Casus Irreducibilis
In algebra, ''casus irreducibilis'' (Latin for "the irreducible case") is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically (as opposed to numerically), i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of ''casus irreducibilis'' is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in so-called ''casus irreducibilis'' by looking at the discriminant, via Cardano's formula. The three cases of the discriminant Let : ax^3+bx^2+cx+d=0 be a cubic equation with a\ne0. Then the discriminant is given by : D := \bigl((x_1-x_2)(x_1-x_3)(x_2-x_3)\bigr)^2 = 18abcd - 4ac^3 - 27a^2d^2 + b^2c^2 -4b^3d~. It appears in the algebraic solution and is the square of the pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formally Real Field
In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field. Alternative definitions The definition given above is not a first-order definition, as it requires quantifiers over sets. However, the following criteria can be coded as (infinitely many) first-order sentences in the language of fields and are equivalent to the above definition. A formally real field ''F'' is a field that also satisfies one of the following equivalent properties:Milnor and Husemoller (1973) p.60 * −1 is not a sum of squares in ''F''. In other words, the Stufe of ''F'' is infinite. (In particular, such a field must have characteristic 0, since in a field of characteristic ''p'' the element −1 is a sum of 1s.) This can be expressed in first-order logic by \forall x_1 (-1 \ne x_1^2), \forall x_1 x_2 (-1 \ne x_1^2 + x_2^2), etc., with one sentence for each number of va ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cubic Equation
In algebra, a cubic equation in one variable is an equation of the form :ax^3+bx^2+cx+d=0 in which is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients , , , and of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: * algebraically, that is, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations and th roots (radicals). (This is also true of quadratic (second-degree) and quartic (fourth-degree) equations, but not of higher-degree equations, by the Abel–Ruffini theorem.) * trigonometrically * numerical approximations of the roots can be found using root-finding algorithms such as Newton's method. The coefficients do not need to be real numbers. Much of what is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tschirnhaus Transformation
In mathematics, a Tschirnhaus transformation, also known as Tschirnhausen transformation, is a type of mapping on polynomials developed by Ehrenfried Walther von Tschirnhaus in 1683. Simply, it is a method for transforming a polynomial equation of degree n\ge2 with some nonzero intermediate coefficients, a_1, ..., a_, such that some or all of the transformed intermediate coefficients, a'_1, ..., a'_, are exactly zero. For example, finding a substitutiony(x)=k_1x^2 + k_2x+k_3for a cubic equation of degree n=3,f(x) = x^3+a_2x^2+a_1x+a_0such that substituting x=x(y) yields a new equationf'(y)=y^3+a'_2y^2+a'_1y+a'_0such that a'_1=0, a'_2=0, or both. More generally, it may be defined conveniently by means of field theory, as the transformation on minimal polynomials implied by a different choice of primitive element. This is the most general transformation of an irreducible polynomial that takes a root to some rational function applied to that root. Definition For a generic n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trinomial
In elementary algebra, a trinomial is a polynomial consisting of three terms or monomials. Examples of trinomial expressions # 3x + 5y + 8z with x, y, z variables # 3t + 9s^2 + 3y^3 with t, s, y variables # 3ts + 9t + 5s with t, s variables # ax^2+bx+c, the quadratic expression in standard form with a,b,c variables. # A x^a y^b z^c + B t + C s with x, y, z, t, s variables, a, b, c nonnegative integers and A, B, C any constants. # Px^a + Qx^b + Rx^c where x is variable and constants a, b, c are nonnegative integers and P, Q, R any constants. Trinomial equation A trinomial equation is a polynomial equation involving three terms. An example is the equation x = q + x^m studied by Johann Heinrich Lambert in the 18th century. Some notable trinomials * The quadratic trinomial in standard form (as from above): ax^2+bx+c See also *Trinomial expansion *Monomial *Binomial * Multinomial * Simple expression *Compound expression *Sparse polynomial In mathematics, a sparse polynomial ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monic Polynomial
In algebra, a monic polynomial is a single-variable polynomial (that is, a univariate polynomial) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. Therefore, a monic polynomial has the form: :x^n+c_x^+\cdots+c_2x^2+c_1x+c_0 Univariate polynomials If a polynomial has only one indeterminate (univariate polynomial), then the terms are usually written either from highest degree to lowest degree ("descending powers") or from lowest degree to highest degree ("ascending powers"). A univariate polynomial in ''x'' of degree ''n'' then takes the general form displayed above, where : ''c''''n'' ≠ 0, ''c''''n''−1, ..., ''c''2, ''c''1 and ''c''0 are constants, the coefficients of the polynomial. Here the term ''c''''n''''x''''n'' is called the ''leading term'', and its coefficient ''c''''n'' the ''leading coefficient''; if the leading coefficient , the univariate polynomial is called monic. Properties Multiplicatively closed The set ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordered Field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered field is isomorphic to the reals. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit ''i'' is . Finite fields cannot be ordered. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and formally real fields. Definitions There are two equivalent common definitions of an ordered f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Root Of Unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation :z^n = 1. Unless otherwise specified, the roots of unity may be taken to be complex numbers (incl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjugate Element (field Theory)
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element , over a field extension , are the roots of the minimal polynomial of over . Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally itself is included in the set of conjugates of . Equivalently, the conjugates of are the images of under the field automorphisms of that leave fixed the elements of . The equivalence of the two definitions is one of the starting points of Galois theory. The concept generalizes the complex conjugation, since the algebraic conjugates over \R of a complex number are the number itself and its ''complex conjugate''. Example The cube roots of the number one are: : \sqrt = \begin1 \\ pt-\frac+\fraci \\ pt-\frac-\fraci \end The latter two roots are conjugate elements in with minimal polynomial : \left(x+\frac\right)^2+\frac=x^2+x+1. Properties If ''K'' is given inside an al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cyclic Extension
In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension. Class field theory provides detailed information about the abelian extensions of number fields, function fields of algebraic curves over finite fields, and local fields. There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either definition, is always abelian. If a field ''K'' contains a primitive ''n''-th root of unity and the ''n''-th ro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Splitting Field
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polynomial ''p''(''X'') over a field ''K'' is a field extension ''L'' of ''K'' over which ''p'' factors into linear factors :p(X) = c\prod_^ (X - a_i) where c\in K and for each i we have X - a_i \in L /math> with ''ai'' not necessarily distinct and such that the roots ''ai'' generate ''L'' over ''K''. The extension ''L'' is then an extension of minimal degree over ''K'' in which ''p'' splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of ''p'' (if we assume it is separable). Properties An extension ''L'' which is a splitting field for a set of polynomials ''p''(''X'') over ''K'' is called a normal extension of ''K''. Given an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |