HOME
*



picture info

Duhem, Pierre
Pierre Maurice Marie Duhem (; 9 June 1861 – 14 September 1916) was a French theoretical physicist who worked on thermodynamics, hydrodynamics, and the theory of elasticity. Duhem was also a historian of science, noted for his work on the European Middle Ages, which is regarded as having created the field of the history of medieval science. As a philosopher of science, he is remembered principally for his views on the indeterminacy of experimental criteria (see Duhem–Quine thesis). Theoretical physics Among scientists, Duhem is best known today for his work on chemical thermodynamics, and in particular for the Gibbs–Duhem and Duhem–Margules equations. His approach was strongly influenced by the early works of Josiah Willard Gibbs, which Duhem effectively explicated and promoted among French scientists. In continuum mechanics, he is also remembered for his contribution to what is now called the Clausius–Duhem inequality. Duhem was convinced that all physical phen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paris
Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. Since the 17th century, Paris has been one of the world's major centres of finance, diplomacy, commerce, fashion, gastronomy, and science. For its leading role in the arts and sciences, as well as its very early system of street lighting, in the 19th century it became known as "the City of Light". Like London, prior to the Second World War, it was also sometimes called the capital of the world. The City of Paris is the centre of the Île-de-France region, or Paris Region, with an estimated population of 12,262,544 in 2019, or about 19% of the population of France, making the region France's primate city. The Paris Region had a GDP of €739 billion ($743 billion) in 2019, which is the highest in Europe. According to the Economist Intelli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John Worrall (philosopher)
John Worrall (; born 27 November 1946) is a professor of philosophy of science at the London School of Economics. He is also associated with the Centre for Philosophy of Natural and Social Science at the same institution. Education Worrall attended Leigh Grammar School in Leigh, Lancashire and originally planned to join the school's Scholarship Stream in order to then apply for university admission to Oxbridge. He later described his change of mind, saying: "Think ''The History Boys'' – it then meant an additional year in the Sixth Form, and so another year in Leigh and I just couldn't face that!" After receiving a single brief career advice session he instead decided to apply to the London School of Economics "to study mathematical statistics, with a view to being an actuary. (Actuaries apparently having, at any rate then, the highest average salary of all professionals.) So I applied to the LSE for stats, without knowing the first thing about what actuaries do." As a firs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elasticity (physics)
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to ''plasticity'', in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state. For rubbers and other polymers, elasticity is caused by the stretching of polymer chains when forces are applied. Hooke's law states that the force required to deform elastic objects should be directly proportional to the distance of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrodynamics
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions of space and time. Bef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology. Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. Scots-Irish physicist Lord Kelvin was the first to formulate a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physicist
A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate causes of phenomena, and usually frame their understanding in mathematical terms. Physicists work across a wide range of research fields, spanning all length scales: from sub-atomic and particle physics, through biological physics, to cosmological length scales encompassing the universe as a whole. The field generally includes two types of physicists: experimental physicists who specialize in the observation of natural phenomena and the development and analysis of experiments, and theoretical physicists who specialize in mathematical modeling of physical systems to rationalize, explain and predict natural phenomena. Physicists can apply their knowledge towards solving practical problems or to developing new technologies (also known as applie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermodynamic Potential
A thermodynamic potential (or more accurately, a thermodynamic potential energy)ISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.4 Helmholtz energy, Helmholtz functionISO/IEC 80000-5, Quantities an units, Part 5 - Thermodynamics, item 5-20.5, Gibbs energy, Gibbs function is a scalar quantity used to represent the thermodynamic state of a system. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term ''fundamental functions''. One main thermodynamic potential that has a physical interpretation is the internal energy . It is the energy of configuration of a given system of conservative forces (that is why it is called potential) and only has meaning with respect to a defined set of references (or data). Expressions for all other thermodynamic energy potentials are derivable via Legendre transforms from an expression for . In thermodynamics, external forces, such as gravity, are c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Confirmation Holism
