History of complex numbers
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the
equation In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in ...
i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an
imaginary number An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...
by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficients has a solution which is a complex number. For example, the equation (x+1)^2 = -9 has no real solution, since the square of a real number cannot be negative, but has the two nonreal complex solutions -1+3i and -1-3i. Addition, subtraction and multiplication of complex numbers can be naturally defined by using the rule i^=-1 combined with the
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
, commutative, and distributive laws. Every nonzero complex number has a multiplicative inverse. This makes the complex numbers a field that has the real numbers as a subfield. The complex numbers also form a real vector space of dimension two, with as a
standard basis In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors whose components are all zero, except one that equals 1. For example, in the c ...
. This standard basis makes the complex numbers a Cartesian plane, called the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. This allows a geometric interpretation of the complex numbers and their operations, and conversely expressing in terms of complex numbers some geometric properties and constructions. For example, the real numbers form the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
which is identified to the horizontal axis of the complex plane. The complex numbers of
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
one form the unit circle. The addition of a complex number is a translation in the complex plane, and the multiplication by a complex number is a similarity centered at the origin. The
complex conjugation In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
is the reflection symmetry with respect to the real axis. The complex absolute value is a
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
. In summary, the complex numbers form a rich structure that is simultaneously an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, a commutative algebra over the reals, and a Euclidean vector space of dimension two.


Definition

A complex number is a number of the form , where and are
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
, and is an indeterminate satisfying . For example, is a complex number. This way, a complex number is defined as a polynomial with real coefficients in the single indeterminate , for which the relation is imposed. Based on this definition, complex numbers can be added and multiplied, using the addition and multiplication for polynomials. The relation induces the equalities and which hold for all integers ; these allow the reduction of any polynomial that results from the addition and multiplication of complex numbers to a linear polynomial in , again of the form with real coefficients The real number is called the ''real part'' of the complex number ; the real number is called its ''imaginary part''. To emphasize, the imaginary part does not include a factor ; that is, the imaginary part is , not . Formally, the complex numbers are defined as the quotient ring of the polynomial ring in the indeterminate , by the
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ...
generated by the polynomial (see
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) Bottom may refer to: Anatomy and sex * Bottom (BDSM), the partner in a BDSM who takes the passive, receiving, or obedient role, to that of the top or ...
).


Notation

A real number can be regarded as a complex number , whose imaginary part is 0. A purely
imaginary number An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...
is a complex number , whose real part is zero. As with polynomials, it is common to write for and for . Moreover, when the imaginary part is negative, that is, , it is common to write instead of ; for example, for , can be written instead of . Since the multiplication of the indeterminate and a real is commutative in polynomials with real coefficients, the polynomial may be written as This is often expedient for imaginary parts denoted by expressions, for example, when is a radical. The real part of a complex number is denoted by , \mathcal(z), or \mathfrak(z); the imaginary part of a complex number is denoted by , \mathcal(z), or \mathfrak(z). For example, \operatorname(2 + 3i) = 2 \quad \text \quad \operatorname(2 + 3i) = 3~. The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all complex numbers is denoted by \Complex ( blackboard bold) or (upright bold). In some disciplines, particularly in electromagnetism and
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
, is used instead of as is frequently used to represent
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
. In these cases, complex numbers are written as , or .


Visualization

A complex number can thus be identified with an
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...
(\Re (z),\Im (z)) of real numbers, which in turn may be interpreted as coordinates of a point in a two-dimensional space. The most immediate space is the Euclidean plane with suitable coordinates, which is then called ''complex plane'' or ''
Argand diagram In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
,'' named after Jean-Robert Argand. Another prominent space on which the coordinates may be projected is the two-dimensional surface of a sphere, which is then called Riemann sphere.


Cartesian complex plane

The definition of the complex numbers involving two arbitrary real values immediately suggests the use of Cartesian coordinates in the complex plane. The horizontal (''real'') axis is generally used to display the real part, with increasing values to the right, and the imaginary part marks the vertical (''imaginary'') axis, with increasing values upwards. A charted number may be viewed either as the coordinatized point or as a
position vector In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents the position of a point ''P'' in space in relation to an arbitrary reference origin ''O''. Usually denoted x, r, or s ...
from the origin to this point. The coordinate values of a complex number can hence be expressed in its ''Cartesian'', ''rectangular'', or ''algebraic'' form. Notably, the operations of addition and multiplication take on a very natural geometric character, when complex numbers are viewed as position vectors: addition corresponds to vector addition, while multiplication (see
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) Bottom may refer to: Anatomy and sex * Bottom (BDSM), the partner in a BDSM who takes the passive, receiving, or obedient role, to that of the top or ...
) corresponds to multiplying their magnitudes and adding the angles they make with the real axis. Viewed in this way, the multiplication of a complex number by corresponds to rotating the position vector counterclockwise by a quarter
turn Turn may refer to: Arts and entertainment Dance and sports * Turn (dance and gymnastics), rotation of the body * Turn (swimming), reversing direction at the end of a pool * Turn (professional wrestling), a transition between face and heel * Turn, ...
( 90°) about the origin—a fact which can be expressed algebraically as follows: (a + bi)\cdot i = ai + b(i)^2 = -b + ai .


