Algebraic
graph theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
is a branch of
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
in which
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
ic methods are applied to problems about
graphs. This is in contrast to
geometric
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
,
combinatoric, or
algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, the use of
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, and the study of
graph invariants
Graph may refer to:
Mathematics
*Graph (discrete mathematics), a structure made of vertices and edges
**Graph theory, the study of such graphs and their properties
* Graph (topology), a topological space resembling a graph in the sense of discre ...
.
Branches of algebraic graph theory
Using linear algebra
The first branch of algebraic graph theory involves the study of graphs in connection with
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
. Especially, it studies the
spectrum
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of the
adjacency matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices ...
, or the
Laplacian matrix
In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix, or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Lap ...
of a graph (this part of algebraic graph theory is also called
spectral graph theory
In mathematics, spectral graph theory is the study of the properties of a Graph (discrete mathematics), graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacen ...
). For the
Petersen graph
In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph i ...
, for example, the spectrum of the adjacency matrix is (−2, −2, −2, −2, 1, 1, 1, 1, 1, 3). Several theorems relate properties of the spectrum to other
graph properties. As a simple example, a
connected graph with
diameter
In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
''D'' will have at least ''D''+1 distinct values in its spectrum.
Aspects of graph spectra have been used in analysing the
synchronizability of
networks
Network, networking and networked may refer to:
Science and technology
* Network theory, the study of graphs as a representation of relations between discrete objects
* Network science, an academic field that studies complex networks
Mathematics
...
.
Using group theory
The second branch of algebraic graph theory involves the study of graphs in connection to
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, particularly
automorphism groups and
geometric group theory
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these group ...
. The focus is placed on various families of graphs based on
symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
(such as
symmetric graphs,
vertex-transitive graph
In the mathematics, mathematical field of graph theory, an Graph automorphism, automorphism is a permutation of the Vertex (graph theory), vertices such that edges are mapped to edges and non-edges are mapped to non-edges. A graph is a vertex-tr ...
s,
edge-transitive graph
In the mathematical field of graph theory, an edge-transitive graph is a graph such that, given any two edges and of , there is an automorphism of that maps to .
In other words, a graph is edge-transitive if its automorphism group acts t ...
s,
distance-transitive graph
In the mathematical field of graph theory, a distance-transitive graph is a graph such that, given any two vertices and at any distance , and any other two vertices and at the same distance, there is an automorphism of the graph that carri ...
s,
distance-regular graphs, and
strongly regular graph
In graph theory, a strongly regular graph (SRG) is a regular graph with vertices and degree such that for some given integers \lambda, \mu \ge 0
* every two adjacent vertices have common neighbours, and
* every two non-adjacent vertices h ...
s), and on the inclusion relationships between these families. Certain of such categories of graphs are sparse enough that
lists of graphs can be drawn up. By
Frucht's theorem
Frucht's theorem is a result in algebraic graph theory, conjectured by Dénes Kőnig in 1936 and mathematical proof, proved by Robert Frucht in 1939. It states that every finite group is the automorphism group, group of symmetries of a finite undir ...
, all
groups can be represented as the automorphism group of a connected graph (indeed, of a
cubic graph).
Another connection with group theory is that, given any group, symmetrical graphs known as
Cayley graph
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a Graph (discrete mathematics), graph that encodes the abstract structure of a group (mathematics), group. Its definition is sug ...
s can be generated, and these have properties related to the structure of the group.

This second branch of algebraic graph theory is related to the first, since the symmetry properties of a graph are reflected in its spectrum. In particular, the spectrum of a highly symmetrical graph, such as the Petersen graph, has few distinct values
(the Petersen graph has 3, which is the minimum possible, given its diameter). For Cayley graphs, the spectrum can be related directly to the structure of the group, in particular to its
irreducible characters.
[*]
Studying graph invariants
Finally, the third branch of algebraic graph theory concerns algebraic properties of
invariants of graphs, and especially the
chromatic polynomial, the
Tutte polynomial and
knot invariants. The chromatic polynomial of a graph, for example, counts the number of its proper
vertex colorings. For the Petersen graph, this polynomial is
.
In particular, this means that the Petersen graph cannot be properly colored with one or two colors, but can be colored in 120 different ways with 3 colors. Much work in this area of algebraic graph theory was motivated by attempts to prove the
four color theorem
In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions shar ...
. However, there are still many
open problems
In science and mathematics, an open problem or an open question is a known problem which can be accurately stated, and which is assumed to have an objective and verifiable solution, but which has not yet been solved (i.e., no solution for it is kno ...
, such as characterizing graphs which have the same chromatic polynomial, and determining which polynomials are chromatic.
See also
*
Spectral graph theory
In mathematics, spectral graph theory is the study of the properties of a Graph (discrete mathematics), graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacen ...
*
Algebraic combinatorics
Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algeb ...
*
Algebraic connectivity
*
Dulmage–Mendelsohn decomposition
In graph theory, the Dulmage–Mendelsohn decomposition is a partition of the vertices of a bipartite graph into subsets, with the property that two adjacent vertices belong to the same subset if and only if they are paired with each other in a per ...
*
Graph property
*
Adjacency matrix
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices ...
References
*.
External links
*
{{Authority control