Magnetite magnetosomes in Gammaproteobacteria.png
   HOME

TheInfoList



OR:

Magnetite is a mineral and one of the main
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the fo ...
s, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be
magnetized Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
to become a
permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
itself. With the exception of extremely rare
native iron Telluric iron, also called native iron, is iron that originated on Earth, and is found in a metallic form rather than as an ore. Telluric iron is extremely rare, with only one known major deposit in the world, located in Greenland. Introduction Wi ...
deposits, it is the most
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
of all the naturally occurring minerals on Earth. Naturally magnetized pieces of magnetite, called lodestone, will attract small pieces of iron, which is how ancient peoples first discovered the property of
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
. Magnetite is black or brownish-black with a metallic luster, has a Mohs hardness of 5–6 and leaves a black streak. Small grains of magnetite are very common in igneous and metamorphic rocks. The chemical IUPAC name is
iron(II,III) oxide Iron(II,III) oxide is the chemical compound with formula Fe3O4. It occurs in nature as the mineral magnetite. It is one of a number of iron oxides, the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe2O3) which also occur ...
and the common chemical name is ''ferrous-ferric oxide''.


Properties

In addition to igneous rocks, magnetite also occurs in
sedimentary rocks Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles t ...
, including banded iron formations and in lake and marine sediments as both detrital grains and as magnetofossils. Magnetite nanoparticles are also thought to form in soils, where they probably oxidize rapidly to maghemite.


Crystal structure

The chemical composition of magnetite is Fe2+(Fe3+)2(O2-)4. This indicates that magnetite contains both ferrous ( divalent) and ferric ( trivalent) iron, suggesting crystallization in an environment containing intermediate levels of oxygen. The main details of its structure were established in 1915. It was one of the first crystal structures to be obtained using
X-ray diffraction X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
. The structure is inverse
spinel Spinel () is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula in the cubic crystal system. Its name comes from the Latin word , which means ''spine'' in reference to its pointed crystals. Properties S ...
, with O2− ions forming a face-centered cubic lattice and iron cations occupying interstitial sites. Half of the Fe3+ cations occupy tetrahedral sites while the other half, along with Fe2+ cations, occupy octahedral sites. The unit cell consists of 32O2− ions and unit cell length is ''a'' = 0.839 nm. As a member of the inverse spinel group, magnetite can form solid solutions with similarly structured minerals, including ulvospinel () and
magnesioferrite Magnesioferrite is a magnesium iron oxide mineral, a member of the magnetite series of spinels. Magnesioferrite crystallizes as black metallic octahedral crystals. It is named after its chemical composition of magnesium and ferric iron. The densit ...
(). Titanomagnetite, also known as titaniferous magnetite, is a solid solution between magnetite and ulvospinel that crystallizes in many mafic igneous rocks. Titanomagnetite may undergo oxyexsolution during cooling, resulting in ingrowths of magnetite and ilmenite.


Crystal morphology and size

Natural and synthetic magnetite occurs most commonly as octahedral crystals bounded by planes and as rhombic-dodecahedra. Twinning occurs on the plane. Hydrothermal synthesis usually produces single octahedral crystals which can be as large as across. In the presence of mineralizers such as 0.1M HI or 2M NH4Cl and at 0.207 MPa at 416–800 °C, magnetite grew as crystals whose shapes were a combination of rhombic-dodechahedra forms. The crystals were more rounded than usual. The appearance of higher forms was considered as a result from a decrease in the surface energies caused by the lower surface to volume ratio in the rounded crystals.


Reactions

Magnetite has been important in understanding the conditions under which rocks form. Magnetite reacts with oxygen to produce
hematite Hematite (), also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of . ...
, and the mineral pair forms a buffer that can control how oxidizing its environment is (the oxygen fugacity). This buffer is known as the hematite-magnetite or HM buffer. At lower oxygen levels, magnetite can form a buffer with quartz and fayalite known as the QFM buffer. At still lower oxygen levels, magnetite forms a buffer with wüstite known as the MW buffer. The QFM and MW buffers have been used extensively in laboratory experiments on rock chemistry. The QFM buffer, in particular, produces an oxygen fugacity close to that of most igneous rocks. Commonly, igneous rocks contain solid solutions of both titanomagnetite and hemoilmenite or titanohematite. Compositions of the mineral pairs are used to calculate oxygen fugacity: a range of oxidizing conditions are found in magmas and the oxidation state helps to determine how the magmas might evolve by
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
. Magnetite also is produced from
peridotite Peridotite ( ) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high prop ...
s and dunites by serpentinization.