Polar complex plane


Modulus and argument

An alternative option for coordinates in the complex plane is the polar coordinate system that uses the distance of the point from the origin (), and the angle subtended between the positive real axis and the line segment in a counterclockwise sense. This leads to the polar form :z=re^=r(\cos\varphi +i\sin\varphi) of a complex number, where is the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
of , and \varphi is the
argument An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectic ...
of . The ''absolute value'' (or ''modulus'' or ''magnitude'') of a complex number is r=, z, =\sqrt. If is a real number (that is, if ), then . That is, the absolute value of a real number equals its absolute value as a complex number. By Pythagoras' theorem, the absolute value of a complex number is the distance to the origin of the point representing the complex number in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. The ''argument'' of (in many applications referred to as the "phase" ) is the angle of the radius with the positive real axis, and is written as . As with the modulus, the argument can be found from the rectangular form —by applying the inverse tangent to the quotient of imaginary-by-real parts. By using a half-angle identity, a single branch of the arctan suffices to cover the range of the -function, and avoids a more subtle case-by-case analysis \varphi = \arg (x+yi) = \begin 2 \arctan\left(\dfrac\right) &\text y \neq 0 \text x > 0, \\ \pi &\text x < 0 \text y = 0, \\ \text &\text x = 0 \text y = 0. \end Normally, as given above, the
principal value In mathematics, specifically complex analysis, the principal values of a multivalued function are the values along one chosen branch of that function, so that it is single-valued. The simplest case arises in taking the square root of a positive ...
in the interval is chosen. If the arg value is negative, values in the range or can be obtained by adding . The value of is expressed in radians in this article. It can increase by any integer multiple of and still give the same angle, viewed as subtended by the rays of the positive real axis and from the origin through . Hence, the arg function is sometimes considered as multivalued. The polar angle for the complex number 0 is indeterminate, but arbitrary choice of the polar angle 0 is common. The value of equals the result of
atan2 In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, \theta = \operatorname(y, x) is the angle measure (in radians, with -\pi < \theta \leq \pi) between the positive
: \varphi = \operatorname\left(\operatorname(z),\operatorname(z) \right). Together, and give another way of representing complex numbers, the ''polar form'', as the combination of modulus and argument fully specify the position of a point on the plane. Recovering the original rectangular co-ordinates from the polar form is done by the formula called ''trigonometric form'' z = r(\cos \varphi + i\sin \varphi ). Using Euler's formula this can be written as z = r e^ \text z = r \exp i \varphi. Using the function, this is sometimes abbreviated to z = r \operatorname\mathrm \varphi. In angle notation, often used in electronics to represent a
phasor In physics and engineering, a phasor (a portmanteau of phase vector) is a complex number representing a sinusoidal function whose amplitude (''A''), angular frequency (''ω''), and initial phase (''θ'') are time-invariant. It is related to ...
with amplitude and phase , it is written as z = r \angle \varphi .


Complex graphs

When visualizing
complex functions Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
, both a complex input and output are needed. Because each complex number is represented in two dimensions, visually graphing a complex function would require the perception of a
four dimensional space A four-dimensional space (4D) is a mathematical extension of the concept of three-dimensional or 3D space. Three-dimensional space is the simplest possible abstraction of the observation that one only needs three numbers, called ''dimensions'', ...
, which is possible only in projections. Because of this, other ways of visualizing complex functions have been designed. In domain coloring the output dimensions are represented by color and brightness, respectively. Each point in the complex plane as domain is ''ornated'', typically with ''color'' representing the argument of the complex number, and ''brightness'' representing the magnitude. Dark spots mark moduli near zero, brighter spots are farther away from the origin, the gradation may be discontinuous, but is assumed as monotonous. The colors often vary in steps of for to from red, yellow, green, cyan, blue, to magenta. These plots are called color wheel graphs. This provides a simple way to visualize the functions without losing information. The picture shows zeros for and poles at \pm \sqrt.


History

The solution in
radicals Radical may refer to: Politics and ideology Politics *Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe and ...
(without trigonometric functions) of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is
irreducible In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
; this is the so-called '' casus irreducibilis'' ("irreducible case"). This conundrum led Italian mathematician Gerolamo Cardano to conceive of complex numbers in around 1545 in his ''Ars Magna'', though his understanding was rudimentary; moreover he later dismissed complex numbers as "subtle as they are useless". Cardano did use imaginary numbers, but described using them as “mental torture.” This was prior to the use of the graphical complex plane. Cardano and other Italian mathematicians, notably
Scipione del Ferro Scipione del Ferro (6 February 1465 – 5 November 1526) was an Italian mathematician who first discovered a method to solve the depressed cubic equation. Life Scipione del Ferro was born in Bologna, in northern Italy, to Floriano and Filip ...
, in the 1500s created an algorithm for solving cubic equations which generally had one real solution and two solutions containing an imaginary number. Since they ignored the answers with the imaginary numbers, Cardano found them useless. Work on the problem of general polynomials ultimately led to the fundamental theorem of algebra, which shows that with complex numbers, a solution exists to every polynomial equation of degree one or higher. Complex numbers thus form an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, where any polynomial equation has a root. Many mathematicians contributed to the development of complex numbers. The rules for addition, subtraction, multiplication, and root extraction of complex numbers were developed by the Italian mathematician Rafael Bombelli. A more abstract formalism for the complex numbers was further developed by the Irish mathematician William Rowan Hamilton, who extended this abstraction to the theory of quaternions. The earliest fleeting reference to square roots of
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed m ...
s can perhaps be said to occur in the work of the
Greek mathematician Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly extant from the 7th century BC to the 4th century AD, around the shores of the Eastern Mediterranean. Greek mathem ...
Hero of Alexandria in the 1st century AD, where in his '' Stereometrica'' he considered, apparently in error, the volume of an impossible frustum of a pyramid to arrive at the term \sqrt in his calculations, which today would simplify to \sqrt = 3i\sqrt. Negative quantities were not conceived of in
Hellenistic mathematics Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly extant from the 7th century BC to the 4th century AD, around the shores of the Eastern Mediterranean. Greek mathem ...
and Hero merely replaced it by its positive \sqrt = 3\sqrt. The impetus to study complex numbers as a topic in itself first arose in the 16th century when algebraic solutions for the roots of
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
and quartic polynomials were discovered by Italian mathematicians (see Niccolò Fontana Tartaglia, Gerolamo Cardano). It was soon realized (but proved much later) that these formulas, even if one were interested only in real solutions, sometimes required the manipulation of square roots of negative numbers. As an example, Tartaglia's formula for a cubic equation of the form gives the solution to the equation as \tfrac\left(\left(\sqrt\right)^+\left(\sqrt\right)^\right). At first glance this looks like nonsense. However, formal calculations with complex numbers show that the equation has three solutions: -i, \frac, \frac. Substituting these in turn for \sqrt^ in Tartaglia's cubic formula and simplifying, one gets 0, 1 and −1 as the solutions of . Of course this particular equation can be solved at sight but it does illustrate that when general formulas are used to solve cubic equations with real roots then, as later mathematicians showed rigorously, the use of complex numbers is unavoidable. Rafael Bombelli was the first to address explicitly these seemingly paradoxical solutions of cubic equations and developed the rules for complex arithmetic trying to resolve these issues. The term "imaginary" for these quantities was coined by René Descartes in 1637, who was at pains to stress their unreal nature A further source of confusion was that the equation \sqrt^2 = \sqrt\sqrt = -1 seemed to be capriciously inconsistent with the algebraic identity \sqrt\sqrt = \sqrt, which is valid for non-negative real numbers and , and which was also used in complex number calculations with one of , positive and the other negative. The incorrect use of this identity (and the related identity \frac = \sqrt) in the case when both and are negative even bedeviled Leonhard Euler. This difficulty eventually led to the convention of using the special symbol in place of \sqrt to guard against this mistake. Even so, Euler considered it natural to introduce students to complex numbers much earlier than we do today. In his elementary algebra text book, '' Elements of Algebra'', he introduces these numbers almost at once and then uses them in a natural way throughout. In the 18th century complex numbers gained wider use, as it was noticed that formal manipulation of complex expressions could be used to simplify calculations involving trigonometric functions. For instance, in 1730
Abraham de Moivre Abraham de Moivre FRS (; 26 May 166727 November 1754) was a French mathematician known for de Moivre's formula, a formula that links complex numbers and trigonometry, and for his work on the normal distribution and probability theory. He moved ...
noted that the identities relating trigonometric functions of an integer multiple of an angle to powers of trigonometric functions of that angle could be re-expressed by the following de Moivre's formula: (\cos \theta + i\sin \theta)^ = \cos n \theta + i\sin n \theta. In 1748, Euler went further and obtained Euler's formula of
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
: \cos \theta + i\sin \theta = e ^ by formally manipulating complex power series and observed that this formula could be used to reduce any trigonometric identity to much simpler exponential identities. The idea of a complex number as a point in the complex plane ( above) was first described by
Danish Danish may refer to: * Something of, from, or related to the country of Denmark People * A national or citizen of Denmark, also called a "Dane," see Demographics of Denmark * Culture of Denmark * Danish people or Danes, people with a Danish ance ...
Norwegian mathematician Caspar Wessel in 1799, although it had been anticipated as early as 1685 in Wallis's ''A Treatise of Algebra''. Wessel's memoir appeared in the Proceedings of the
Copenhagen Academy The Royal Danish Academy of Fine Arts ( da, Det Kongelige Danske Kunstakademi - Billedkunst Skolerne) has provided education in the arts for more than 250 years, playing its part in the development of the art of Denmark. History The Royal Dani ...
but went largely unnoticed. In 1806 Jean-Robert Argand independently issued a pamphlet on complex numbers and provided a rigorous proof of the fundamental theorem of algebra. Carl Friedrich Gauss had earlier published an essentially topological proof of the theorem in 1797 but expressed his doubts at the time about "the true metaphysics of the square root of −1". It was not until 1831 that he overcame these doubts and published his treatise on complex numbers as points in the plane, largely establishing modern notation and terminology:
If one formerly contemplated this subject from a false point of view and therefore found a mysterious darkness, this is in large part attributable to clumsy terminology. Had one not called +1, -1, \sqrt positive, negative, or imaginary (or even impossible) units, but instead, say, direct, inverse, or lateral units, then there could scarcely have been talk of such darkness.
In the beginning of the 19th century, other mathematicians discovered independently the geometrical representation of the complex numbers: Buée, Mourey,
Warren A warren is a network of wild rodent or lagomorph, typically rabbit burrows. Domestic warrens are artificial, enclosed establishment of animal husbandry dedicated to the raising of rabbits for meat and fur. The term evolved from the medieval Angl ...
,
Français French ( or ) is a Romance language of the Indo-European family. It descended from the Vulgar Latin of the Roman Empire, as did all Romance languages. French evolved from Gallo-Romance, the Latin spoken in Gaul, and more specifically in Nor ...
and his brother, Bellavitis. The English mathematician
G.H. Hardy Godfrey Harold Hardy (7 February 1877 – 1 December 1947) was an English mathematician, known for his achievements in number theory and mathematical analysis. In biology, he is known for the Hardy–Weinberg principle, a basic principle of pop ...
remarked that Gauss was the first mathematician to use complex numbers in 'a really confident and scientific way' although mathematicians such as Norwegian Niels Henrik Abel and Carl Gustav Jacob Jacobi were necessarily using them routinely before Gauss published his 1831 treatise.
Augustin-Louis Cauchy Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He ...
and
Bernhard Riemann Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
together brought the fundamental ideas of
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
to a high state of completion, commencing around 1825 in Cauchy's case. The common terms used in the theory are chiefly due to the founders. Argand called the ''direction factor'', and r = \sqrt the ''modulus''; Cauchy (1821) called the ''reduced form'' (l'expression réduite) and apparently introduced the term ''argument''; Gauss used for \sqrt, introduced the term ''complex number'' for , and called the ''norm''. The expression ''direction coefficient'', often used for , is due to Hankel (1867), and ''absolute value,'' for ''modulus,'' is due to Weierstrass. Later classical writers on the general theory include
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
,
Otto Hölder Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart. Early life and education Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Christ ...
, Felix Klein,
Henri Poincaré Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The ...
, Hermann Schwarz, Karl Weierstrass and many others. Important work (including a systematization) in complex multivariate calculus has been started at beginning of the 20th century. Important results have been achieved by Wilhelm Wirtinger in 1927.


Relations and operations


Equality

Complex numbers have a similar definition of equality to real numbers; two complex numbers and are equal if and only if both their real and imaginary parts are equal, that is, if and . Nonzero complex numbers written in polar form are equal if and only if they have the same magnitude and their arguments differ by an integer multiple of .


Ordering

Unlike the real numbers, there is no natural ordering of the complex numbers. In particular, there is no
linear ordering In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexi ...
on the complex numbers that is compatible with addition and multiplication. Hence, the complex numbers do not have the structure of an ordered field. One explanation for this is that every non-trivial sum of squares in an ordered field is nonzero, and is a non-trivial sum of squares. Thus, complex numbers are naturally thought of as existing on a two-dimensional plane.


Conjugate

The '' complex conjugate'' of the complex number is given by . It is denoted by either or . This unary operation on complex numbers cannot be expressed by applying only their basic operations addition, subtraction, multiplication and division. Geometrically, is the "reflection" of about the real axis. Conjugating twice gives the original complex number \overline=z, which makes this operation an involution. The reflection leaves both the real part and the magnitude of unchanged, that is \operatorname(\overline) = \operatorname(z)\quad and \quad , \overline, = , z, . The imaginary part and the argument of a complex number change their sign under conjugation \operatorname(\overline) = -\operatorname(z)\quad \text \quad \operatorname \overline \equiv -\operatorname z \pmod . For details on argument and magnitude, see the section on Polar form. The product of a complex number and its conjugate is known as the ''
absolute square In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power  2, and is denoted by a superscript 2; for instance, the square ...
''. It is always a non-negative real number and equals the square of the magnitude of each: z\cdot \overline = x^2 + y^2 = , z, ^2 = , \overline, ^2. This property can be used to convert a fraction with a complex denominator to an equivalent fraction with a real denominator by expanding both numerator and denominator of the fraction by the conjugate of the given denominator. This process is sometimes called " rationalization" of the denominator (although the denominator in the final expression might be an irrational real number), because it resembles the method to remove roots from simple expressions in a denominator. The real and imaginary parts of a complex number can be extracted using the conjugation: \operatorname(z) = \dfrac,\quad \text \quad \operatorname(z) = \dfrac. Moreover, a complex number is real if and only if it equals its own conjugate. Conjugation distributes over the basic complex arithmetic operations: \begin \overline &= \overline \pm \overline, \\ \overline &= \overline \cdot \overline, \\ \overline &= \overline/\overline. \end Conjugation is also employed in
inversive geometry Inversive activities are processes which self internalise the action concerned. For example, a person who has an Inversive personality internalises his emotions from any exterior source. An inversive heat source would be a heat source where all th ...
, a branch of geometry studying reflections more general than ones about a line. In the network analysis of electrical circuits, the complex conjugate is used in finding the equivalent impedance when the maximum power transfer theorem is looked for.


Addition and subtraction

Two complex numbers a =x+yi and b =u+vi are most easily added by separately adding their real and imaginary parts. That is to say: a + b =(x+yi) + (u+vi) = (x+u) + (y+v)i. Similarly,
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
can be performed as a - b =(x+yi) - (u+vi) = (x-u) + (y-v)i. Multiplication of a complex number a =x+yi and a real number can be done similarly by multiplying separately and the real and imaginary parts of : ra=r(x+yi) = rx + ryi. In particular, subtraction can be done by negating the subtrahend (that is multiplying it with ) and adding the result to the minuend: a - b =a + (-1)\,b. Using the visualization of complex numbers in the complex plane, addition has the following geometric interpretation: the sum of two complex numbers and , interpreted as points in the complex plane, is the point obtained by building a
parallelogram In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equa ...
from the three vertices , and the points of the arrows labeled and (provided that they are not on a line). Equivalently, calling these points , , respectively and the fourth point of the parallelogram the triangles and are congruent.


Multiplication and square

The rules of the distributive property, the commutative properties (of addition and multiplication), and the defining property apply to complex numbers. It follows that (x+yi)\, (u+vi)= (xu - yv) + (xv + yu)i. In particular, (x+yi)^2=x^2-y^2 + 2xyi.


Reciprocal and division

Using the conjugation, the reciprocal of a nonzero complex number can always be broken down to \frac=\frac = \frac=\frac=\frac -\fraci, since ''non-zero'' implies that is greater than zero. This can be used to express a division of an arbitrary complex number by a non-zero complex number as \frac = w\cdot \frac = (u+vi)\cdot \left(\frac -\fraci\right)= \frac .


Multiplication and division in polar form

Formulas for multiplication, division and exponentiation are simpler in polar form than the corresponding formulas in Cartesian coordinates. Given two complex numbers and , because of the trigonometric identities \begin \cos a \cos b & - \sin a \sin b & = & \cos(a + b) \\ \cos a \sin b & + \sin a \cos b & = & \sin(a + b) . \end we may derive z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)). In other words, the absolute values are multiplied and the arguments are added to yield the polar form of the product. For example, multiplying by corresponds to a quarter-
turn Turn may refer to: Arts and entertainment Dance and sports * Turn (dance and gymnastics), rotation of the body * Turn (swimming), reversing direction at the end of a pool * Turn (professional wrestling), a transition between face and heel * Turn, ...
counter-clockwise, which gives back . The picture at the right illustrates the multiplication of (2+i)(3+i)=5+5i. Since the real and imaginary part of are equal, the argument of that number is 45 degrees, or (in radian). On the other hand, it is also the sum of the angles at the origin of the red and blue triangles are
arctan In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Spec ...
(1/3) and arctan(1/2), respectively. Thus, the formula \frac = \arctan\left(\frac\right) + \arctan\left(\frac\right) holds. As the
arctan In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Spec ...
function can be approximated highly efficiently, formulas like this – known as
Machin-like formulas In mathematics, Machin-like formulae are a popular technique for computing to a large number of digits. They are generalizations of John Machin's formula from 1706: :\frac = 4 \arctan \frac - \arctan \frac which he used to compute to 100 ...
– are used for high-precision approximations of . Similarly, division is given by \frac = \frac \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)\right).


Square root

The square roots of (with ) are \pm (\gamma + \delta i), where \gamma = \sqrt and \delta = (\sgn b)\sqrt, where is the signum function. This can be seen by squaring \pm (\gamma + \delta i) to obtain . Here \sqrt is called the modulus of , and the square root sign indicates the square root with non-negative real part, called the principal square root; also \sqrt= \sqrt, where .


Exponential function

The exponential function \exp \colon \Complex \to \Complex ; z \mapsto \exp z can be defined for every complex number by the power series \exp z= \sum_^\infty \frac , which has an infinite radius of convergence. The value at of the exponential function is Euler's number e = \exp 1 = \sum_^\infty \frac1\approx 2.71828. If is real, one has \exp z=e^z. Analytic continuation allows extending this equality for every complex value of , and thus to define the complex exponentiation with base as e^z=\exp z.


Functional equation

The exponential function satisfies the functional equation e^=e^ze^t. This can be proved either by comparing the power series expansion of both members or by applying analytic continuation from the restriction of the equation to real arguments.


Euler's formula

Euler's formula states that, for any real number , e^ = \cos y + i\sin y . The functional equation implies thus that, if and are real, one has e^ = e^x(\cos y + i\sin y) = e^x \cos y + i e^x \sin y , which is the decomposition of the exponential function into its real and imaginary parts.


