HOME
        TheInfoList






Assorted discrete transistors. Packages in order from top to bottom: TO-3, TO-126, TO-92, SOT-23.
Metal-oxide-semiconductor field-effect transistor (MOSFET), showing gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Austro-Hungarian physicist Julius Edgar Lilienfeld proposed the concept of a field-effect transistor in 1926, but it was not possible to actually construct a working device at that time.[1] The first working device to be built was a point-contact transistor invented in 1947 by American physicists John Bardeen and Walter Brattain while working under William Shockley at Bell Labs. The three shared the 1956 Nobel Prize in Physics for their achievement.[2] The most widely used transistor is the MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor, which was invented by Mohamed Atalla with Dawon Kahng at Bell Labs in 1959.[3][4][5] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[6]

Transistors revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The first transistor and the MOSFET are on the list of IEEE milestones in electronics.[7][8] The MOSFET is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems.[9] An estimated total of 13 sextillion MOSFETs have been manufactured between 1960 and 2018 (at least 99.9% of all transistors), making the MOSFET the semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Austro-Hungarian physicist Julius Edgar Lilienfeld proposed the concept of a field-effect transistor in 1926, but it was not possible to actually construct a working device at that time.[1] The first working device to be built was a point-contact transistor invented in 1947 by American physicists John Bardeen and Walter Brattain while working under William Shockley at Bell Labs. The three shared the 1956 Nobel Prize in Physics for their achievement.[2] The most widely used transistor is the MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor, which was invented by Mohamed Atalla with Dawon Kahng at Bell Labs in 1959.[3][4][5] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.Austro-Hungarian physicist Julius Edgar Lilienfeld proposed the concept of a field-effect transistor in 1926, but it was not possible to actually construct a working device at that time.[1] The first working device to be built was a point-contact transistor invented in 1947 by American physicists John Bardeen and Walter Brattain while working under William Shockley at Bell Labs. The three shared the 1956 Nobel Prize in Physics for their achievement.[2] The most widely used transistor is the MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor, which was invented by Mohamed Atalla with Dawon Kahng at Bell Labs in 1959.[3][4][5] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[6]

Transistors revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The first transistor and the MOSFET are on the list of IEEE milestones in electronics.[7][8] The MOSFET is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems.[9] An estimated total of 13 sextillion MOSFETs have been manufactured between 1960 and 2018 (at least 99.9% of all transistors), making the MOSFET the most widely manufactured device in history.[10]

Most transistors are made from very pure silicon, and some from germanium, but certain other semiconductor materials are sometimes used. A transistor may have only one kind of charge carrier, in a field-effect transistor, or may have two kinds of charge carriers in bipolar junction transistor devices. Compared with the vacuum tube, transistors are generally smaller and require less power to operate. Certain vacuum tubes have advantages over transistors at very high operating frequencies or high operating voltages. Many types of transistors are made to standardized specifications by multiple manufacturers.

The thermionic triode, a vacuum tube invented in 1907, enabled amplified radio technology and long-distance telephony. The triode, however, was a fragile device that consumed a substantial amount of power. In 1909, physicist William Eccles discovered the crystal diode oscillator.[11] Austro-Hungarian physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor (FET) in Canada in 1925,[12] which was intended to be a solid-state replacement for the triode.[13][14] Lilienfeld also filed identical patents in the United States in 1926[15] and 1928.[16][17] However, Lilienfeld did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Because the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such a device had been built.[18] In 1934, German inventor Oskar Heil patented a similar device in Europe.[19]

Bipolar transistors

A replica of the first working transistor, a point-contact transistor invented in 1947.

From November 17, 1947, to December 23, 1947, John Bardeen and Walter Brattain at AT&T's Bell Labs in Murray Hill, New Jersey, performed experiments and observed that when two gold point contacts were applied to a crystal of germanium, a signal was produced with the output power greater than the input.[20] Solid State Physics Group leader William Shockley saw the potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors. The term transistor was coined by John R. Pierce as a contraction of the term transresistance.[21][22][23] According to Lillian Hoddeson and Vicki Daitch, authors of a biography of John Bardeen, Shockley had proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld's patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because the idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor.[18] In acknowledgement of this accomplishment, Shockley, Bardeen, and Brattain were jointly awarded the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect".[24][25]

