HOME





Diameter (graph Theory)
In graph theory, the diameter of a connected undirected graph is the farthest distance between any two of its vertices. That is, it is the diameter of a set for the set of vertices of the graph, and for the shortest-path distance in the graph. Diameter may be considered either for weighted or for unweighted graphs. Researchers have studied the problem of computing the diameter, both in arbitrary graphs and in special classes of graphs. The diameter of a disconnected graph may be defined to be infinite, or undefined. Graphs of low diameter The degree diameter problem seeks tight relations between the diameter, number of vertices, and degree of a graph. One way of formulating it is to ask for the largest graph with given bounds on its degree and diameter. For any fixed degree, this maximum size is exponential in diameter, with the base of the exponent depending on the degree. The girth of a graph, the length of its shortest cycle, can be at most 2k+1 for a graph of diameter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fast Matrix Multiplication
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical relevance. Directly applying the mathematical definition of matrix multiplication gives an algorithm that requires field operations to multiply two matrices over that field ( in big O notation). Surprisingly, algorithms exist that provide better running times than this straightforward "schoolbook algorithm". The first to be discovered was Strassen's algorithm, devised by Volker Strassen in 1969 and often referred to as "fast matrix multiplication". The optimal number of field operations needed to multiply two square matrices up to constant factors is still unknown. This is a major open q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph Distance
In the mathematics, mathematical field of graph theory, the distance between two vertex (graph theory), vertices in a Graph (discrete mathematics), graph is the number of edges in a shortest path problem, shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance. Notice that there may be more than one shortest path between two vertices. If there is no Path (graph theory), path connecting the two vertices, i.e., if they belong to different component (graph theory), connected components, then conventionally the distance is defined as infinite. In the case of a directed graph the distance between two vertices and is defined as the length of a shortest directed path from to consisting of arcs, provided at least one such path exists. Notice that, in contrast with the case of undirected graphs, does not necessarily coincide with —so it is just a Metric (mathematics)#Quasimetrics, quasi-metric, and it mig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electronic Journal Of Combinatorics
The ''Electronic Journal of Combinatorics'' is a peer-reviewed open access scientific journal covering research in combinatorial mathematics. The journal was established in 1994 by Herbert Wilf (University of Pennsylvania) and Neil Calkin (Georgia Institute of Technology). The Electronic Journal of Combinatorics is a founding member of the Free Journal Network. According to the ''Journal Citation Reports'', the journal had a 2017 impact factor of 0.762. Editors-in-chief Current The current editors-in-chief at ''Electronic Journal of Combinatorics'' are: * Maria Axenovich, Karlsruhe Institute of Technology, Germany * Miklós Bóna, University of Florida, United States * Julia Böttcher, London School of Economics, United Kingdom * Richard A. Brualdi, University of Wisconsin, Madison, United States * Zdeněk Dvořák, Charles University, Czech Republic * Nikolaos Fountoulakis, University of Birmingham, United Kingdom * Eric Fusy, CNRS/LIX, École Polytechnique, France * Feli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIAM Journal On Computing
The ''SIAM Journal on Computing'' is a scientific journal focusing on the mathematical and formal aspects of computer science. It is published by the Society for Industrial and Applied Mathematics (SIAM). Although its official ISO abbreviation is ''SIAM J. Comput.'', its publisher and contributors frequently use the shorter abbreviation ''SICOMP''. SICOMP typically hosts the special issues of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) and the Annual ACM Symposium on Theory of Computing (STOC), where about 15% of papers published in FOCS and STOC each year are invited to these special issues. For example, Volume 48 contains 11 out of 85 papers published in FOCS 2016. References External linksSIAM Journal on Computing
on