Complex logarithm

In the real case, the
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
can be defined as the
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ad ...
\ln \colon \R^+ \to \R ; x \mapsto \ln x of the exponential function. For extending this to the complex domain, one can start from Euler's formula. It implies that, if a complex number z\in \Complex^\times is written in polar form z = r(\cos \varphi + i\sin \varphi ) with r, \varphi \in \R , then with \ln z = \ln r + i \varphi as
complex logarithm In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in ...
one has a proper inverse: \exp \ln z = \exp(\ln r + i \varphi ) = r \exp i \varphi = r(\cos \varphi + i\sin \varphi ) = z . However, because cosine and sine are periodic functions, the addition of an integer multiple of to does not change . For example, , so both and are possible values for the natural logarithm of . Therefore, if the complex logarithm is not to be defined as a multivalued function \ln z = \left\, one has to use a
branch cut In the mathematical field of complex analysis, a branch point of a multi-valued function (usually referred to as a "multifunction" in the context of complex analysis) is a point such that if the function is n-valued (has n values) at that point, a ...
and to restrict the codomain, resulting in the bijective function \ln \colon \; \Complex^\times \; \to \; \; \; \R^+ + \; i \, \left(-\pi, \pi\right] . If z \in \Complex \setminus \left( -\R_ \right) is not a non-positive real number (a positive or a non-real number), the resulting
principal value In mathematics, specifically complex analysis, the principal values of a multivalued function are the values along one chosen branch of that function, so that it is single-valued. The simplest case arises in taking the square root of a positive ...
of the complex logarithm is obtained with . It is an analytic function outside the negative real numbers, but it cannot be prolongated to a function that is continuous at any negative real number z \in -\R^+ , where the principal value is .


Exponentiation

If is real and complex, the exponentiation is defined as x^z=e^, where denotes the natural logarithm. It seems natural to extend this formula to complex values of , but there are some difficulties resulting from the fact that the complex logarithm is not really a function, but a multivalued function. It follows that if is as above, and if is another complex number, then the ''exponentiation'' is the multivalued function z^t=\left\\mid k\in \mathbb Z\right\}


Integer and fractional exponents

If, in the preceding formula, is an integer, then the sine and the cosine are independent of . Thus, if the exponent is an integer, then is well defined, and the exponentiation formula simplifies to de Moivre's formula: z^=(r(\cos \varphi + i\sin \varphi ))^n = r^n \, (\cos n\varphi + i \sin n \varphi). The th roots of a complex number are given by z^ = \sqrt \left( \cos \left(\frac\right) + i \sin \left(\frac\right)\right) for . (Here \sqrt is the usual (positive) th root of the positive real number .) Because sine and cosine are periodic, other integer values of do not give other values. While the th root of a positive real number is chosen to be the ''positive'' real number satisfying , there is no natural way of distinguishing one particular complex th root of a complex number. Therefore, the th root is a -valued function of . This implies that, contrary to the case of positive real numbers, one has (z^n)^ \ne z, since the left-hand side consists of values, and the right-hand side is a single value.


Properties


Field structure

The set \Complex of complex numbers is a field. Briefly, this means that the following facts hold: first, any two complex numbers can be added and multiplied to yield another complex number. Second, for any complex number , its
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
is also a complex number; and third, every nonzero complex number has a reciprocal complex number. Moreover, these operations satisfy a number of laws, for example the law of
commutativity In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
of addition and multiplication for any two complex numbers and : \begin z_1 + z_2 & = z_2 + z_1 ,\\ z_1 z_2 & = z_2 z_1 . \end These two laws and the other requirements on a field can be proven by the formulas given above, using the fact that the real numbers themselves form a field. Unlike the reals, \Complex is not an ordered field, that is to say, it is not possible to define a relation that is compatible with the addition and multiplication. In fact, in any ordered field, the square of any element is necessarily positive, so precludes the existence of an
ordering Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
on \Complex. When the underlying field for a mathematical topic or construct is the field of complex numbers, the topic's name is usually modified to reflect that fact. For example:
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
, complex
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
, complex polynomial, and complex
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
.


Solutions of polynomial equations

Given any complex numbers (called
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
s) , the equation a_n z^n + \dotsb + a_1 z + a_0 = 0 has at least one complex solution ''z'', provided that at least one of the higher coefficients is nonzero. This is the statement of the fundamental theorem of algebra, of Carl Friedrich Gauss and Jean le Rond d'Alembert. Because of this fact, \Complex is called an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
. This property does not hold for the field of rational numbers \Q (the polynomial does not have a rational root, since √2 is not a rational number) nor the real numbers \R (the polynomial does not have a real root for , since the square of is positive for any real number ). There are various proofs of this theorem, by either analytic methods such as Liouville's theorem, or topological ones such as the winding number, or a proof combining Galois theory and the fact that any real polynomial of ''odd'' degree has at least one real root. Because of this fact, theorems that hold ''for any algebraically closed field'' apply to \Complex. For example, any non-empty complex
square matrix In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often ...
has at least one (complex) eigenvalue.


Algebraic characterization

The field \Complex has the following three properties: * First, it has characteristic 0. This means that for any number of summands (all of which equal one). * Second, its transcendence degree over \Q, the prime field of \Complex, is the
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathb ...
. * Third, it is algebraically closed (see above). It can be shown that any field having these properties is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
(as a field) to \Complex. For example, the algebraic closure of the field \Q_p of the -adic number also satisfies these three properties, so these two fields are isomorphic (as fields, but not as topological fields). Also, \Complex is isomorphic to the field of complex Puiseux series. However, specifying an isomorphism requires the axiom of choice. Another consequence of this algebraic characterization is that \Complex contains many proper subfields that are isomorphic to \Complex.


Characterization as a topological field

The preceding characterization of \Complex describes only the algebraic aspects of \Complex. That is to say, the properties of nearness and continuity, which matter in areas such as analysis and topology, are not dealt with. The following description of \Complex as a topological field (that is, a field that is equipped with a topology, which allows the notion of convergence) does take into account the topological properties. \Complex contains a subset (namely the set of positive real numbers) of nonzero elements satisfying the following three conditions: * is closed under addition, multiplication and taking inverses. * If and are distinct elements of , then either or is in . * If is any nonempty subset of , then for some in \Complex. Moreover, \Complex has a nontrivial involutive
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
(namely the complex conjugation), such that is in for any nonzero in \Complex. Any field with these properties can be endowed with a topology by taking the sets as a base, where ranges over the field and ranges over . With this topology is isomorphic as a ''topological'' field to \Complex. The only connected
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
topological fields are \R and \Complex. This gives another characterization of \Complex as a topological field, since \Complex can be distinguished from \R because the nonzero complex numbers are connected, while the nonzero real numbers are not.


Formal construction


Construction as ordered pairs

William Rowan Hamilton introduced the approach to define the set \Complex of complex numbers as the set \mathbb^2 of of real numbers, in which the following rules for addition and multiplication are imposed: \begin (a, b) + (c, d) &= (a + c, b + d)\\ (a, b) \cdot (c, d) &= (ac - bd, bc + ad). \end It is then just a matter of notation to express as .


