HOME
*





Ars Magna (Cardano Book)
The ''Ars Magna'' (''The Great Art'', 1545) is an important Latin-language book on algebra written by Gerolamo Cardano. It was first published in 1545 under the title ''Artis Magnae, Sive de Regulis Algebraicis Liber Unus'' (''Book number one about The Great Art, or The Rules of Algebra''). There was a second edition in Cardano's lifetime, published in 1570. It is considered one of the three greatest scientific treatises of the early Renaissance, together with Copernicus' ''De revolutionibus orbium coelestium'' and Vesalius' ''De humani corporis fabrica''. The first editions of these three books were published within a two-year span (1543–1545). History In 1535 Niccolò Fontana Tartaglia became famous for having solved cubics of the form ''x''3 + ''ax'' = ''b'' (with ''a'',''b'' > 0). However, he chose to keep his method secret. In 1539, Cardano, then a lecturer in mathematics at the Piatti Foundation in Milan, published his first mathematical boo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Girolamo Cardano
Gerolamo Cardano (; also Girolamo or Geronimo; french: link=no, Jérôme Cardan; la, Hieronymus Cardanus; 24 September 1501– 21 September 1576) was an Italian polymath, whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, astronomer, philosopher, writer, and gambler. He was one of the most influential mathematicians of the Renaissance, and was one of the key figures in the foundation of probability and the earliest introducer of the binomial coefficients and the binomial theorem in the Western world. He wrote more than 200 works on science. Cardano partially invented and described several mechanical devices including the combination lock, the gimbal consisting of three concentric rings allowing a supported compass or gyroscope to rotate freely, and the Cardan shaft with universal joints, which allows the transmission of rotary motion at various angles and is used in vehicles to this day. He made signif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lodovico Ferrari
Lodovico de Ferrari (2 February 1522 – 5 October 1565) was an Italian mathematician. Biography Born in Bologna, Lodovico's grandfather, Bartolomeo Ferrari, was forced out of Milan to Bologna. Lodovico settled in Bologna, and he began his career as the servant of Gerolamo Cardano. He was extremely bright, so Cardano started teaching him mathematics. Ferrari aided Cardano on his solutions for quadratic equations and cubic equations, and was mainly responsible for the solution of quartic equations that Cardano published. While still in his teens, Ferrari was able to obtain a prestigious teaching post in Rome after Cardano resigned from it and recommended him. Ferrari retired when young at 42 years old, and wealthy. He then moved back to his home town of Bologna where he lived with his widowed sister Maddalena to take up a professorship of mathematics at the University of Bologna in 1565. Shortly thereafter, he died of white arsenic poisoning, according to a legend, by his si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1545 Books
Year 1545 ( MDXLV) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. Events January–June * February 22 – A firman of the Ottoman Empire is issued for the dethronement of Radu Paisie as Prince of Wallachia. * February 27 – Battle of Ancrum Moor: The Scots are victorious over numerically superior English forces. * March 24 – At a diet in Worms, Germany, summoned by Pope Paul III, the German Protestant princes demand a national religious settlement for Germany. Holy Roman Emperor, Charles V refuses. *April 1 – Potosí is founded by the Spanish as a mining town after the discovery of huge silver deposits in this area of modern-day Bolivia. Silver mined from Huayna Potosí Mountain provides most of the wealth on which the Spanish Empire is based until its fall in the early 19th century. * June 13 – Spanish explorer Yñigo Ortiz de Retez sets out to navigate the northern coast of New Guinea. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Mathematics
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars. The earliest mathematical texts available are from Mesopotamia and Egypt – '' Plimpton 322'' ( Babylonian c. 2000 – 1900 BC), the ''Rhind Mathematical Papyrus'' ( Egyptian c. 1800 BC) and the '' Moscow Mathematical Papyrus'' (Egyptian c. 1890 BC). All of these texts mention the so-called Pythagorean triples, so, by inference, the Pythagorean theorem seems to be the most anci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics Books
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiplicity (mathematics)
In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, ''double roots'' counted twice). Hence the expression, "counted with multiplicity". If multiplicity is ignored, this may be emphasized by counting the number of ''distinct'' elements, as in "the number of distinct roots". However, whenever a set (as opposed to multiset) is formed, multiplicity is automatically ignored, without requiring use of the term "distinct". Multiplicity of a prime factor In prime factorization, the multiplicity of a prime factor is its p-adic valuation. For example, the prime factorization of the integer is : the multiplicity of the prime factor is , while the multiplicity of each of the prime factors and is . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Negative Numbers
In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as ''positive'' and ''negative''. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, −(−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of three, and is pronounced "minu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quartic Equation
In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynomial equation that can be solved by radicals in the general case (i.e., one in which the coefficients can take any value). History Lodovico Ferrari is attributed with the discovery of the solution to the quartic in 1540, but since this solution, like all algebraic solutions of the quartic, requires the solution of a cubic to be found, it couldn't be published immediately. The solution of the quartic was published together with that of the cubic by Ferrari's mentor Gerolamo Cardano in the book '' Ars Magna'' (1545). The proof that this was the highest order general polynomial for which such solutions could be found was first given in the Abel–Ruffini theorem in 1824, proving that all attempts at solving the higher order polynomials would ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Equation
In algebra, a cubic equation in one variable is an equation of the form :ax^3+bx^2+cx+d=0 in which is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients , , , and of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: * algebraically, that is, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations and th roots (radicals). (This is also true of quadratic (second-degree) and quartic (fourth-degree) equations, but not of higher-degree equations, by the Abel–Ruffini theorem.) * trigonometrically * numerical approximations of the roots can be found using root-finding algorithms such as Newton's method. The coefficients do not need to be real numbers. Much of what is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scipione Del Ferro
Scipione del Ferro (6 February 1465 – 5 November 1526) was an Italian mathematician who first discovered a method to solve the depressed cubic equation. Life Scipione del Ferro was born in Bologna, in northern Italy, to Floriano and Filippa Ferro. His father, Floriano, worked in the paper industry, which owed its existence to the invention of the press in the 1450s and which probably allowed Scipione to access various works during the early stages of his life. He married and had a daughter, who was named Filippa after his mother. He likely studied at the University of Bologna, where he was appointed a lecturer there in Arithmetic and Geometry in 1496. During his last years, he also undertook commercial work. Diffusion of his work There are no surviving scripts from del Ferro. This is in large part due to his resistance to communicating his works. Instead of publishing his ideas, he would only show them to a small, select group of friends and students. It is suspected th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Equations
In algebra, a cubic equation in one variable is an equation of the form :ax^3+bx^2+cx+d=0 in which is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients , , , and of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: * algebraically, that is, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations and th roots (radicals). (This is also true of quadratic (second-degree) and quartic (fourth-degree) equations, but not of higher-degree equations, by the Abel–Ruffini theorem.) * trigonometrically * numerical approximations of the roots can be found using root-finding algorithms such as Newton's method. The coefficients do not need to be real numbers. Much of what is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]