picture info

Cayley Graph
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a Graph (discrete mathematics), graph that encodes the abstract structure of a group (mathematics), group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified generating set of a group, set of generators for the group. It is a central tool in combinatorial group theory, combinatorial and geometric group theory. The structure and symmetry of Cayley graphs make them particularly good candidates for constructing expander graphs. Definition Let G be a group (mathematics), group and S be a generating set of a group, generating set of G. The Cayley graph \Gamma = \Gamma(G,S) is an Edge coloring, edge-colored directed graph constructed as follows: In his Collected Mathematical Papers 10: 403–405. * Each element g of G is assigned a vertex: the vertex set of \Gamma is identified with G. * Each element s of S is assigned a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Diameter (group Theory)
In the area of abstract algebra known as group theory, the diameter of a finite group is a measure of its complexity. Consider a finite group \left(G,\circ\right), and any set of generators . Define D_S to be the graph diameter of the Cayley graph \Lambda=\left(G,S\right). Then the diameter of \left(G,\circ\right) is the largest value of D_S taken over all generating sets . For instance, every finite cyclic group of order , the Cayley graph for a generating set with one generator is an -vertex cycle graph. The diameter of this graph, and of the group, is \lfloor s/2\rfloor. It is conjectured, for all non-abelian finite simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ...s , that : \operatorname(G) \leqslant \left(\log, G, \right)^. Many partial results are known b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triameter (graph Theory)
In Graph theory, graph theory, the triameter is a metric Graph property, invariant that generalizes the concept of a Diameter (graph theory), graph's diameter. It is defined as the maximum sum of pairwise Distance (graph theory), distances between any three Vertex (graph theory), vertices in a Connectivity (graph theory), connected graph G and is denoted by \mathop(G) = \max\, where V is the vertex set of G and d(u,v) is the length of the shortest Path (graph theory), path between Vertex (graph theory), vertices u and v. It extends the idea of the Diameter (graph theory), diameter, which captures the longest Path (graph theory), path between any two of its Vertex (graph theory), vertices. A triametral triple is a Set (mathematics), set of three Vertex (graph theory), vertices achieving \mathop(G). History The parameter of triameter is related to the channel Assignment problem, assignment problem—the problem of assigning Frequency, frequencies to the Transmitter, transmitter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Graph
In graph theory, a planar graph is a graph (discrete mathematics), graph that can be graph embedding, embedded in the plane (geometry), plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with addit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph Minor
In graph theory, an undirected graph is called a minor of the graph if can be formed from by deleting edges, vertices and by contracting edges. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if its minors include neither the complete graph nor the complete bipartite graph ., p. 77; . The Robertson–Seymour theorem implies that an analogous forbidden minor characterization exists for every property of graphs that is preserved by deletions and edge contractions., theorem 4, p. 78; . For every fixed graph , it is possible to test whether is a minor of an input graph in polynomial time; together with the forbidden minor characterization this implies that every graph property preserved by deletions and contractions may be recognized in polynomial time. Other results and conjectures involving graph minors include the graph structure theorem, according to which the graphs that do not have as a minor may be formed by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Median Graph
In graph theory, a division of mathematics, a median graph is an undirected graph in which every three vertex (graph theory), vertices ''a'', ''b'', and ''c'' have a unique ''median'': a vertex ''m''(''a'',''b'',''c'') that belongs to shortest paths between each pair of ''a'', ''b'', and ''c''. The concept of median graphs has long been studied, for instance by or (more explicitly) by , but the first paper to call them "median graphs" appears to be . As Fan Chung, Chung, Ronald Graham, Graham, and Saks write, "median graphs arise naturally in the study of ordered sets and discrete distributive lattices, and have an extensive literature".. In phylogenetics, the Buneman graph representing all maximum parsimony Phylogenetic tree, evolutionary trees is a median graph. Median graphs also arise in social choice theory: if a set of alternatives has the structure of a median graph, it is possible to derive in an unambiguous way a majority preference among them. Additional surveys of m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Treewidth
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests A forest is an ecosystem characterized by a dense community of trees. Hundreds of definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing, and ecological functio .... An example of graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly are called '' -trees'', and the graphs with treewidth at most are called '' partial -trees''. Many other well-studied graph families also have bounded treewidth. Treewidth may be formally defined in several equivalent ways: in terms of the size of the largest vertex set in a tree decomposition of the graph, in terms of the size of the largest clique in a chordal completi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]