Construction as a quotient field

Though this low-level construction does accurately describe the structure of the complex numbers, the following equivalent definition reveals the algebraic nature of \Complex more immediately. This characterization relies on the notion of fields and polynomials. A field is a set endowed with addition, subtraction, multiplication and division operations that behave as is familiar from, say, rational numbers. For example, the distributive law (x+y) z = xz + yz must hold for any three elements , and of a field. The set \R of real numbers does form a field. A polynomial with real
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
s is an expression of the form a_nX^n+\dotsb+a_1X+a_0, where the are real numbers. The usual addition and multiplication of polynomials endows the set \R /math> of all such polynomials with a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
structure. This ring is called the polynomial ring over the real numbers. The set of complex numbers is defined as the quotient ring \R (X^2+1). This extension field contains two square roots of , namely (the cosets of) and , respectively. (The cosets of) and form a basis of \mathbb (X^2 + 1) as a real vector space, which means that each element of the extension field can be uniquely written as a linear combination in these two elements. Equivalently, elements of the extension field can be written as ordered pairs of real numbers. The quotient ring is a field, because is
irreducible In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
over \R, so the ideal it generates is maximal. The formulas for addition and multiplication in the ring \R modulo the relation , correspond to the formulas for addition and multiplication of complex numbers defined as ordered pairs. So the two definitions of the field \Complex are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
(as fields). Accepting that \Complex is algebraically closed, since it is an algebraic extension of \mathbb in this approach, \Complex is therefore the algebraic closure of \R.


Matrix representation of complex numbers

Complex numbers can also be represented by matrices that have the form: \begin a & -b \\ b & \;\; a \end Here the entries and are real numbers. As the sum and product of two such matrices is again of this form, these matrices form a
subring In mathematics, a subring of ''R'' is a subset of a ring that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and which shares the same multiplicative identity as ''R''. For those wh ...
of the ring matrices. A simple computation shows that the map: a+ib\mapsto \begin a & -b \\ b & \;\; a \end is a ring isomorphism from the field of complex numbers to the ring of these matrices. This isomorphism associates the square of the absolute value of a complex number with the determinant of the corresponding matrix, and the conjugate of a complex number with the transpose of the matrix. The geometric description of the multiplication of complex numbers can also be expressed in terms of rotation matrices by using this correspondence between complex numbers and such matrices. The action of the matrix on a vector corresponds to the multiplication of by . In particular, if the determinant is , there is a real number such that the matrix has the form: \begin \cos t & - \sin t \\ \sin t & \;\; \cos t \end In this case, the action of the matrix on vectors and the multiplication by the complex number \cos t+i\sin t are both the
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
of the angle .


Complex analysis

The study of functions of a complex variable is known as
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
and has enormous practical use in applied mathematics as well as in other branches of mathematics. Often, the most natural proofs for statements in real analysis or even number theory employ techniques from complex analysis (see
prime number theorem In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying ...
for an example). Unlike real functions, which are commonly represented as two-dimensional graphs,
complex function Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
s have four-dimensional graphs and may usefully be illustrated by color-coding a three-dimensional graph to suggest four dimensions, or by animating the complex function's dynamic transformation of the complex plane.


Complex exponential and related functions

The notions of convergent series and
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s in (real) analysis have natural analogs in complex analysis. A sequence of complex numbers is said to converge if and only if its real and imaginary parts do. This is equivalent to the
(ε, δ)-definition of limit Although the function (sin ''x'')/''x'' is not defined at zero, as ''x'' becomes closer and closer to zero, (sin ''x'')/''x'' becomes arbitrarily close to 1. In other words, the limit of (sin ''x'')/''x'', as ''x'' approaches z ...
s, where the absolute value of real numbers is replaced by the one of complex numbers. From a more abstract point of view, \mathbb, endowed with the metric \operatorname(z_1, z_2) = , z_1 - z_2, is a complete metric space, which notably includes the triangle inequality , z_1 + z_2, \le , z_1, + , z_2, for any two complex numbers and . Like in real analysis, this notion of convergence is used to construct a number of elementary functions: the '' exponential function'' , also written , is defined as the infinite series \exp z:= 1+z+\frac+\frac+\cdots = \sum_^ \frac. The series defining the real trigonometric functions
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
and cosine, as well as the hyperbolic functions sinh and cosh, also carry over to complex arguments without change. For the other trigonometric and hyperbolic functions, such as tangent, things are slightly more complicated, as the defining series do not converge for all complex values. Therefore, one must define them either in terms of sine, cosine and exponential, or, equivalently, by using the method of analytic continuation. '' Euler's formula'' states: \exp(i\varphi) = \cos \varphi + i\sin \varphi for any real number , in particular \exp(i \pi) = -1 , which is Euler's identity. Unlike in the situation of real numbers, there is an
infinitude Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the Greek mathematics, ancient Greeks, the Infinity (philosophy), philosophical nature of infinit ...
of complex solutions of the equation \exp z = w for any complex number . It can be shown that any such solution – called
complex logarithm In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in ...
of – satisfies \log w = \ln, w, + i\arg w, where arg is the
argument An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectic ...
defined above, and ln the (real)
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
. As arg is a multivalued function, unique only up to a multiple of , log is also multivalued. The
principal value In mathematics, specifically complex analysis, the principal values of a multivalued function are the values along one chosen branch of that function, so that it is single-valued. The simplest case arises in taking the square root of a positive ...
of log is often taken by restricting the imaginary part to the interval . Complex exponentiation is defined as z^\omega = \exp(\omega \ln z), and is multi-valued, except when is an integer. For , for some natural number , this recovers the non-uniqueness of th roots mentioned above. Complex numbers, unlike real numbers, do not in general satisfy the unmodified power and logarithm identities, particularly when naïvely treated as single-valued functions; see failure of power and logarithm identities. For example, they do not satisfy a^ = \left(a^b\right)^c. Both sides of the equation are multivalued by the definition of complex exponentiation given here, and the values on the left are a subset of those on the right.


Holomorphic functions

A function ''f'': \mathbb\mathbb is called holomorphic if it satisfies the Cauchy–Riemann equations. For example, any \mathbb-linear map \mathbb\mathbb can be written in the form f(z)=az+b\overline with complex coefficients and . This map is holomorphic if and only if . The second summand b \overline z is real-differentiable, but does not satisfy the Cauchy–Riemann equations. Complex analysis shows some features not apparent in real analysis. For example, any two holomorphic functions and that agree on an arbitrarily small
open subset In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suff ...
of \mathbb necessarily agree everywhere. Meromorphic functions, functions that can locally be written as with a holomorphic function , still share some of the features of holomorphic functions. Other functions have essential singularities, such as at .


