe ...
and
experimental finance The goals of experimental finance are to understand human and market behavior in settings relevant to finance. Experiments are synthetic economic environments created by researchers specifically to answer research questions. This might involve, for ...
have challenged this assumption
empirically In philosophy, empiricism is an epistemological theory that holds that knowledge or justification comes only or primarily from sensory experience. It is one of several views within epistemology, along with rationalism and skepticism. Empiri ...
. These assumptions are also challenged theoretically, by
behavioral finance Behavioral economics studies the effects of psychological, cognitive, emotional, cultural and social factors on the decisions of individuals or institutions, such as how those decisions vary from those implied by classical economic theory. ...
, a discipline primarily concerned with the limits to rationality of economic agents. For related criticisms re corporate finance theory vs its practice see: . Consistent with, and complementary to these findings, various persistent market anomalies have been documented, these being price or return distortions – e.g.
size premium The size premium is the historical tendency for the stocks of firms with smaller market capitalizations to outperform the stocks of firms with larger market capitalizations. It is one of the factors in the Fama–French three-factor model.
s – which appear to contradict the
efficient-market hypothesis The efficient-market hypothesis (EMH) is a hypothesis in financial economics that states that asset prices reflect all available information. A direct implication is that it is impossible to "beat the market" consistently on a risk-adjusted bas ...
;
calendar effect A calendar effect (or calendar anomaly) is any market anomaly, different behaviour of stock markets, or economic effect which appears to be related to the calendar, such as the day of the week, time of the month, time of the year, time within the ...
s are the best known group here. Related to these are various of the economic puzzles, concerning phenomena similarly contradicting the theory. The ''
equity premium puzzle The equity premium puzzle refers to the inability of an important class of economic models to explain the average equity risk premium (ERP) provided by a diversified portfolio of U.S. equities over that of U.S. Treasury Bills, which has been obser ...
'', as one example, arises in that the difference between the observed returns on stocks as compared to government bonds is consistently higher than the
risk premium A risk premium is a measure of excess return that is required by an individual to compensate being subjected to an increased level of risk. It is used widely in finance and economics, the general definition being the expected risky return less t ...
rational equity investors should demand, an " abnormal return". For further context see Random walk hypothesis § A non-random walk hypothesis, and sidebar for specific instances. More generally, and particularly following the
financial crisis of 2007–2008 Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fi ...
, financial economics and
mathematical finance Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets. In general, there exist two separate branches of finance that require ...
have been subjected to deeper criticism; notable here is
Nassim Nicholas Taleb Nassim Nicholas Taleb (; alternatively ''Nessim ''or'' Nissim''; born 12 September 1960) is a Lebanese-American essayist, mathematical statistician, former option trader, risk analyst, and aphorist whose work concerns problems of randomness, ...
, who claims that the prices of financial assets cannot be characterized by the simple models currently in use, rendering much of current practice at best irrelevant, and, at worst, dangerously misleading; see
Black swan theory The black swan theory or theory of black swan events is a metaphor that describes an event that comes as a surprise, has a major effect, and is often inappropriately rationalized after the fact with the benefit of hindsight. The term is based on ...
,
Taleb distribution In economics and finance, a Taleb distribution is the statistical profile of an investment which normally provides a payoff of small positive returns, while carrying a small but significant risk of catastrophic losses. The term was coined by jo ...
. A topic of general interest has thus been
financial crises A financial crisis is any of a broad variety of situations in which some financial assets suddenly lose a large part of their nominal value. In the 19th and early 20th centuries, many financial crises were associated with banking panics, and man ...
, and the failure of (financial) economics to model (and predict) these. A related problem is
systemic risk In finance, systemic risk is the risk of collapse of an entire financial system or entire market, as opposed to the risk associated with any one individual entity, group or component of a system, that can be contained therein without harming the ...
: where companies hold securities in each other then this interconnectedness may entail a "valuation chain" – and the performance of one company, or security, here will impact all, a phenomenon not easily modeled, regardless of whether the individual models are correct. See: Systemic risk § Inadequacy of classic valuation models;
Cascades in financial networks Cascades in financial networks are situations in which the failure of one financial institution causes a cascading failure in another member of the financial network. In an extreme this can cause failure of the whole network in what is known as ...
; Flight-to-quality. Areas of research attempting to explain (or at least model) these phenomena, and crises, include noise trading,
market microstructure Market microstructure is a branch of finance concerned with the details of how exchange occurs in markets. While the theory of market microstructure applies to the exchange of real or financial assets, more evidence is available on the microstructu ...
, and Heterogeneous agent models. The latter is extended to
agent-based computational economics Agent-based computational economics (ACE) is the area of computational economics that studies economic processes, including whole economies, as dynamic systems of interacting agents. As such, it falls in the paradigm of complex adaptive systems. I ...
, where price is treated as an
emergent phenomenon In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
, resulting from the interaction of the various market participants (agents). The
noisy market hypothesis In finance, the noisy market hypothesis contrasts the efficient-market hypothesis in that it claims that the prices of securities are not always the best estimate of the true underlying value of the firm. It argues that prices can be influenced by ...
argues that prices can be influenced by speculators and momentum traders, as well as by insiders and institutions that often buy and sell stocks for reasons unrelated to
