HOME

TheInfoList



OR:

Newton's laws of motion are three basic laws of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
that describe the relationship between the motion of an object and the
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
s acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon by a force. # When a body is acted upon by a force, the time rate of change of its
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
equals the force. # If two bodies exert forces on each other, these forces have the same magnitude but opposite directions. The three laws of motion were first stated by
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the g ...
in his '' Philosophiæ Naturalis Principia Mathematica'' (''Mathematical Principles of Natural Philosophy''), originally published in 1687. Newton used them to investigate and explain the motion of many physical objects and systems, which laid the foundation for classical mechanics. In the time since Newton, the conceptual content of classical physics has been reformulated in alternative ways, involving different mathematical approaches that have yielded insights which were obscured in the original, Newtonian formulation. Limitations to Newton's laws have also been discovered; new theories are necessary when objects move at very high speeds (
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
), are very massive (
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
), or are very small (
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
).


Prerequisites

Newton's laws are often stated in terms of ''point'' or ''particle'' masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each. For instance, the Earth and the Sun can both be approximated as pointlike when considering the orbit of the former around the latter, but the Earth is not pointlike when considering activities on its surface. The mathematical description of motion, or kinematics, is based on the idea of specifying positions using numerical coordinates. Movement is represented by these numbers changing over time: a body's trajectory is represented by a function that assigns to each value of a time variable the values of all the position coordinates. The simplest case is one-dimensional, that is, when a body is constrained to move only along a straight line. Its position can then be given by a single number, indicating where it is relative to some chosen reference point. For example, a body might be free to slide along a track that runs left to right, and so its location can be specified by its distance from a convenient zero point, or
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
, with negative numbers indicating positions to the left and positive numbers indicating positions to the right. If the body's location as a function of time is s(t), then its average velocity over the time interval from t_0 to t_1 is \frac = \frac.Here, the Greek letter \Delta ( delta) is used, per tradition, to mean "change in". A positive average velocity means that the position coordinate s increases over the interval in question, a negative average velocity indicates a net decrease over that interval, and an average velocity of zero means that the body ends the time interval in the same place as it began.
Calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
gives the means to define an ''instantaneous'' velocity, a measure of a body's speed and direction of movement at a single moment of time, rather than over an interval. One notation for the instantaneous velocity is to replace \Delta with the symbol d, for example,v = \frac.This denotes that the instantaneous velocity is the
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
of the position with respect to time. It can roughly be thought of as the ratio between an infinitesimally small change in position ds to the infinitesimally small time interval dt over which it occurs. More carefully, the velocity and all other derivatives can be defined using the concept of a
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
. A function f(t) has a limit of L at a given input value t_0 if the difference between f and L can be made arbitrarily small by choosing an input sufficiently close to t_0. One writes, \lim_ f(t) = L.Instantaneous velocity can be defined as the limit of the average velocity as the time interval shrinks to zero:\frac = \lim_ \frac. ''Acceleration'' is to velocity as velocity is to position: it is the derivative of the velocity with respect to time. Acceleration can likewise be defined as a limit:a = \frac = \lim_\frac.Consequently, the acceleration is the ''second derivative'' of position, often written \frac. Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to describe motion in two, three or more dimensions. Vectors are often denoted with an arrow, as in \vec, or in bold typeface, such as . Often, vectors are represented visually as arrows, with the direction of the vector being the direction of the arrow, and the magnitude of the vector indicated by the length of the arrow. Numerically, a vector can be represented as a list; for example, a body's velocity vector might be \vec = (\mathrm, \mathrm), indicating that it is moving at 3 metres per second along a horizontal axis and 4 metres per second along the vertical axis. The same motion described in a different coordinate system will be represented by different numbers, and vector algebra can be used to translate between these alternatives. The physics concept of ''force'' makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.


Laws


First

Translated from the Latin, Newton's first law reads, :''Every body continues in its state of rest, or of uniform motion in a straight line, unless it is compelled to change that state by forces impressed upon it.'' Newton's first law expresses the principle of
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law o ...
: the natural behavior of a body is to move in a straight line at constant speed. In the absence of outside influences, a body's motion preserves the status quo. The modern understanding of Newton's first law is that no inertial observer is privileged over any other. The concept of an inertial observer makes quantitative the everyday idea of feeling no effects of motion. For example, a person standing on the ground watching a train go past is an inertial observer. If the observer on the ground sees the train moving smoothly in a straight line at a constant speed, then a passenger sitting on the train will also be an inertial observer: the train passenger ''feels'' no motion. The principle expressed by Newton's first law is that there is no way to say which inertial observer is "really" moving and which is "really" standing still. One observer's state of rest is another observer's state of uniform motion in a straight line, and no experiment can deem either point of view to be correct or incorrect. There is no absolute standard of rest.