Shockley's research team initially attempted to build a field-effect transistor (FET), by trying to modulate the conductivity of a semiconductor, but was unsuccessful, mainly due to problems with the surface states, the dangling bond, and the germanium and copper compound materials. In the course of trying to understand the mysterious reasons behind their failure to build a working FET, this led them instead to invent the bipolar point-contact and junction transistors.[26][27]

John Bardeen and Walter Brattain at AT&T's Bell Labs in Murray Hill, New Jersey, performed experiments and observed that when two gold point contacts were applied to a crystal of germanium, a signal was produced with the output power greater than the input.[20] Solid State Physics Group leader William Shockley saw the potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors. The term transistor was coined by John R. Pierce as a contraction of the term transresistance.[21][22][23] According to Lillian Hoddeson and Vicki Daitch, authors of a biography of John Bardeen, Shockley had proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld's patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because the idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor.[18] In acknowledgement of this accomplishment, Shockley, Bardeen, and Brattain were jointly awarded the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect".[24][25]

Shockley's research team initially attempted to build a field-effect transistor (FET), by trying to modulate the conductivity of a semiconductor, but was unsuccessful, mainly due to problems with the surface states, the dangling bond, and the germanium and copper compound materials. In the course of trying to understand the mysterious reasons behind their failure to build a working FET, this led them instead to invent the bipolar point-contact and junction transistors.[26][27]

Herbert Mataré in 1950. He independently invented a point-contact transistor in June 1948.

In 1948, the point-contact transistor was independently invented by German physicists Herbert Mataré and Heinrich Welker while working at the Compagnie des Freins et Signaux, a Westinghouse subsidiary located in Paris. Mataré had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort during World War II. Using this knowledge, he began re

Shockley's research team initially attempted to build a field-effect transistor (FET), by trying to modulate the conductivity of a semiconductor, but was unsuccessful, mainly due to problems with the surface states, the dangling bond, and the germanium and copper compound materials. In the course of trying to understand the mysterious reasons behind their failure to build a working FET, this led them instead to invent the bipolar point-contact and junction transistors.[26][27]

In 1948, the point-contact transistor was independently invented by German physicists Herbert Mataré and Heinrich Welker while working at the Compagnie des Freins et Signaux, a Westinghouse subsidiary located in Paris. Mataré had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort during World War II. Using this knowledge, he began researching the phenomenon of "interference" in 1947. By June 1948, witnessing currents flowing through point-contacts, Mataré produced consistent results using samples of germanium produced by Welker, similar to what Bardeen and Brattain had accomplished earlier in December 1947. Realizing that Bell Labs' scientists had already invented the transistor before them, the company rushed to get its "transition" into production for amplified use in France's telephone network and filed his first transistor patent application on August 13, 1948.[28][29][30]

The first bipolar junction transistors were invented by Bell Labs' William Shockley, which applied for patent (2,569,347) on June 26, 1948. On April 12, 1950, Bell Labs chemists Gordon Teal and Morgan Sparks had successfully produced a working bipolar NPN junction amplifying germanium transistor. Bell Labs had announced the discovery of this new "sandwich" transistor in a press release on July 4, 1951.[31][32]

bipolar junction transistors were invented by Bell Labs' William Shockley, which applied for patent (2,569,347) on June 26, 1948. On April 12, 1950, Bell Labs chemists Gordon Teal and Morgan Sparks had successfully produced a working bipolar NPN junction amplifying germanium transistor. Bell Labs had announced the discovery of this new "sandwich" transistor in a press release on July 4, 1951.[31][32]

The first high-frequency transistor was the surface-barrier germanium transistor developed by Philco in 1953, capable of operating up to 60 MHz.[33] These were made by etching depressions into an N-type germanium base from both sides with jets of Indium(III) sulfate until it was a few ten-thousandths of an inch thick. Indium electroplated into the depressions formed the collector and emitter.[34][35]

The first "prototype" pocket transistor radio was shown by INTERMETALL (a company founded by Herbert Mataré in 1952) at the Internationale Funkausstellung Düsseldorf between August 29, 1953 and September 6, 1953.[36][37] The first "production" pocket transistor radio was the Regency TR-1, released in October 1954.[25] Produced as a joint venture between the Regency Division of Industrial Devel

