In
abstract algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathe ...
, an abelian extension is a
Galois extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ' ...
whose
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
is
abelian. When the Galois group is also
cyclic
Cycle, cycles, or cyclic may refer to:
Anthropology and social sciences
* Cyclic history, a theory of history
* Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr.
* Social cycle, various cycles in s ...
, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is
solvable, i.e., if the group can be decomposed into a series of normal
extensions
Extension, extend or extended may refer to:
Mathematics
Logic or set theory
* Axiom of extensionality
* Extensible cardinal
* Extension (model theory)
* Extension (predicate logic), the set of tuples of values that satisfy the predicate
* E ...
of an abelian group.
Every finite extension of a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
is a cyclic extension.
Class field theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.
Hilbert is credit ...
provides detailed information about the abelian extensions of
number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a f ...
s,
function fields of
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
s over finite fields, and
local field
In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact ...
s.
There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining
roots of unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in ...
to a field, or a subextension of such an extension. The
cyclotomic field
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers.
Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of ...
s are examples. A cyclotomic extension, under either definition, is always abelian.
If a field ''K'' contains a primitive ''n''-th root of unity and the ''n''-th root of an element of ''K'' is adjoined, the resulting
Kummer extension In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of ''n''th roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer a ...
is an abelian extension (if ''K'' has characteristic ''p'' we should say that ''p'' doesn't divide ''n'', since otherwise this can fail even to be a
separable extension In field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial of \alpha over is a separable polynomial (i.e., its formal derivative is not the zero polyno ...
). In general, however, the Galois groups of ''n''-th roots of elements operate both on the ''n''-th roots and on the roots of unity, giving a non-abelian Galois group as
semi-direct product
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:
* an ''inner'' semidirect product is a particular way in ...
. The
Kummer theory In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of ''n''th roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer ar ...
gives a complete description of the abelian extension case, and the
Kronecker–Weber theorem
In algebraic number theory, it can be shown that every cyclotomic field is an abelian extension of the rational number field Q, having Galois group of the form (\mathbb Z/n\mathbb Z)^\times. The Kronecker–Weber theorem provides a partial conve ...
tells us that if ''K'' is the field of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s, an extension is abelian if and only if it is a subfield of a field obtained by adjoining a root of unity.
There is an important analogy with the
fundamental group in
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, which classifies all covering spaces of a space: abelian covers are classified by its
abelianisation
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
The commutator subgroup is important because it is the smallest normal s ...
which relates directly to the first
homology group
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
.
References
*
*{{MathWorld , id=AbelianExtension , title=Abelian Extension
Field extensions
Algebraic number theory
Class field theory