Second

:''The change of motion of an object is proportional to the force impressed; and is made in the direction of the straight line in which the force is impressed.'' By "motion", Newton meant the quantity now called
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
, which depends upon the amount of matter contained in a body, the speed at which that body is moving, and the direction in which it is moving. In modern notation, the momentum of a body is the product of its mass and its velocity: \vec = m\vec \, . Newton's second law, in modern form, states that the time derivative of the momentum is the force: \vec = \frac \, . If the mass m does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: \vec = m\vec \, . As the acceleration is the second derivative of position with respect to time, this can also be written \vec = m\frac \vec\, . The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium. A state of mechanical equilibrium is ''stable'' if, when the position of the body is changed slightly, the body remains near that equilibrium. Otherwise, the equilibrium is ''unstable.'' A common visual representation of forces acting in concert is the free body diagram, which schematically portrays a body of interest and the forces applied to it by outside influences. For example, a free body diagram of a block sitting upon an
inclined plane An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle from the vertical direction, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six cla ...
can illustrate the combination of gravitational force, "normal" force, friction, and string tension. Newton's second law is sometimes presented as a ''definition'' of force, i.e., a force is that which exists when an inertial observer sees a body accelerating. In order for this to be more than a tautology — acceleration implies force, force implies acceleration — some other statement about force must also be made. For example, an equation detailing the force might be specified, like Newton's law of universal gravitation. By inserting such an expression for \vec into Newton's second law, an equation with predictive power can be written. Newton's second law has also been regarded as setting out a research program for physics, establishing that important goals of the subject are to identify the forces present in nature and to catalogue the constituents of matter.


Third

:''To every action, there is always opposed an equal reaction; or, the mutual actions of two bodies upon each other are always equal, and directed to contrary parts.'' Overly brief paraphrases of the third law, like "action equals reaction" might have caused confusion among generations of students: the "action" and "reaction" apply to different bodies. For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is ''not'' the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. Newton's third law relates to a more fundamental principle, the conservation of momentum. The latter remains true even in cases where Newton's statement does not, for instance when force fields as well as material bodies carry momentum, and when momentum is defined properly, in
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
as well. In Newtonian mechanics, if two bodies have momenta \vec_1 and \vec_2 respectively, then the total momentum of the pair is \vec = \vec_1 + \vec_2, and the rate of change of \vec is \frac = \frac + \frac. By Newton's second law, the first term is the total force upon the first body, and the second term is the total force upon the second body. If the two bodies are isolated from outside influences, the only force upon the first body can be that from the second, and vice versa. By Newton's third law, these forces have equal magnitude but opposite direction, so they cancel when added, and \vec is constant. Alternatively, if \vec is known to be constant, it follows that the forces have equal magnitude and opposite direction.


Candidates for additional laws

Various sources have proposed elevating other ideas used in classical mechanics to the status of Newton's laws. For example, in Newtonian mechanics, the total mass of a body made by bringing together two smaller bodies is the sum of their individual masses. Frank Wilczek has suggested calling attention to this assumption by designating it "Newton's Zeroth Law". Another candidate for a "zeroth law" is the fact that at any instant, a body reacts to the forces applied to it at that instant. Likewise, the idea that forces add like vectors (or in other words obey the
superposition principle The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So th ...
), and the idea that forces change the energy of a body, have both been described as a "fourth law".


Work and energy

Physicists developed the concept of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
after Newton's time, but it has become an inseparable part of what is considered "Newtonian" physics. Energy can broadly be classified into kinetic, due to a body's motion, and potential, due to a body's position relative to others.
Thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, ...
, the energy carried by heat flow, is a type of kinetic energy not associated with the macroscopic motion of objects but instead with the movements of the atoms and molecules of which they are made. According to the
work-energy theorem In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force stre ...
, when a force acts upon a body while that body moves along the line of the force, the force does ''work'' upon the body, and the amount of work done is equal to the change in the body's kinetic energy. In many cases of interest, the net work done by a force when a body moves in a closed loop — starting at a point, moving along some trajectory, and returning to the initial point — is zero. If this is the case, then the force can be written in terms of the
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
of a function called a scalar potential: \vec = -\vecU \, . This is true for many forces including that of gravity, but not for friction; indeed, almost any problem in a mechanics textbook that does not involve friction can be expressed in this way. The fact that the force can be written in this way can be understood from the conservation of energy. Without friction to dissipate a body's energy into heat, the body's energy will trade between potential and (non-thermal) kinetic forms while the total amount remains constant. Any gain of kinetic energy, which occurs when the net force on the body accelerates it to a higher speed, must be accompanied by a loss of potential energy. So, the net force upon the body is determined by the manner in which the potential energy decreases.