fundamental value In finance, the intrinsic value of an asset usually refers to a value calculated on simplified assumptions. For example, the intrinsic value of an option is based on the current market value of the underlying instrument, but ignores the possib ...
; see
Noise (economic) Economic noise, or simply noise, describes a theory of pricing developed by Fischer Black. Black describes noise as the opposite of information: hype, inaccurate ideas, and inaccurate data. His theory states that noise is everywhere in the economy ...
. The
adaptive market hypothesis The adaptive market hypothesis, as proposed by Andrew Lo,Lo, 2004. is an attempt to reconcile economic theories based on the efficient market hypothesis (which implies that markets are efficient) with behavioral economics, by applying the principl ...
is an attempt to reconcile the efficient market hypothesis with behavioral economics, by applying the principles of
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
to financial interactions. An
information cascade An Information cascade or informational cascade is a phenomenon described in behavioral economics and network theory in which a number of people make the same decision in a sequential fashion. It is similar to, but distinct from herd behavior. ...
, alternatively, shows market participants engaging in the same acts as others ("
herd behavior Herd behavior is the behavior of individuals in a group acting collectively without centralized direction. Herd behavior occurs in animals in herds, packs, bird flocks, fish schools and so on, as well as in humans. Voting, demonstrations, rio ...
"), despite contradictions with their private information. Copula-based modelling has similarly been applied. See also
Hyman Minsky Hyman Philip Minsky (September 23, 1919 – October 24, 1996) was an American economist, a professor of economics at Washington University in St. Louis, and a distinguished scholar at the Levy Economics Institute of Bard College. His research att ...
's "financial instability hypothesis", as well as
George Soros George Soros ( name written in eastern order), (born György Schwartz, August 12, 1930) is a Hungarian-American businessman and philanthropist. , he had a net worth of US$8.6 billion, Note that this site is updated daily. having donated mo ...
' approach under § Reflexivity, financial markets, and economic theory. On the obverse, however, various studies have shown that despite these departures from efficiency, asset prices do typically exhibit a random walk and that one cannot therefore consistently outperform market averages, i.e. attain "alpha".
William F. Sharpe William Forsyth Sharpe (born June 16, 1934) is an American economist. He is the STANCO 25 Professor of Finance, Emeritus at Stanford University's Graduate School of Business, and the winner of the 1990 Nobel Memorial Prize in Economic Sciences. ...
(1991)
"The Arithmetic of Active Management"
. ''Financial Analysts Journal'' Vol. 47, No. 1, January/February
The practical implication, therefore, is that
passive investing Passive management (also called passive investing) is an investing strategy that tracks a market-weighted index or portfolio. Passive management is most common on the equity market, where index funds track a stock market index, but it is becoming ...
(e.g. via low-cost
index fund An index fund (also index tracker) is a mutual fund or exchange-traded fund (ETF) designed to follow certain preset rules so that the fund can a specified basket of underlying investments.Reasonable Investor(s), Boston University Law Review, avail ...
s) should, on average, serve better than any other active strategy.
William F. Sharpe William Forsyth Sharpe (born June 16, 1934) is an American economist. He is the STANCO 25 Professor of Finance, Emeritus at Stanford University's Graduate School of Business, and the winner of the 1990 Nobel Memorial Prize in Economic Sciences. ...
(2002)
''Indexed Investing: A Prosaic Way to Beat the Average Investor''
. Presention:
Monterey Institute of International Studies The Middlebury Institute of International Studies at Monterey (MIIS), formerly known as the Monterey Institute of International Studies, is an American graduate school of Middlebury College, a private college in Middlebury, Vermont. Established ...
. Retrieved May 20, 2010.
Burton Malkiel Burton Gordon Malkiel (born August 28, 1932) is an American economist and writer most noted for his classic finance book ''A Random Walk Down Wall Street'' (first published 1973, in its 12th edition as of 2019). He is a leading proponent of the ef ...
's ''
A Random Walk Down Wall Street ''A Random Walk Down Wall Street'', written by Burton Gordon Malkiel, a Princeton University economist, is a book on the subject of stock markets which popularized the random walk hypothesis. Malkiel argues that asset prices typically exhibit s ...
'' – first published in 1973, and in its 12th edition as of 2019 – is a widely read popularization of these arguments. (See also
John C. Bogle John Clifton "Jack" Bogle (May 8, 1929 – January 16, 2019) was an American investor, business magnate, and philanthropist. He was the founder and chief executive of The Vanguard Group, and is credited with creating the index fund. An avid inve ...
's ''
Common Sense on Mutual Funds ''Common Sense on Mutual Funds: New Imperatives for the Intelligent Investor'', written by John Bogle, is a book advising investors about mutual funds, with a focus on the praise of index funds and the importance of having a long-term strategy. O ...
''; but compare
Warren Buffett Warren Edward Buffett ( ; born August 30, 1930) is an American business magnate, investor, and philanthropist. He is currently the chairman and CEO of Berkshire Hathaway. He is one of the most successful investors in the world and has a net w ...
's ''
The Superinvestors of Graham-and-Doddsville "The Superinvestors of Graham-and-Doddsville" is an article by Warren Buffett promoting value investing, published in the Fall, 1984 issue of ''Hermes'', Columbia Business School magazine. It was based on a speech given on May 17, 1984, at the Col ...
''.) Relatedly, institutionally inherent ''
limits to arbitrage Limits to arbitrage is a theory in financial economics that, due to restrictions that are placed on funds that would ordinarily be used by rational traders to arbitrage away pricing inefficiencies, prices may remain in a non-equilibrium state for ...
'' – as opposed to factors directly contradictory to the theory – are sometimes proposed as an explanation for these departures from efficiency.


See also

* :Finance theories * :Financial models * Deutsche Bank Prize in Financial Economics * Economic model * * Financial modeling * Fischer Black Prize * List of financial economics articles * List of financial economists * * Master of Financial Economics * Monetary economics * Outline of economics * Outline of finance


Historical notes


References


Bibliography

Financial economics * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Volume I ; Volume II . * Asset pricing * * * * * * * * * * * * * * Corporate finance * * * * * * * * * * * * *


External links

{{Financial risk Financial economics, Actuarial science