In philosophy of science, confirmation holism, also called epistemological holism, is the view that no individual statement can be confirmed or disconfirmed by an empirical test, but rather that only a set of statements (a whole theory) can be so. It is attributed to Willard Van Orman Quine who motivated his holism through extending Pierre Duhem's problem of underdetermination in physical theory to all knowledge claims.W. V. O. Quine. 'Two Dogmas of Empiricism.' ''The Philosophical Review'', 60 (1951), pp. 20–43online text/ref> Duhem's idea was, roughly, that no theory of any type can be tested in isolation but only when embedded in a background of other hypotheses, e.g. hypotheses about initial conditions. Quine thought that this background involved not only such hypotheses but also our whole web of belief, which, among other things, includes our mathematical and logical theories and our scientific theories. This last claim is sometimes known as the Duhem–Quine thesis. A relat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duhem–Quine Thesis
The Duhem–Quine thesis, also called the Duhem–Quine problem, after Pierre Duhem and Willard Van Orman Quine, is that in science it is impossible to experimentally test a scientific hypothesis in isolation, because an empirical test of the hypothesis requires one or more background assumptions (also called ''auxiliary assumptions'' or ''auxiliary hypotheses''): the thesis says that unambiguous scientific falsifications are impossible.: "The physicist can never subject an isolated hypothesis to experimental test, but only a whole group of hypotheses" (Duhem)... "Duhem denies that unambiguous falsification procedures do exist in science." In recent decades the set of associated assumptions supporting a thesis sometimes is called a ''bundle of hypotheses''. Although a bundle of hypotheses (i.e. a hypothesis and its background assumptions) ''as a whole'' can be tested against the empirical world and be falsified if it fails the test, the Duhem–Quine thesis says it is impossible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Duhem–Margules Equation
The Duhem–Margules equation, named for Pierre Duhem and Max Margules, is a thermodynamic statement of the relationship between the two components of a single liquid where the vapour mixture is regarded as an ideal gas: : \left ( \frac \right )_ = \left ( \frac \right )_ where ''P''A and ''P''B are the partial vapour pressures of the two constituents and ''xA'' and ''xB'' are the mole fractions of the liquid. The equation gives the relation between changes in mole fraction and partial pressure of the components. Derivation Let us consider a binary liquid mixture of two component in equilibrium with their vapor at constant temperature and pressure. Then from the Gibbs–Duhem equation In thermodynamics, the Gibbs–Duhem equation describes the relationship between changes in chemical potential for components in a thermodynamic system: :\sum_^I N_i \mathrm\mu_i = - S \mathrmT + V \mathrmp where N_i is the number of moles of com ..., we have Where ''nA'' and ''nB'' are num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gibbs–Duhem Equation
In thermodynamics, the Gibbs–Duhem equation describes the relationship between changes in chemical potential for components in a thermodynamic system: :\sum_^I N_i \mathrm\mu_i = - S \mathrmT + V \mathrmp where N_i is the number of moles of component i, \mathrm\mu_i the infinitesimal increase in chemical potential for this component, S the entropy, T the absolute temperature, V volume and p the pressure. I is the number of different components in the system. This equation shows that in thermodynamics intensive properties are not independent but related, making it a mathematical statement of the state postulate. When pressure and temperature are variable, only I-1 of I components have independent values for chemical potential and Gibbs' phase rule follows. The Gibbs−Duhem equation cannot be used for small thermodynamic systems due to the influence of surface effects and other microscopic phenomena. The equation is named after Josiah Willard Gibbs and Pierre Duhem. Derivation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clausius–Duhem Inequality
The Clausius–Duhem inequality is a way of expressing the second law of thermodynamics that is used in continuum mechanics. This inequality is particularly useful in determining whether the constitutive relation of a material is thermodynamically allowable.. This inequality is a statement concerning the irreversibility of natural processes, especially when energy dissipation is involved. It was named after the German physicist Rudolf Clausius and French physicist Pierre Duhem. Clausius–Duhem inequality in terms of the specific entropy The Clausius–Duhem inequality can be expressed in integral form as : \frac\left(\int_\Omega \rho \eta \, dV\right) \ge \int_ \rho \eta \left(u_n - \mathbf\cdot\mathbf\right) dA - \int_ \frac~ dA + \int_\Omega \frac~dV. In this equation t is the time, \Omega represents a body and the integration is over the volume of the body, \partial \Omega represents the surface of the body, \rho is the mass density of the body, \eta is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]