The first "prototype" pocket transistor radio was shown by INTERMETALL (a company founded by Herbert Mataré in 1952) at the Internationale Funkausstellung Düsseldorf between August 29, 1953 and September 6, 1953.[36][37] The first "production" pocket transistor radio was the Regency TR-1, released in October 1954.[25] Produced as a joint venture between the Regency Division of Industrial Development Engineering Associates, I.D.E.A. and Texas Instruments of Dallas Texas, the TR-1 was manufactured in Indianapolis, Indiana. It was a near pocket-sized radio featuring 4 transistors and one germanium diode. The industrial design was outsourced to the Chicago firm of Painter, Teague and Petertil. It was initially released in one of six different colours: black, ivory, mandarin red, cloud grey, mahogany and olive green. Other colours were to shortly follow.[38][39][40]

The first "production" all-transistor car radio was developed by Chrysler and Philco corporations and it was announced in the April 28, 1955 edition of the Wall Street Journal. Chrysler had made the all-transistor car radio, Mopar model 914HR, available as an option starting in fall 1955 for its new line of 1956 Chrysler and Imperial cars which first hit the dealership showroom floors on October 21, 1955.[41][42][43]

The Sony TR-63, released in 1957, was the first mass-produced transistor radio, leading to the mass-market penetration of transistor radios.[44] The TR-63 went on to sell seven million units worldwide by the mid-1960s.[45] Sony's success with transistor radios led to transistors replacing vacuum tubes as the dominant electronic technology in the late 1950s.[46]

The first working silicon transistor was developed at Bell Labs on January 26, 1954, by Morris Tanenbaum. The first commercial silicon transistor was produced by Texas Instruments in 1954. This was the work of Gordon Teal, an expert in growing crystals of high purity, who had previously worked at Bell Labs.[47][48][49]

Semiconductor companies initially focused on junction transistors in the early years of the semiconductor industry. However, the junction transistor was a relatively bulky device that was difficult to manufacture on a mass-production basis, which limited it to several specialized applications. Field-effect transistors (FETs) were theorized as potential alternatives to junction transistors, but researchers could not get FETs to work properly, largely due to the troublesome surface state barrier that prevented the external electric field from penetrating the material.[6]

In the 1950s, Egyptian engineer Mohamed Atalla investigated the surface properties of silicon semiconductors at Bell Labs, where he proposed a new method of semiconductor device fabrication, coating a silicon wafer with an insulating layer of silicon oxide so that electricity could reliably penetrate to the conducting silicon below, overcoming the surface states that prevented electricity from reaching the semiconducting layer. This is known as surface passivation, a method that became critical to the semiconductor industry as it later made possible the mass-production of silicon integrated circuits.[50][51] He presented his findings in 1957.[52] Building on his surface passivation method, he developed the metal–oxide–semiconductor (MOS) process.[50] He proposed the MOS process could be used to build the first working silicon FET, which he began working on building with the help of his Korean colleague Dawon Kahng.[50]

The metal–oxide–semiconductor field-effect transistor (MOSFET), also known as the MOS transistor, was invented by Mohamed Atalla and Dawon Kahng in 1959.[3][4] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[6] With its high scalability

In the 1950s, Egyptian engineer Mohamed Atalla investigated the surface properties of silicon semiconductors at Bell Labs, where he proposed a new method of semiconductor device fabrication, coating a silicon wafer with an insulating layer of silicon oxide so that electricity could reliably penetrate to the conducting silicon below, overcoming the surface states that prevented electricity from reaching the semiconducting layer. This is known as surface passivation, a method that became critical to the semiconductor industry as it later made possible the mass-production of silicon integrated circuits.[50][51] He presented his findings in 1957.[52] Building on his surface passivation method, he developed the metal–oxide–semiconductor (MOS) process.[50] He proposed the MOS process could be used to build the first working silicon FET, which he began working on building with the help of his Korean colleague Dawon Kahng.[50]

The metal–oxide–semiconductor field-effect transistor (MOSFET), also known as the MOS transistor, was invented by Mohamed Atalla and Dawon Kahng in 1959.[3][4] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[6] With its high scalability,[53] and much lower power consumption and higher density than bipolar junction transistors,[54] the MOSFET made it possible to build high-density integrated circuits,[5] allowing the integration of more than 10,000 transistors in a single IC.[55]

CMOS (complementary MOS) was invented by Chih-Tang Sah and Frank Wanlass at Fairchild Semiconductor in 1963.[56] The first report of a floating-gate MOSFET was made by Dawon Kahng and Simon Sze in 1967.[57] A double-gate MOSFET was first demonstrated in 1984 by Electrotechnical Laboratory researchers Toshihiro Sekigawa and Yutaka Hayashi.[58][59] FinFET (fin field-effect transistor), a type of 3D non-planar multi-gate MOSFET, originated from the research of Digh Hisamoto and his team at Hitachi Central Research Laboratory in 1989.[60][61]

Transistors are the key active components in practically all modern electronics. Many thus consider the transistor to be one of the greatest inventions of the 20th century.[62]

The MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor, is by far the most widely used transistor, used in applications ranging from computers and MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor, is by far the most widely used transistor, used in applications ranging from computers and electronics[51] to communications technology such as smartphones.[63] The MOSFET has been considered to be the most important transistor,[64] possibly the most important invention in electronics,[65] and the birth of modern electronics.[66] The MOS transistor has been the fundamental building block of modern digital electronics since the late 20th century, paving the way for the digital age.[9] The US Patent and Trademark Office calls it a "groundbreaking invention that transformed life and culture around the world".[63] Its importance in today's society rests on its ability to be mass-produced using a highly automated process (semiconductor device fabrication) that achieves astonishingly low per-transistor costs.

The invention of the first transistor at Bell Labs was named an IEEE Milestone in 2009.[67] The list of IEEE Milestones also includes the inventions of the junction transistor in 1948 and the MOSFET in 1959.[68]

Although several companies each produce over a billion individually packaged (known as discrete) MOS transistors every year,[69] the vast majority of transistors are now produced in integrated circuits (often shortened to IC, microchips or simply chips), along with diodes, resistors, capacitors and other electronic components, to produce complete electronic circuits. A logic gate consists of up to about twenty transistors whereas an advanced microprocessor, as of 2009, can use as many as 3 billion transistors (MOSFETs).[70] "About 60 million transistors were built in 2002… for [each] man, woman, and child on Earth."[71]

The MOS transistor is the most widely manufactured device in history.[10] As of 2013, billions of transistors are manufactured every day, nearly all of which are MOSFET devices.[5] Between 1960 and 2018, an estimated total of 13 sextillion MOS transistors have been manufactured, accounting for at least 99.9% of all transistors.[10]

The transistor's low cost, flexibility, and reliability have made it a ubiquitous device. Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery. It is often easier and cheaper to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical system to control that same function.

A transistor can use a small signal applied between one pair of its terminals to control a much larger signal at another pair of terminals. This property is called gain. It can produce a stronger output signal, a voltage or current, which is proportional to a weaker input signal and thus, it can act as an amplifier. Alternatively, the transistor can be used to turn current on or off in a circuit as an electrically controlled switch, where the amount of current is determined by other circuit elements.[72]

There are two types of transistors, which have slight differences in how they are used in a circuit. A bipolar transistor has terminals labeled base, collector, and emitter. A small current at the base terminal (that is, flowing between the base and the emitter) can control or switch a much larger current between the collector and emitter terminals. For a field-effect transistor, the terminals are labeled gate, source, and drain, and a voltage at the gate can control a current between source and drain.[73]

The image represents a typical bipolar transistor in a circuit. A charge will flow between emitter and collector terminals depending on the current in the base. Because internally the base and emitter connections behave like a semiconductor diode, a voltage drop develops between base and emitter while the base current exists. The amount of this voltage depends on the material the transistor is made from and is referred to as VBE.[73]

Transistor as a switch

BJT used as an electronic switch, in grounded-emitter configuration.

Transistors are commonly used in digital circuits as electronic switches which can be either in an "on" or "off"

There are two types of transistors, which have slight differences in how they are used in a circuit. A bipolar transistor has terminals labeled base, collector, and emitter. A small current at the base terminal (that is, flowing between the base and the emitter) can control or switch a much larger current between the collector and emitter terminals. For a field-effect transistor, the terminals are labeled gate, source, and drain, and a voltage at the gate can control a current between source and drain.[73]

The image represents a typical bipolar transistor in a circuit. A charge will flow between emitter and collector terminals depending on the current in the base. Because internally the base and emitter connections behave like a semiconductor diode, a voltage drop develops between base and emitter while the base current exists. The amount of this voltage depends on the material the transistor is made from and is referred to as VBE.[73]

