HOME

TheInfoList



OR:

In
computing Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, ...
, memory is a device or system that is used to store information for immediate use in a
computer A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations ( computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These prog ...
or related computer hardware and digital electronic devices. The term ''memory'' is often synonymous with the term '' primary storage'' or '' main memory''. An archaic synonym for memory is store. Computer memory operates at a high speed compared to storage that is slower but less expensive and higher in capacity. Besides storing opened programs, computer memory serves as disk cache and write buffer to improve both reading and writing performance. Operating systems borrow RAM capacity for caching so long as not needed by running software. If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called '' virtual memory''. Modern memory is implemented as semiconductor memory, where data is stored within memory cells built from MOS transistors and other components on an integrated circuit. There are two main kinds of semiconductor memory, volatile and non-volatile. Examples of non-volatile memory are flash memory and ROM, PROM, EPROM and EEPROM memory. Examples of volatile memory are dynamic random-access memory (DRAM) used for primary storage, and static random-access memory (SRAM) used for
CPU cache A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, whi ...
. Most semiconductor memory is organized into memory cells each storing one bit (0 or 1). Flash memory organization includes both one bit per memory cell and
multi-level cell In electronics, a multi-level cell (MLC) is a memory cell capable of storing more than a single bit of information, compared to a single-level cell (SLC), which can store only one bit per memory cell. A memory cell typically consists of a single ...
capable of storing multiple bits per cell. The memory cells are grouped into words of fixed word length, for example, 1, 2, 4, 8, 16, 32, 64 or 128 bits. Each word can be accessed by a binary address of ''N'' bits, making it possible to store 2''N'' words in the memory.


History

In the early 1940s, memory technology often permitted a capacity of a few bytes. The first electronic programmable digital computer, the ENIAC, using thousands of
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
s, could perform simple calculations involving 20 numbers of ten decimal digits stored in the vacuum tubes. The next significant advance in computer memory came with acoustic delay-line memory, developed by J. Presper Eckert in the early 1940s. Through the construction of a glass tube filled with mercury and plugged at each end with a quartz crystal, delay lines could store bits of information in the form of sound waves propagating through the mercury, with the quartz crystals acting as transducers to read and write bits. Delay-line memory was limited to a capacity of up to a few thousand bits. Two alternatives to the delay line, the Williams tube and Selectron tube, originated in 1946, both using electron beams in glass tubes as means of storage. Using cathode ray tubes, Fred Williams invented the Williams tube, which was the first random-access computer memory. The Williams tube was able to store more information than the Selectron tube (the Selectron was limited to 256 bits, while the Williams tube could store thousands) and less expensive. The Williams tube was nevertheless frustratingly sensitive to environmental disturbances. Efforts began in the late 1940s to find non-volatile memory.
Magnetic-core memory Magnetic-core memory was the predominant form of random-access computer memory for 20 years between about 1955 and 1975. Such memory is often just called core memory, or, informally, core. Core memory uses toroids (rings) of a hard magnet ...
allowed for recall of memory after power loss. It was developed by Frederick W. Viehe and An Wang in the late 1940s, and improved by Jay Forrester and Jan A. Rajchman in the early 1950s, before being commercialised with the Whirlwind computer in 1953. Magnetic-core memory was the dominant form of memory until the development of
MOS MOS or Mos may refer to: Technology * MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor * Mathematical Optimization Society * Model output statistics, a weather-forecasting technique * MOS (fil ...
semiconductor memory in the 1960s. The first semiconductor memory was implemented as a flip-flop circuit in the early 1960s using bipolar transistors. Semiconductor memory made from discrete devices was first shipped by Texas Instruments to the
United States Air Force The United States Air Force (USAF) is the air service branch of the United States Armed Forces, and is one of the eight uniformed services of the United States. Originally created on 1 August 1907, as a part of the United States Army Si ...
in 1961. The same year, the concept of
solid-state Solid state, or solid matter, is one of the four fundamental states of matter. Solid state may also refer to: Electronics * Solid-state electronics, circuits built of solid materials * Solid state ionics, study of ionic conductors and their ...
memory on an integrated circuit (IC) chip was proposed by applications engineer Bob Norman at Fairchild Semiconductor. The first bipolar semiconductor memory IC chip was the SP95 introduced by IBM in 1965. While semiconductor memory offered improved performance over magnetic-core memory, it remain larger and more expensive and did not displace magnetic-core memory until the late 1960s.


