Semi-symmetric Graph
   HOME
*





Semi-symmetric Graph
In the mathematical field of graph theory, a semi-symmetric graph is an undirected graph that is edge-transitive and regular, but not vertex-transitive. In other words, a graph is semi-symmetric if each vertex has the same number of incident edges, and there is a symmetry taking any of the graph's edges to any other of its edges, but there is some pair of vertices such that no symmetry maps the first into the second. Properties A semi-symmetric graph must be bipartite, and its automorphism group must act transitively on each of the two vertex sets of the bipartition (in fact, regularity is not required for this property to hold). For instance, in the diagram of the Folkman graph shown here, green vertices can not be mapped to red ones by any automorphism, but every two vertices of the same color are symmetric with each other. History Semi-symmetric graphs were first studied E. Dauber, a student of F. Harary, in a paper, no longer available, titled "On line- but not point-sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Folkman Graph
Folkman may refer to: People * Jens Christian Folkman Schaanning, a Norwegian politician * Jon Folkman, an American mathematician * Judah Folkman, an American medical scientist * Roy Folkman, an Israeli politician Math * Folkman graph, a type of semi-symmetric graph in graph theory * Folkman's theorem, a theorem in arithmetic combinatorics and Ramsey theory * Shapley–Folkman lemma The Shapley–Folkman lemma is a result in convex geometry that describes the Minkowski addition of sets in a vector space. It is named after mathematicians Lloyd Shapley and Jon Folkman, but was first published by the economist Ross ..., a result in convex geometry {{dab Jewish surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Graph
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. Symmetry In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census.. Many well-known individual graphs are cubic and symmetric, including the utility graph, the Petersen graph, the Heawood graph, the Möbius–Kantor graph, the Pappus graph, the Desargues graph, the Nauru graph, the Coxeter graph, the Tutte–Coxeter graph, the Dyck graph, the Foster graph and the Biggs–Smith graph. W. T. Tutte classified the symmetric cubic graphs by the smallest integer number ''s'' such that each two oriented paths of length ''s'' can be mapped to each other by exactly one symmetry of the graph. He showed that ''s'' is at most 5, and provided examples of graphs with each possible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Graph Theory
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants. Branches of algebraic graph theory Using linear algebra The first branch of algebraic graph theory involves the study of graphs in connection with linear algebra. Especially, it studies the spectrum of the adjacency matrix, or the Laplacian matrix of a graph (this part of algebraic graph theory is also called spectral graph theory). For the Petersen graph, for example, the spectrum of the adjacency matrix is (−2, −2, −2, −2, 1, 1, 1, 1, 1, 3). Several theorems relate properties of the spectrum to other graph properties. As a simple example, a connected graph with diameter ''D'' w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tutte 12-cage
In the mathematical field of graph theory, the Tutte 12-cage or Benson graph is a 3-regular graph with 126 vertices and 189 edges named after W. T. Tutte. The Tutte 12-cage is the unique (3-12)-cage . It was discovered by C. T. Benson in 1966. It has chromatic number 2 ( bipartite), chromatic index 3, girth 12 (as a 12-cage) and diameter 6. Its crossing number is 170 and has been conjectured to be the smallest cubic graph with this crossing number. Construction The Tutte 12-cage is a cubic Hamiltonian graph and can be defined by the LCF notation 7, 27, –13, –59, –35, 35, –11, 13, –53, 53, –27, 21, 57, 11, –21, –57, 59, –17sup>7. There are, up to isomorphism, precisely two generalized hexagons of order ''(2,2)'' as proved by Cohen and Tits. They are the split Cayley hexagon ''H(2)'' and its point-line dual. Clearly both of them have the same incidence graph, which is in fact isomorphic to the Tutte 12-cage. The Balaban 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ljubljana Graph
In the mathematical field of graph theory, the Ljubljana graph is an undirected bipartite graph with 112 vertices and 168 edges. It is a cubic graph with diameter 8, radius 7, chromatic number 2 and chromatic index 3. Its girth is 10 and there are exactly 168 cycles of length 10 in it. There are also 168 cycles of length 12. Construction The Ljubljana graph is Hamiltonian and can be constructed from the LCF notation : [47, -23, -31, 39, 25, -21, -31, -41, 25, 15, 29, -41, -19, 15, -49, 33, 39, -35, -21, 17, -33, 49, 41, 31, -15, -29, 41, 31, -15, -25, 21, 31, -51, -25, 23, 9, -17, 51, 35, -29, 21, -51, -39, 33, -9, -51, 51, -47, -33, 19, 51, -21, 29, 21, -31, -39]2. The Ljubljana graph is the Levi graph of the Ljubljana configuration, a quadrangle-free configuration with 56 lines and 56 points. In this configuration, each line contains exactly 3 points, each point belongs to exactly 3 lines and any two lines intersect in at most one point. Algebraic properties The automorphism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marston Conder
Marston Donald Edward Conder (born 9 September 1955) is a New Zealand mathematician, a Distinguished Professor of Mathematics at Auckland University,Staff directory listing entry
Auckland U. Mathematics, retrieved 22 January 2013.
and the former co-director of the New Zealand Institute of Mathematics and its Applications. His main research interests are in , , and their connections with each other.


Education and career

Conder was born in

Canadian Mathematical Bulletin
The ''Canadian Mathematical Bulletin'' (french: Bulletin Canadien de Mathématiques) is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antonio Lei and Javad Mashreghi. The journal publishes short articles in all areas of mathematics that are of sufficient interest to the general mathematical public. Abstracting and indexing The journal is abstracted in:Abstracting and indexing services
for the Canadian Mathematical Bulletin. * '''' * ''
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dragan Marušič
Dragan Marušič (born 1953, Koper, Slovenia) is a Slovene mathematician. Marušič obtained his BSc in technical mathematics from the University of Ljubljana in 1976, and his PhD from the University of Reading in 1981 under the supervision of Crispin Nash-Williams. Marušič has published extensively, and has supervised seven PhD students (as of 2013). He served as the third rector of the University of Primorska from 2011-2019, a university he lobbied to have established in his home town of Koper. His research focuses on topics in algebraic graph theory, particularly the symmetry of graphs and the action of finite groups on combinatorial objects. He is regarded as the founder of the Slovenian school of research in algebraic graph theory and permutation groups. Education and career From 1968 to 1972 Marušič attended gymnasium in Koper. He studied undergraduate mathematics at the University of Ljubljana, graduating in 1976. He completed his PhD in 1981 in England, at the Unive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gray Graph
Grey (more common in British English) or gray (more common in American English) is an intermediate color between black and white. It is a neutral or achromatic color, meaning literally that it is "without color", because it can be composed of black and white. It is the color of a cloud-covered sky, of ash and of lead. The first recorded use of ''grey'' as a color name in the English language was in 700  CE.Maerz and Paul ''A Dictionary of Color'' New York:1930 McGraw-Hill Page 196 ''Grey'' is the dominant spelling in European and Commonwealth English, while ''gray'' has been the preferred spelling in American English; both spellings are valid in both varieties of English. In Europe and North America, surveys show that grey is the color most commonly associated with neutrality, conformity, boredom, uncertainty, old age, indifference, and modesty. Only one percent of respondents chose it as their favorite color. Etymology ''Grey'' comes from the Middle English or , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jon Folkman
Jon Hal Folkman (December 8, 1938 – January 23, 1969) was an American mathematician, a student of John Milnor, and a researcher at the RAND Corporation. Schooling Folkman was a Putnam Fellow in 1960. He received his Ph.D. in 1964 from Princeton University, under the supervision of Milnor, with a thesis entitled ''Equivariant Maps of Spheres into the Classical Groups''. Research Jon Folkman contributed important theorems in many areas of combinatorics. In geometric combinatorics, Folkman is known for his pioneering and posthumously-published studies of oriented matroids; in particular, the Folkman–Lawrence topological representation theorem is "one of the cornerstones of the theory of oriented matroids". In lattice theory, Folkman solved an open problem on the foundations of combinatorics by proving a conjecture of Gian–Carlo Rota; in proving Rota's conjecture, Folkman characterized the structure of the homology groups of "geometric lattices" in terms of the free ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Group Action
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]