Examples


Uniformly accelerated motion

If a body falls from rest near the surface of the Earth, then in the absence of air resistance, it will accelerate at a constant rate. This is known as free fall. The speed attained during free fall is proportional to the elapsed time, and the distance traveled is proportional to the square of the elapsed time. Importantly, the acceleration is the same for all bodies, independently of their mass. This follows from combining Newton's second law of motion with his law of universal gravitation. The latter states that the magnitude of the gravitational force from the Earth upon the body is F = \frac , where m is the mass of the falling body, M is the mass of the Earth, G is Newton's constant, and r is the distance from the center of the Earth to the body's location, which is very nearly the radius of the Earth. Setting this equal to ma, the body's mass m cancels from both sides of the equation, leaving an acceleration that depends upon G, M, and r, and r can be taken to be constant. This particular value of acceleration is typically denoted g: g = \frac \approx \mathrm. If the body is not released from rest but instead launched upwards and/or horizontally with nonzero velocity, then free fall becomes projectile motion. When air resistance can be neglected, projectiles follow
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descri ...
-shaped trajectories, because gravity affects the body's vertical motion and not its horizontal. At the peak of the projectile's trajectory, its vertical velocity is zero, but its acceleration is g downwards, as it is at all times. Setting the wrong vector equal to zero is a common confusion among physics students.


Uniform circular motion

When a body is in uniform circular motion, the force on it changes the direction of its motion but not its speed. For a body moving in a circle of radius r at a constant speed v, its acceleration has a magnitudea = \fracand is directed toward the center of the circle. The force required to sustain this acceleration, called the centripetal force, is therefore also directed toward the center of the circle and has magnitude mv^2/r. Many
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such a ...
s, such as that of the Moon around the Earth, can be approximated by uniform circular motion. In such cases, the centripetal force is gravity, and by Newton's law of universal gravitation has magnitude GMm/r^2, where M is the mass of the larger body being orbited. Therefore, the mass of a body can be calculated from observations of another body orbiting around it. Newton's cannonball is a
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anci ...
that interpolates between projectile motion and uniform circular motion. A cannonball that is lobbed weakly off the edge of a tall cliff will hit the ground in the same amount of time as if it were dropped from rest, because the force of gravity only affects the cannonball's momentum in the downward direction, and its effect is not diminished by horizontal movement. If the cannonball is launched with a greater initial horizontal velocity, then it will travel farther before it hits the ground, but it will still hit the ground in the same amount of time. However, if the cannonball is launched with an even larger initial velocity, then the curvature of the Earth becomes significant: the ground itself will curve away from the falling cannonball. A very fast cannonball will fall away from the inertial straight-line trajectory at the same rate that the Earth curves away beneath it; in other words, it will be in orbit (imagining that it is not slowed by air resistance or obstacles).


Harmonic motion

Consider a body of mass m able to move along the x axis, and suppose an equilibrium point exists at the position x = 0. That is, at x = 0, the net force upon the body is the zero vector, and by Newton's second law, the body will not accelerate. If the force upon the body is proportional to the displacement from the equilibrium point, and directed to the equilibrium point, then the body will perform simple harmonic motion. Writing the force as F = -kx, Newton's second law becomes m\frac = -kx \, . This differential equation has the solution x(t) = A \cos \omega t + B \sin \omega t \, where the frequency \omega is equal to \sqrt, and the constants A and B can be calculated knowing, for example, the position and velocity the body has at a given time, like t = 0. One reason that the harmonic oscillator is a conceptually important example is that it is good approximation for many systems near a stable mechanical equilibrium. For example, a
pendulum A pendulum is a weight suspended from a wikt:pivot, pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, Mechanical equilibrium, equilibrium position, it is subject to a restoring force due to gravity that ...
has a stable equilibrium in the vertical position: if motionless there, it will remain there, and if pushed slightly, it will swing back and forth. Neglecting air resistance and friction in the pivot, the force upon the pendulum is gravity, and Newton's second law becomes \frac = -\frac \sin\theta,where L is the length of the pendulum and \theta is its angle from the vertical. When the angle \theta is small, the sine of \theta is nearly equal to \theta (see Taylor series), and so this expression simplifies to the equation for a simple harmonic oscillator with frequency \omega = \sqrt. A harmonic oscillator can be ''damped,'' often by friction or viscous drag, in which case energy bleeds out of the oscillator and the amplitude of the oscillations decreases over time. Also, a harmonic oscillator can be ''driven'' by an applied force, which can lead to the phenomenon of resonance.