Transistors are commonly used in digital circuits as electronic switches which can be either in an "on" or "off" state, both for high-power applications such as switched-mode power supplies and for low-power applications such as logic gates. Important parameters for this application include the current switched, the voltage handled, and the switching speed, characterized by the rise and fall times.[73]

In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises, the emitter and collector currents rise exponentially. The collector voltage drops because of reduced resistance from the collector to emitter. If the voltage difference between the collector and emitter were zero (or near zero), the collector current would be limited only by the load resistance (light bulb) and the supply voltage. This is called saturation because the current is flowing from collector to emitter freely. When saturated, the switch is said to be on.[74]

Providing sufficient base drive current is a key problem in the use of bipolar transistors as switches. The transistor provides current gain, allowing a relatively large current in the collector to be switched by a much smaller current into the base terminal. The ratio of these currents varies depending on the type of transistor, and even for a particular type, varies depending on the collector current. In the example light-switch circuit shown, the resistor is chosen to provide enough bas

In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises, the emitter and collector currents rise exponentially. The collector voltage drops because of reduced resistance from the collector to emitter. If the voltage difference between the collector and emitter were zero (or near zero), the collector current would be limited only by the load resistance (light bulb) and the supply voltage. This is called saturation because the current is flowing from collector to emitter freely. When saturated, the switch is said to be on.[74]

Providing sufficient base drive current is a key problem in the use of bipolar transistors as switches. The transistor provides current gain, allowing a relatively large current in the collector to be switched by a much smaller current into the base terminal. The ratio of these currents varies depending on the type of transistor, and even for a particular type, varies depending on the collector current. In the example light-switch circuit shown, the resistor is chosen to provide enough base current to ensure the transistor will be saturated.[73]

In a switching circuit, the idea is to simulate, as near as possible, the ideal switch having the properties of an open circuit when off, the short circuit when on, and an instantaneous transition between the two states. Parameters are chosen such that the "off" output is limited to leakage currents too small to affect connected circuitry, the resistance of the transistor in the "on" state is too small to affect circuitry, and the transition between the two states is fast enough not to have a detrimental effect.[73]

The common-emitter amplifier is designed so that a small change in voltage (Vin) changes the small current through the base of the transistor whose current amplification combined with the properties of the circuit means that small swings in Vin produce large changes in Vout.[73]

Various configurations of single transistor amplifiers are possible, with some providing current gain, some voltage gain, and some both.

From mobile phones to televisions, vast numbers of products include amplifiers for sound reproduction, radio transmission, and signal processing. The first discrete-transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.[73]

Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive.

Comparison with vacuum tubesmobile phones to televisions, vast numbers of products include amplifiers for sound reproduction, radio transmission, and signal processing. The first discrete-transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.[73]

Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive.

Before transistors were developed, vacuum (electron) tubes (or in the UK "thermionic valves" or just "valves") were the main active components in electronic equipment.

Advantages

The key advantages that have allowed transistors to

The key advantages that have allowed transistors to replace vacuum tubes in most applications are

  • No cathode heater (which produces the characteristic orange glow of tubes), reducing power consumption, eliminating delay as tube heaters warm-up, and immune from cathode poisoning and depletion.
  • Very smal

    Transistors have the following limitations:

    • They lack the higher electron mobility afforded by the vacuum of vacuum tubes, which is desirable for high-power, high-frequency operation — such as that used in over-the-air television broadcasting.
    • Transistors and other solid-state devices are susceptible to damage from very brief electrical and thermal events, including electrostatic discharge in handling. Vacuum tubes are electrically much more rugged.
    • They are sensitive to radiation and cosmic rays (special radiation-hardened chips are used for spacecraft devices).
    • In audio applications, transistors lack the lower-harmonic distortion — the so-called tube sound — which is characteristic of vacuum tubes, and is preferred by some.[75]

    Types

    The first BJTs were made from germanium (Ge). Silicon (Si) types currently predominate but certain advanced microwave and high-performance versions now employ the compound semiconductor material gallium arsenide (GaAs) and the semiconductor alloy silicon-germanium (SiGe). Single element semiconductor material (Ge and Si) is described as e

    Manufacturers of devices may have their proprietary numbering system, for example CK722. Since devices are second-sourced, a manufacturer's prefix (like "MPF" in MPF102, which originally would denote a Motorola FET) now is an unreliable indicator of who made the device. Some proprietary naming schemes adopt parts of other naming schemes, for example, a PN2222A is a (possibly Fairchild Semiconductor) 2N2222A in a plastic case (but a PN108 is a plastic version of a BC108, not a 2N108, while the PN100 is unrelated to other xx100 devices).