Magnetic properties

Lodestones were used as an early form of magnetic compass. Magnetite has been a critical tool in
paleomagnetism Paleomagnetism (or palaeomagnetismsee ), is the study of magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called ''paleomagnetists.'' Certain magnetic minerals in rock ...
, a science important in understanding plate tectonics and as historic data for magnetohydrodynamics and other
scientific fields The branches of science, also referred to as sciences, scientific fields or scientific disciplines, are commonly divided into three major groups: *Formal sciences: the study of formal systems, such as those under the branches of logic and ma ...
. The relationships between magnetite and other iron oxide minerals such as ilmenite, hematite, and ulvospinel have been much studied; the reactions between these minerals and oxygen influence how and when magnetite preserves a record of the Earth's magnetic field. At low temperatures, magnetite undergoes a crystal structure phase transition from a monoclinic structure to a cubic structure known as the
Verwey transition The Verwey transition is a low-temperature phase transition in the mineral magnetite associated with changes in its magnetic, electrical, and thermal properties. It typically occurs near a temperature of 120 K but is observed at a range of tempera ...
. Optical studies show that this metal to insulator transition is sharp and occurs around 120K. The Verwey transition is dependent on grain size, domain state, pressure, and the iron-oxygen
stoichiometry Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equal ...
. An isotropic point also occurs near the Verwey transition around 130K, at which point the sign of the magnetocrystalline anisotropy constant changes from positive to negative. The Curie temperature of magnetite is . If magnetite is in a large enough quantity it can be found in aeromagnetic surveys using a
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, o ...
which measures magnetic intensities.


Melting point

Solid magnetite particles melt at about .


Distribution of deposits

Magnetite is sometimes found in large quantities in beach sand. Such black sands (mineral sands or
iron sand Ironsand, also known as iron-sand or iron sand, is a type of sand with heavy concentrations of iron. It is typically dark grey or blackish in colour. It is composed mainly of magnetite, Fe3O4, and also contains small amounts of titanium, silic ...
s) are found in various places, such as Lung Kwu Tan of Hong Kong; California, United States; and the west coast of the North Island of New Zealand. The magnetite, eroded from rocks, is carried to the beach by rivers and concentrated by wave action and currents. Huge deposits have been found in banded iron formations. These sedimentary rocks have been used to infer changes in the oxygen content of the atmosphere of the Earth. Large deposits of magnetite are also found in the Atacama region of Chile (
Chilean Iron Belt The Chilean Iron Belt is a geological province rich in iron ore deposits in northern Chile. It extends as a north-south beld along the western part of the Chilean regions of Coquimbo and Atacama, chiefly between the cities of La Serena and Talta ...
); the
Valentines Valentine's Day, also called Saint Valentine's Day or the Feast of Saint Valentine, is celebrated annually on February 14. It originated as a Christian feast day honoring one or two early Christian martyrs named Saint Valentine and, thro ...
region of Uruguay;
Kiruna (; se, Giron ; fi, Kiiruna ) is the northernmost Stad (Sweden), city in Sweden, situated in the province of Lapland, Sweden, Lapland. It had 17,002 inhabitants in 2016 and is the seat of Kiruna Municipality (population: 23,167 in 2016) in Norr ...
,
Sweden Sweden, formally the Kingdom of Sweden,The United Nations Group of Experts on Geographical Names states that the country's formal name is the Kingdom of SwedenUNGEGN World Geographical Names, Sweden./ref> is a Nordic country located on ...
; the Tallawang Region of New South Wales; and in the Adirondack region of
New York New York most commonly refers to: * New York City, the most populous city in the United States, located in the state of New York * New York (state), a state in the northeastern United States New York may also refer to: Film and television * '' ...
in the United States.
Kediet ej Jill Kediet ej Jill () is a mountain in Tiris Zemmour, Mauritania, with the city of Zouérat on its east and Fderick at west. At tall, Kediet ej Jill includes the highest peak in Mauritania. The mountain and its surrounding area are rich in iron ...
, the highest mountain of
Mauritania Mauritania (; ar, موريتانيا, ', french: Mauritanie; Berber: ''Agawej'' or ''Cengit''; Pulaar: ''Moritani''; Wolof: ''Gànnaar''; Soninke:), officially the Islamic Republic of Mauritania ( ar, الجمهورية الإسلامية ...
, is made entirely of the mineral. Deposits are also found in Norway, Romania, and Ukraine. Magnetite-rich sand dunes are found in southern Peru. In 2005, an exploration company, Cardero Resources, discovered a vast deposit of magnetite-bearing sand dunes in Peru. The dune field covers 250 square kilometers (100 sq mi), with the highest dune at over 2,000 meters (6,560 ft) above the desert floor. The sand contains 10% magnetite. In large enough quantities magnetite can affect compass navigation. In Tasmania there are many areas with highly magnetized rocks that can greatly influence compasses. Extra steps and repeated observations are required when using a compass in Tasmania to keep navigation problems to the minimum. Magnetite crystals with a
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
habit are rare but have been found at Balmat, St. Lawrence County, New York, and at Långban, Sweden. This habit may be a result of crystallization in the presence of cations such as zinc. Magnetite can also be found in fossils due to biomineralization and are referred to as
magnetofossil Magnetofossils are the fossil remains of magnetic particles produced by magnetotactic bacteria (magnetobacteria) and preserved in the geologic record. The oldest definitive magnetofossils formed of the mineral magnetite come from the Cretaceous ch ...
s. There are also instances of magnetite with origins in space coming from
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
s.


Biological occurrences

Biomagnetism Biomagnetism is the phenomenon of magnetic fields ''produced'' by living organisms; it is a subset of bioelectromagnetism. In contrast, organisms' use of magnetism in navigation is magnetoception and the study of the magnetic fields' ''effects'' on ...
is usually related to the presence of biogenic crystals of magnetite, which occur widely in organisms. These organisms range from magnetotactic bacteria (e.g., ''
Magnetospirillum magnetotacticum ''Magnetospirillum'' is a Gram-negative, microaerophilic genus of magnetotactic bacterium, first isolated from pond water by the microbiologist R. P. Blakemore in 1975. They have a spiral (helical) shape and are propelled by a polar flagellum ...
'') to animals, including humans, where magnetite crystals (and other magnetically sensitive compounds) are found in different organs, depending on the species. Biomagnetites account for the effects of weak magnetic fields on biological systems. There is also a chemical basis for cellular sensitivity to electric and magnetic fields ( galvanotaxis). Pure magnetite particles are biomineralized in magnetosomes, which are produced by several species of magnetotactic bacteria. Magnetosomes consist of long chains of oriented magnetite particle that are used by bacteria for navigation. After the death of these bacteria, the magnetite particles in magnetosomes may be preserved in sediments as magnetofossils. Some types of anaerobic bacteria that are not magnetotactic can also create magnetite in oxygen free sediments by reducing amorphic ferric oxide to magnetite. Several species of birds are known to incorporate magnetite crystals in the upper beak for
magnetoreception Magnetoreception is a sense which allows an organism to detect the Earth's magnetic field. Animals with this sense include some arthropods, molluscs, and vertebrates (fish, amphibians, reptiles, birds, and mammals, though not humans). The se ...
, which (in conjunction with
cryptochromes Cryptochromes (from the Greek κρυπτός χρώμα, "hidden colour") are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields i ...
in the retina) gives them the ability to sense the direction,
polarity Polarity may refer to: Science *Electrical polarity, direction of electrical current *Polarity (mutual inductance), the relationship between components such as transformer windings * Polarity (projective geometry), in mathematics, a duality of ord ...
, and magnitude of the ambient
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. Chitons, a type of mollusk, have a tongue-like structure known as a
radula The radula (, ; plural radulae or radulas) is an anatomical structure used by molluscs for feeding, sometimes compared to a tongue. It is a minutely toothed, chitinous ribbon, which is typically used for scraping or cutting food before the food ...
, covered with magnetite-coated teeth, or denticles. The hardness of the magnetite helps in breaking down food. Biological magnetite may store information about the magnetic fields the organism was exposed to, potentially allowing scientists to learn about the migration of the organism or about changes in the Earth's magnetic field over time.