Applications

Complex numbers have applications in many scientific areas, including signal processing, control theory, electromagnetism,
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, quantum mechanics, cartography, and vibration analysis. Some of these applications are described below.


Geometry


Shapes

Three non-collinear points u, v, w in the plane determine the shape of the triangle \. Locating the points in the complex plane, this shape of a triangle may be expressed by complex arithmetic as S(u, v, w) = \frac . The shape S of a triangle will remain the same, when the complex plane is transformed by translation or dilation (by an
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
), corresponding to the intuitive notion of shape, and describing similarity. Thus each triangle \ is in a similarity class of triangles with the same shape.


Fractal geometry

The Mandelbrot set is a popular example of a fractal formed on the complex plane. It is defined by plotting every location c where iterating the sequence f_c(z)=z^2+c does not diverge when
iterated Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. ...
infinitely. Similarly, Julia sets have the same rules, except where c remains constant.


Triangles

Every triangle has a unique Steiner inellipse – an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
inside the triangle and tangent to the midpoints of the three sides of the triangle. The
foci Focus, or its plural form foci may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in South Australia Film *''Focus'', a 1962 TV film starring James Whitmore * ''Focus'' (2001 film), a 2001 film based ...
of a triangle's Steiner inellipse can be found as follows, according to Marden's theorem: Denote the triangle's vertices in the complex plane as , , and . Write the cubic equation (x-a)(x-b)(x-c)=0, take its derivative, and equate the (quadratic) derivative to zero. Marden's theorem says that the solutions of this equation are the complex numbers denoting the locations of the two foci of the Steiner inellipse.


Algebraic number theory

As mentioned above, any nonconstant polynomial equation (in complex coefficients) has a solution in \mathbb. ''
A fortiori ''Argumentum a fortiori'' (literally "argument from the stronger eason) (, ) is a form of Argumentation theory, argumentation that draws upon existing confidence in a proposition to argue in favor of a second proposition that is held to be Logi ...
'', the same is true if the equation has rational coefficients. The roots of such equations are called
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s – they are a principal object of study in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
. Compared to \overline, the algebraic closure of \mathbb, which also contains all algebraic numbers, \mathbb has the advantage of being easily understandable in geometric terms. In this way, algebraic methods can be used to study geometric questions and vice versa. With algebraic methods, more specifically applying the machinery of field theory to the number field containing roots of unity, it can be shown that it is not possible to construct a regular nonagon using only compass and straightedge – a purely geometric problem. Another example is the Gaussian integers; that is, numbers of the form , where and are integers, which can be used to classify sums of squares.


Analytic number theory

Analytic number theory studies numbers, often integers or rationals, by taking advantage of the fact that they can be regarded as complex numbers, in which analytic methods can be used. This is done by encoding number-theoretic information in complex-valued functions. For example, the
Riemann zeta function The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > ...
is related to the distribution of prime numbers.


Improper integrals

In applied fields, complex numbers are often used to compute certain real-valued improper integrals, by means of complex-valued functions. Several methods exist to do this; see methods of contour integration.


Dynamic equations

In differential equations, it is common to first find all complex roots of the characteristic equation of a linear differential equation or equation system and then attempt to solve the system in terms of base functions of the form . Likewise, in difference equations, the complex roots of the characteristic equation of the difference equation system are used, to attempt to solve the system in terms of base functions of the form .


Linear algebra

Eigendecomposition is a useful tool for computing matrix powers and matrix exponentials. However, it often requires the use of complex numbers, even if the matrix is real (for example, a rotation matrix). Complex numbers often generalize concepts originally conceived in the real numbers. For example, the conjugate transpose generalizes the transpose, hermitian matrices generalize symmetric matrices, and
unitary matrices In linear algebra, a complex square matrix is unitary if its conjugate transpose is also its inverse, that is, if U^* U = UU^* = UU^ = I, where is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose ...
generalize
orthogonal matrices In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identity ma ...
.


In applied mathematics


Control theory

In control theory, systems are often transformed from the time domain to the complex frequency domain using the Laplace transform. The system's zeros and poles are then analyzed in the ''complex plane''. The root locus, Nyquist plot, and
Nichols plot The Nichols plot is a Plot (graphics), plot used in signal processing and control theory, control design, named after American engineer Nathaniel B. Nichols.Allen Stubberud, Ivan Williams, and Joseph DeStefano, ''Shaums Outline Feedback and Contr ...
techniques all make use of the complex plane. In the root locus method, it is important whether zeros and poles are in the left or right half planes, that is, have real part greater than or less than zero. If a linear, time-invariant (LTI) system has poles that are * in the right half plane, it will be unstable, * all in the left half plane, it will be
stable A stable is a building in which livestock, especially horses, are kept. It most commonly means a building that is divided into separate stalls for individual animals and livestock. There are many different types of stables in use today; the ...
, * on the imaginary axis, it will have marginal stability. If a system has zeros in the right half plane, it is a
nonminimum phase In control theory and signal processing, a linear, time-invariant system is said to be minimum-phase if the system and its inverse are causal and stable. The most general causal LTI transfer function can be uniquely factored into a series of a ...
system.


Signal analysis

Complex numbers are used in signal analysis and other fields for a convenient description for periodically varying signals. For given real functions representing actual physical quantities, often in terms of sines and cosines, corresponding complex functions are considered of which the real parts are the original quantities. For a
sine wave A sine wave, sinusoidal wave, or just sinusoid is a curve, mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph of a function, graph. It is a type of continuous wave and also a Smoothness, smooth p ...
of a given frequency, the absolute value of the corresponding is the amplitude and the
argument An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectic ...
is the
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform * Phase space, a mathematic ...
. If
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Josep ...
is employed to write a given real-valued signal as a sum of periodic functions, these periodic functions are often written as complex-valued functions of the form x(t) = \operatorname \ and X( t ) = A e^ = a e^ e^ = a e^ where ω represents the angular frequency and the complex number ''A'' encodes the phase and amplitude as explained above. This use is also extended into
digital signal processing Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are ...
and digital image processing, which use digital versions of Fourier analysis (and wavelet analysis) to transmit, compress, restore, and otherwise process
digital Digital usually refers to something using discrete digits, often binary digits. Technology and computing Hardware *Digital electronics, electronic circuits which operate using digital signals **Digital camera, which captures and stores digital i ...
audio Audio most commonly refers to sound, as it is transmitted in signal form. It may also refer to: Sound *Audio signal, an electrical representation of sound *Audio frequency, a frequency in the audio spectrum *Digital audio, representation of sound ...
signals, still images, and video signals. Another example, relevant to the two side bands of
amplitude modulation Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude (signal strength) of the wave is varied in proportion to ...
of AM radio, is: \begin \cos((\omega + \alpha)t) + \cos\left((\omega - \alpha)t\right) & = \operatorname\left(e^ + e^\right) \\ & = \operatorname\left(\left(e^ + e^\right) \cdot e^\right) \\ & = \operatorname\left(2\cos(\alpha t) \cdot e^\right) \\ & = 2 \cos(\alpha t) \cdot \operatorname\left(e^\right) \\ & = 2 \cos(\alpha t) \cdot \cos\left(\omega t\right). \end