Objects with variable mass

Newtonian physics treats matter as being neither created nor destroyed, though it may be rearranged. It can be the case that an object of interest gains or loses mass because matter is added to or removed from it. In such a situation, Newton's laws can be applied to the individual pieces of matter, keeping track of which pieces belong to the object of interest over time. For instance, if a rocket of mass M(t), moving at velocity \vec(t), ejects matter at a velocity \vec relative to the rocket, then \vec = M \frac - \vec \frac \, where \vec is the net external force (e.g., a planet's gravitational pull).


Rigid-body motion and rotation

A rigid body is an object whose size is too large to neglect and which maintains the same shape over time. In Newtonian mechanics, the motion of a rigid body is often understood by separating it into movement of the body's center of mass and movement around the center of mass.


Center of mass

Significant aspects of the motion of an extended body can be understood by imagining the mass of that body concentrated to a single point, known as the center of mass. The location of a body's center of mass depends upon how that body's material is distributed. For a collection of pointlike objects with masses m_1, \ldots, m_N at positions \vec_1, \ldots, \vec_N, the center of mass is located at \vec = \sum_^N \frac, where M is the total mass of the collection. In the absence of a net external force, the center of mass moves at a constant speed in a straight line. This applies, for example, to a collision between two bodies. If the total external force is not zero, then the center of mass changes velocity as though it were a point body of mass M. This follows from the fact that the internal forces within the collection, the forces that the objects exert upon each other, occur in balanced pairs by Newton's third law. In a system of two bodies with one much more massive than the other, the center of mass will approximately coincide with the location of the more massive body.


Rotational analogues of Newton's laws

When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed sy ...
, and the counterpart of force is
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of t ...
. Angular momentum is calculated with respect to a reference point. If the displacement vector from a reference point to a body is \vec and the body has momentum \vec, then the body's angular momentum with respect to that point is, using the vector
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and i ...
, \vec = \vec \times \vec. Taking the time derivative of the angular momentum gives \frac = \left(\frac\right) \times \vec + \vec \times \frac = \vec \times m\vec + \vec \times \vec. The first term vanishes because \vec and m\vec point in the same direction. The remaining term is the torque, \vec = \vec \times \vec. When the torque is zero, the angular momentum is constant, just as when the force is zero, the momentum is constant. The torque can vanish even when the force is non-zero, if the body is located at the reference point (\vec = 0) or if the force \vec and the displacement vector \vec are directed along the same line. The angular momentum of a collection of point masses, and thus of an extended body, is found by adding the contributions from each of the points. This provides a means to characterize a body's rotation about an axis, by adding up the angular momenta of its individual pieces. The result depends on the chosen axis, the shape of the body, and the rate of rotation.


Multi-body gravitational system

Newton's law of universal gravitation states that any body attracts any other body along the straight line connecting them. The size of the attracting force is proportional to the product of their masses, and inversely proportional to the square of the distance between them. Finding the shape of the orbits that an inverse-square force law will produce is known as the Kepler problem. The Kepler problem can be solved in multiple ways, including by demonstrating that the Laplace–Runge–Lenz vector is constant, or by applying a duality transformation to a 2-dimensional harmonic oscillator. However it is solved, the result is that orbits will be
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a ...
s, that is, ellipses (including circles),
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descri ...
s, or hyperbolas. The eccentricity of the orbit, and thus the type of conic section, is determined by the energy and the angular momentum of the orbiting body. Planets do not have sufficient energy to escape the Sun, and so their orbits are ellipses, to a good approximation; because the planets pull on one another, actual orbits are not exactly conic sections. If a third mass is added, the Kepler problem becomes the three-body problem, which in general has no exact solution in closed form. That is, there is no way to start from the differential equations implied by Newton's laws and, after a finite sequence of standard mathematical operations, obtain equations that express the three bodies' motions over time. Numerical methods can be applied