Human brain

Living organisms can produce magnetite. In humans, magnetite can be found in various parts of the brain including the frontal, parietal, occipital, and temporal lobes, brainstem, cerebellum and basal ganglia.Magnetite Nano-Particles in Information Processing: From the Bacteria to the Human Brain Neocortex - Iron can be found in three forms in the brain – magnetite, hemoglobin (blood) and ferritin (protein), and areas of the brain related to motor function generally contain more iron. Magnetite can be found in the hippocampus. The hippocampus is associated with information processing, specifically learning and memory. However, magnetite can have toxic effects due to its charge or magnetic nature and its involvement in oxidative stress or the production of free radicals. Research suggests that beta-amyloid plaques and tau proteins associated with neurodegenerative disease frequently occur after oxidative stress and the build-up of iron. Some researchers also suggest that humans possess a magnetic sense, proposing that this could allow certain people to use magnetoreception for navigation. The role of magnetite in the brain is still not well understood, and there has been a general lag in applying more modern, interdisciplinary techniques to the study of biomagnetism. Electron microscope scans of human brain-tissue samples are able to differentiate between magnetite produced by the body's own cells and magnetite absorbed from airborne pollution, the natural forms being jagged and crystalline, while magnetite pollution occurs as rounded nanoparticles. Potentially a human health hazard, airborne magnetite is a result of pollution (specifically combustion). These nanoparticles can travel to the brain via the olfactory nerve, increasing the concentration of magnetite in the brain. In some brain samples, the nanoparticle pollution outnumbers the natural particles by as much as 100:1, and such pollution-borne magnetite particles may be linked to abnormal neural deterioration. In one study, the characteristic nanoparticles were found in the brains of 37 people: 29 of these, aged 3 to 85, had lived and died in Mexico City, a significant air pollution hotspot. Some of the further eight, aged 62 to 92, from Manchester, England, had died with varying severities of neurodegenerative diseases. Such particles could conceivably contribute to diseases like
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
. Though a causal link has not yet been established, laboratory studies suggest that iron oxides such as magnetite are a component of protein plaques in the brain. Such plaques have been linked to Alzheimer's disease. Increased iron levels, specifically magnetic iron, have been found in portions of the brain in Alzheimer's patients. Monitoring changes in iron concentrations may make it possible to detect the loss of neurons and the development of neurodegenerative diseases prior to the onset of symptoms due to the relationship between magnetite and ferritin. In tissue, magnetite and ferritin can produce small magnetic fields which will interact with magnetic resonance imaging (MRI) creating contrast. Huntington patients have not shown increased magnetite levels; however, high levels have been found in study mice.


Applications

Due to its high iron content, magnetite has long been a major
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the fo ...
. It is reduced in
blast furnaces A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric p ...
to
pig iron Pig iron, also known as crude iron, is an intermediate product of the iron industry in the production of steel which is obtained by smelting iron ore in a blast furnace. Pig iron has a high carbon content, typically 3.8–4.7%, along with silic ...
or sponge iron for conversion to
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
.


Magnetic recording

Audio recording using magnetic acetate tape was developed in the 1930s. The German
magnetophon Magnetophone, or simply Magnetophon, was the brand or model name of the pioneering reel-to-reel tape recorder developed by engineers of the German electronics company AEG in the 1930s, based on the magnetic tape invention by Fritz Pfleumer Fr ...
utilized magnetite powder as the recording medium. Following World War II, 3M Company continued work on the German design. In 1946, the 3M researchers found they could improve the magnetite-based tape, which utilized powders of cubic crystals, by replacing the magnetite with needle-shaped particles of gamma ferric oxide (γ-Fe2O3).