In physics


Electromagnetism and electrical engineering

In
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
, the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
is used to analyze varying voltages and currents. The treatment of
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active el ...
s, capacitors, and inductors can then be unified by introducing imaginary, frequency-dependent resistances for the latter two and combining all three in a single complex number called the impedance. This approach is called
phasor In physics and engineering, a phasor (a portmanteau of phase vector) is a complex number representing a sinusoidal function whose amplitude (''A''), angular frequency (''ω''), and initial phase (''θ'') are time-invariant. It is related to ...
calculus. In electrical engineering, the imaginary unit is denoted by , to avoid confusion with , which is generally in use to denote
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
, or, more particularly, , which is generally in use to denote instantaneous electric current. Since the voltage in an AC
circuit Circuit may refer to: Science and technology Electrical engineering * Electrical circuit, a complete electrical network with a closed-loop giving a return path for current ** Analog circuit, uses continuous signal levels ** Balanced circu ...
is oscillating, it can be represented as V(t) = V_0 e^ = V_0 \left (\cos\omega t + j \sin\omega t \right ), To obtain the measurable quantity, the real part is taken: v(t) = \operatorname(V) = \operatorname\left V_0 e^ \right = V_0 \cos \omega t. The complex-valued signal is called the analytic representation of the real-valued, measurable signal .


Fluid dynamics

In
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, complex functions are used to describe
potential flow in two dimensions In fluid dynamics, potential flow (or ideal flow) describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid app ...
.


Quantum mechanics

The complex number field is intrinsic to the
mathematical formulations of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
, where complex
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s provide the context for one such formulation that is convenient and perhaps most standard. The original foundation formulas of quantum mechanics – the Schrödinger equation and Heisenberg's matrix mechanics – make use of complex numbers.


Relativity

In special and general relativity, some formulas for the metric on spacetime become simpler if one takes the time component of the spacetime continuum to be imaginary. (This approach is no longer standard in classical relativity, but is used in an essential way in
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
.) Complex numbers are essential to spinors, which are a generalization of the tensors used in relativity.


Generalizations and related notions

The process of extending the field \mathbb R of reals to \mathbb C is known as the Cayley–Dickson construction. It can be carried further to higher dimensions, yielding the
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s \mathbb H and octonions \mathbb which (as a real vector space) are of dimension 4 and 8, respectively. In this context the complex numbers have been called the binarions. Just as by applying the construction to reals the property of
ordering Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
is lost, properties familiar from real and complex numbers vanish with each extension. The
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s lose commutativity, that is, for some quaternions , and the multiplication of octonions, additionally to not being commutative, fails to be associative: for some octonions . Reals, complex numbers, quaternions and octonions are all normed division algebras over \mathbb R. By Hurwitz's theorem they are the only ones; the sedenions, the next step in the Cayley–Dickson construction, fail to have this structure. The Cayley–Dickson construction is closely related to the regular representation of \mathbb C, thought of as an \mathbb R- algebra (an \mathbb-vector space with a multiplication), with respect to the basis . This means the following: the \mathbb R-linear map \begin \mathbb &\rightarrow \mathbb \\ z &\mapsto wz \end for some fixed complex number can be represented by a matrix (once a basis has been chosen). With respect to the basis , this matrix is \begin \operatorname(w) & -\operatorname(w) \\ \operatorname(w) & \operatorname(w) \end, that is, the one mentioned in the section on matrix representation of complex numbers above. While this is a linear representation of \mathbb C in the 2 × 2 real matrices, it is not the only one. Any matrix J = \beginp & q \\ r & -p \end, \quad p^2 + qr + 1 = 0 has the property that its square is the negative of the identity matrix: . Then \ is also isomorphic to the field \mathbb C, and gives an alternative complex structure on \mathbb R^2. This is generalized by the notion of a linear complex structure. Hypercomplex numbers also generalize \mathbb R, \mathbb C, \mathbb H, and \mathbb. For example, this notion contains the
split-complex number In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number wi ...
s, which are elements of the ring \mathbb R (x^2-1) (as opposed to \mathbb R (x^2+1) for complex numbers). In this ring, the equation has four solutions. The field \mathbb R is the completion of \mathbb Q, the field of rational numbers, with respect to the usual
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
metric. Other choices of metrics on \mathbb Q lead to the fields \mathbb Q_p of -adic numbers (for any prime number ), which are thereby analogous to \mathbb. There are no other nontrivial ways of completing \mathbb Q than \mathbb R and \mathbb Q_p, by Ostrowski's theorem. The algebraic closures \overline of \mathbb Q_p still carry a norm, but (unlike \mathbb C) are not complete with respect to it. The completion \mathbb_p of \overline turns out to be algebraically closed. By analogy, the field is called -adic complex numbers. The fields \mathbb R, \mathbb Q_p, and their finite field extensions, including \mathbb C, are called local fields.


See also

*
Algebraic surface In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of di ...
* Circular motion using complex numbers * Complex-base system * Complex geometry * Dual-complex number *
Eisenstein integer In mathematics, the Eisenstein integers (named after Gotthold Eisenstein), occasionally also known as Eulerian integers (after Leonhard Euler), are the complex numbers of the form :z = a + b\omega , where and are integers and :\omega = \f ...
* Euler's identity *
Geometric algebra In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the ge ...
(which includes the complex plane as the 2-dimensional spinor subspace \mathcal_2^+) * Unit complex number


Notes


References


Works cited

* * * * *


Further reading

* * *


Mathematical

* * * * * *


Historical

* * * * — A gentle introduction to the history of complex numbers and the beginnings of complex analysis. * — An advanced perspective on the historical development of the concept of number. {{DEFAULTSORT:Complex Number Composition algebras