    Military part numbers sometimes are assigned their codes, such as the British Military CV Naming System.

    Manufacturers buying large numbers of similar parts may have them

    Military part numbers sometimes are assigned their codes, such as the British Military CV Naming System.

    Manufacturers buying large numbers of similar parts may have them supplied with "house numbers", identifying a particular purchasing specification and not necessarily a device with a standardized registered number. For example, an HP part 1854,0053 is a (JEDEC) 2N2218 transistor[93][94] which is also assigned the CV number: CV7763[95]

    With so many independent naming schemes, and the abbreviation of part numbers when printed on the devices, ambiguity sometimes occurs. For example, two different devices may be marked "J176" (one the J176 low-power JFET, the other the higher-powered MOSFET 2SJ176).

    As older "through-hole" transistors are given surface-mount packaged counterparts, they tend to be assigned many different part numbers because manufacturers have their systems to cope with the variety in As older "through-hole" transistors are given surface-mount packaged counterparts, they tend to be assigned many different part numbers because manufacturers have their systems to cope with the variety in pinout arrangements and options for dual or matched n–p–n + p–n–p devices in one pack. So even when the original device (such as a 2N3904) may have been assigned by a standards authority, and well known by engineers over the years, the new versions are far from standardized in their naming.

    The first BJTs were made from germanium (Ge). Silicon (Si) types currently predominate but certain advanced microwave and high-performance versions now employ the compound semiconductor material gallium arsenide (GaAs) and the semiconductor alloy silicon-germanium (SiGe). Single element semiconductor material (Ge and Si) is described as elemental.

    Rough parameters for the most common semiconductor materials used to make transistors are given in the adjacent table. These parameters will vary with an increase in temperature, electric field, impurity level, strain, and sundry other factors.

    The junction forward voltage is the voltage applied to the emitter-base junction of a BJT to make the base conduct a specified current. The current increases exponentially as the junction forward voltage is increased. The values given in the table are typical for a current of 1 mA (the same values apply to semiconductor diodes). The lower the junction forward voltage the better, as this means that less power is required to "drive" the transistor. The junction forward voltage for a given current decreases with an increase in temperature. For a typical silicon junction, the change is −2.1 mV/°C.[96] In some circuits special compensating elements (sensistors) must be used to compensate for such changes.

    The density of mobile carriers in the channel of a MOSFET is a function of the electric field forming the channel and of various other phenomena such as the impurity level in the channel. Some impurities, called dopants, are introduced deliberately in making a MOSFET, to control the MOSFET electrical behavior.

    The

    Rough parameters for the most common semiconductor materials used to make transistors are given in the adjacent table. These parameters will vary with an increase in temperature, electric field, impurity level, strain, and sundry other factors.

    The junction forward voltage is the voltage applied to the emitter-base junction of a BJT to make the base conduct a specified current. The current increases exponentially as the junction forward voltage is increased. The values given in the table are typical for a current of 1 mA (the same values apply to semiconductor diodes). The lower the junction forward voltage the better, as this means that less power is required to "drive" the transistor. The junction forward voltage for a given current decreases with an increase in temperature. For a typical silicon junction, the change is −2.1 mV/°C.[96] In some circuits special compensating elements (sensistors) must be used to compensate for such changes.

    The density of mobile carriers in the channel of a MOSFET is a function of the electric field forming the channel and of various other phenomena such as the impurity level in the channel. Some impurities, called dopants, are introduced deliberately in making a MOSFET, to control the MOSFET electrical behavior.

    The electron mobility and hole mobility columns show the average speed that electrons and holes diffuse through the semiconductor material with an electric field of 1 volt per meter applied across the material. In general, the higher the electron mobility the faster the transistor can operate. The table indicates that Ge is a better material than Si in this respect. However, Ge has four major shortcomings compared to silicon and gallium arsenide:

    Because the electron mobility is higher than the hole mobility for all semiconductor materials, a given bipolar n–p–n transistor tends to be swifter than an equivalent p–n–p transistor. GaAs has the highest electron mobility of the three semiconductors. It is for this reason that GaAs is used in high-frequency applications. A relatively recent[when?] FET development, the high-electron-mobility transistor (HEMT), has a heterostructure (junction between different semiconductor materials) of aluminium gallium arsenide (AlGaAs)-gallium arsenide (GaAs) which has twice the electron mobility of a GaAs-metal barrier junction. Because of their high speed and low noise, HEMTs are used in satellite receivers working at frequencies around 12  GHz. HEMTs based on gallium nitride and aluminum gallium nitride (AlGaN/GaN HEMTs) provide still higher electron mobility and are being developed for various applications.