Catalysis

Approximately 2–3% of the world's energy budget is allocated to the Haber Process for nitrogen fixation, which relies on magnetite-derived catalysts. The industrial catalyst is obtained from finely ground iron powder, which is usually obtained by reduction of high-purity magnetite. The pulverized iron metal is burnt (oxidized) to give magnetite or wüstite of a defined particle size. The magnetite (or wüstite) particles are then partially reduced, removing some of the oxygen in the process. The resulting catalyst particles consist of a core of magnetite, encased in a shell of wüstite, which in turn is surrounded by an outer shell of iron metal. The catalyst maintains most of its bulk volume during the reduction, resulting in a highly porous high-surface-area material, which enhances its effectiveness as a catalyst.


Magnetite nanoparticles

Magnetite micro- and nanoparticles are used in a variety of applications, from biomedical to environmental. One use is in water purification: in high gradient magnetic separation, magnetite nanoparticles introduced into contaminated water will bind to the suspended particles (solids, bacteria, or plankton, for example) and settle to the bottom of the fluid, allowing the contaminants to be removed and the magnetite particles to be recycled and reused. This method works with radioactive and carcinogenic particles as well, making it an important cleanup tool in the case of heavy metals introduced into water systems. Another application of magnetic nanoparticles is in the creation of ferrofluids. These are used in several ways, in addition to being fun to play with. Ferrofluids can be used for targeted drug delivery in the human body. The magnetization of the particles bound with drug molecules allows "magnetic dragging" of the solution to the desired area of the body. This would allow the treatment of only a small area of the body, rather than the body as a whole, and could be highly useful in cancer treatment, among other things. Ferrofluids are also used in magnetic resonance imaging (MRI) technology.


Coal mining industry

For the separation of coal from waste, dense medium baths were used. This technique employed the difference in densities between coal (1.3–1.4 tonnes per m³) and shales (2.2–2.4 tonnes per m³). In a medium with intermediate density (water with magnetite), stones sank and coal floated.


Magnetene

Magnetene is a 2 dimensional flat sheet of magnetite noted for its ultra-low-friction behavior.


Gallery of magnetite mineral specimens

File:Magnetite-278427.jpg, Octahedral crystals of magnetite up to 1.8 cm across, on cream colored feldspar crystals, locality: Cerro Huañaquino, Potosí Department, Bolivia File:Magnetite-170591.jpg, Magnetite crystals with epitaxial elevations on their faces File:Chalcopyrite-Magnetite-cktsr-10c.jpg, Magnetite in contrasting chalcopyrite matrix File:Magnetite-rw16b.jpg, Magnetite with a rare cubic habit from St. Lawrence County, New York


See also

*
Bluing (steel) Bluing is a passivation process in which steel is partially protected against rust using a black oxide coating. It is named after the blue-black appearance of the resulting protective finish. Bluing involves an electrochemical conversion coati ...
, a process in which steel is partially protected against rust by a layer of magnetite *
Buena Vista Iron Ore District The Buena Vista Mine is located south of Lovelock, Nevada. In the past, the area has been known as the Mineral Basin (discovered in 1880), though another name for the area has been the Buena Vista District. There are at least two other Buena Vist ...
* Corrosion product * Ferrite * Greigite * Magnesia (in natural mixtures with magnetite) * Mill scale *
Magnes the shepherd Magnes the shepherd, sometimes described as Magnes the shepherd boy, is a mythological figure, possibly based on a real person, who was cited by Pliny the Elder as discovering natural magnetism. His name, "Magnes", the Latin word for ''magnetite'' ...
*
Rainbow lattice sunstone Rainbow lattice sunstone, also known as rainbow lattice, is a type of orthoclase feldspar that exhibits a rare combination of aventurescence, adularescence, and a distinctive iridescence lattice pattern. The iridescence lattice pattern consists ...


References


Further reading

* *


External links


Mineral galleriesMagnetite mining in New Zealand
Accessed 25-Mar-09 {{Authority control Iron(II,III) minerals Spinel group Spinel gemstones Ferromagnetic materials Iron oxide pigments Cubic minerals Iron ores Magnetic minerals Ferrites