    'Max. junction temperature' values represent a cross-section taken from various manufacturers' datasheets. This temperature should not be exceeded or the transistor may be damaged.

    'Al-Si junction' refers to the high-speed (aluminum-silicon) metal-semiconductor barrier diode, com

    'Max. junction temperature' values represent a cross-section taken from various manufacturers' datasheets. This temperature should not be exceeded or the transistor may be damaged.

    'Al-Si junction' refers to the high-speed (aluminum-silicon) metal-semiconductor barrier diode, commonly known as a Schottky diode. This is included in the table because some silicon power IGFETs have a parasitic reverse Schottky diode formed between the source and drain as part of the fabrication process. This diode can be a nuisance, but sometimes it is used in the circuit.

    Discrete transistors can be individually packaged transistors or unpackaged transistor chips (dice).

    Transistors come in many different semiconductor packages (see image). The two main categories are through-hole (or leaded), and surface-mount, also known as surface-mount device (SMD). The ball grid array (BGA) is the latest surface-mount package (currently only for large integrated circuits). It has solder "balls" on the underside in place of leads. Because they are smaller and have shorter interconnections, SMDs have better high-frequency characteristics but lower power ratings.

    Transistor packages are made of glass, metal, ceramic, or plastic. The package often dictates the power rating and frequency characteristics. Power transistors have larger packages that can be clamped to heat sinks for enhanced cooling. Additionally, most power transistors have the collector or drain physically connected to the metal enclosure. At the other extreme, some surface-mount microwave transistors are as small as grains of sand.

    Often a given transistor type is available in several packages. Transistor packages are mainly standardized, but the assignment of a transistor's functions to the terminals is not: other transistor types can assign other functions to the package's terminals. Even for the same transistor type the terminal assignment can vary (normally indicated by a suffix letter to the part number, q.e. BC212L and BC212K).

    Nowadays most transistors come in a wide range of SMT packages, in comparison, the list of available through-hole packages is relatively small, here is a shortlist of the most common through-hole transistors packages in alphabetical order: ATV, E-line, MRT, HRT

    Transistors come in many different semiconductor packages (see image). The two main categories are through-hole (or leaded), and surface-mount, also known as surface-mount device (SMD). The ball grid array (BGA) is the latest surface-mount package (currently only for large integrated circuits). It has solder "balls" on the underside in place of leads. Because they are smaller and have shorter interconnections, SMDs have better high-frequency characteristics but lower power ratings.

    Transistor packages are made of glass, metal, ceramic, or plastic. The package often dictates the power rating and frequency characteristics. Power transistors have larger packages that can be clamped to heat sinks for enhanced cooling. Additionally, most power transistors have the collector or drain physically connected to the metal enclosure. At the other extreme, some surface-mount microwave transistors are as small as grains of sand.

    Often a given transistor type is available in several packages. Transistor packages are mainly standardized, but the assignment of a transistor's functions to the terminals is not: other transistor types can assign other functions to the package's terminals. Even for the same transistor type the terminal assignment can vary (normally indicated by a suffix letter to the part number, q.e. BC212L and BC212K).

    Nowadays most transistors come in a wide range of SMT packages, in comparison, the list of available through-hole packages is relatively small, here is a shortlist of the most common through-hole transistors packages in alphabetical order: ATV, E-line, MRT, HRT, SC-43, SC-72, TO-3, TO-18, TO-39, TO-92, TO-126, TO220, TO247, TO251, TO262, ZTX851.

    Unpackaged transistor chips (die) may be assembled into hybrid devices.[97] The IBM SLT module of the 1960s is one example of such a hybrid circuit module using glass passivated transistor (and diode) die. Other packaging techniques for discrete transistors as chips include Direct Chip Attach (DCA) and Chip On Board (COB).[97]

    Researchers have made several kinds of flexible transistors, including organic field-effect transistors.[98][99][100] Flexible transistors are useful in some kinds of flexible displays and other flexible electronics.

    See also