MOS memory

The invention of the metal–oxide–semiconductor field-effect transistor ( MOSFET) enabled the practical use of metal–oxide–semiconductor (MOS) transistors as memory cell storage elements. MOS memory was developed by John Schmidt at Fairchild Semiconductor in 1964. In addition to higher performance, MOS semiconductor memory was cheaper and consumed less power than magnetic core memory. In 1965, J. Wood and R. Ball of the Royal Radar Establishment proposed digital storage systems that use CMOS (complementary MOS) memory cells, in addition to MOSFET power devices for the
power supply A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As ...
, switched cross-coupling, switches and delay-line storage. The development of silicon-gate MOS integrated circuit (MOS IC) technology by Federico Faggin at Fairchild in 1968 enabled the production of MOS memory chips. NMOS memory was commercialized by IBM in the early 1970s. MOS memory overtook magnetic core memory as the dominant memory technology in the early 1970s. The two main types of volatile random-access memory (RAM) are static random-access memory (SRAM) and dynamic random-access memory (DRAM). Bipolar SRAM was invented by Robert Norman at Fairchild Semiconductor in 1963, followed by the development of MOS SRAM by John Schmidt at Fairchild in 1964. SRAM became an alternative to magnetic-core memory, but requires six transistors for each bit of data. Commercial use of SRAM began in 1965, when IBM introduced their SP95 SRAM chip for the System/360 Model 95. Toshiba introduced bipolar DRAM memory cells for its Toscal BC-1411 electronic calculator in 1965. While it offered improved performance, bipolar DRAM could not compete with the lower price of the then dominant magnetic-core memory. MOS technology is the basis for modern DRAM. In 1966, Robert H. Dennard at the IBM Thomas J. Watson Research Center was working on MOS memory. While examining the characteristics of MOS technology, he found it was possible to build capacitors, and that storing a charge or no charge on the MOS capacitor could represent the 1 and 0 of a bit, while the MOS transistor could control writing the charge to the capacitor. This led to his development of a single-transistor DRAM memory cell. In 1967, Dennard filed a patent for a single-transistor DRAM memory cell based on MOS technology. This led to the first commercial DRAM IC chip, the Intel 1103 in October 1970.''The DRAM memory of Robert Dennard''
history-computer.com
Synchronous dynamic random-access memory (SDRAM) later debuted with the
Samsung The Samsung Group (or simply Samsung) ( ko, 삼성 ) is a South Korean multinational manufacturing conglomerate headquartered in Samsung Town, Seoul, South Korea. It comprises numerous affiliated businesses, most of them united under the ...
KM48SL2000 chip in 1992. The term ''memory'' is also often used to refer to non-volatile memory including
read-only memory Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing ...
(ROM) through modern flash memory. Programmable read-only memory (PROM) was invented by Wen Tsing Chow in 1956, while working for the Arma Division of the American Bosch Arma Corporation. In 1967, Dawon Kahng and Simon Sze of Bell Labs proposed that the floating gate of a MOS semiconductor device could be used for the cell of a reprogrammable ROM, which led to Dov Frohman of
Intel Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. It is the world's largest semiconductor chip manufacturer by revenue, and is one of the developers of the x86 ser ...
inventing EPROM (erasable PROM) in 1971. EEPROM (electrically erasable PROM) was developed by Yasuo Tarui, Yutaka Hayashi and Kiyoko Naga at the Electrotechnical Laboratory in 1972. Flash memory was invented by
Fujio Masuoka is a Japanese engineer, who has worked for Toshiba and Tohoku University, and is currently chief technical officer (CTO) of Unisantis Electronics. He is best known as the inventor of flash memory, including the development of both the NOR fla ...
at Toshiba in the early 1980s. Masuoka and colleagues presented the invention of NOR flash in 1984, and then
NAND flash Flash memory is an Integrated circuit, electronic Non-volatile memory, non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for t ...
in 1987. Toshiba commercialized NAND flash memory in 1987. Developments in technology and economies of scale have made possible so-called (VLM) computers.


Volatile memory

Volatile memory is computer memory that requires power to maintain the stored information. Most modern
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
volatile memory is either static RAM (SRAM) or dynamic RAM (DRAM). DRAM dominates for desktop system memory. SRAM is used for
CPU cache A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, whi ...
. SRAM is also found in small
embedded system An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is ''embedded ...
s requiring little memory. SRAM retains its contents as long as the power is connected and may use a simpler interface, but requires six transistors per bit. Dynamic RAM is more complicated for interfacing and control, needing regular refresh cycles to prevent losing its contents, but uses only one transistor and one capacitor per bit, allowing it to reach much higher densities and much cheaper per-bit costs.


Non-volatile memory

Non-volatile memory can retain the stored information even when not powered. Examples of non-volatile memory include
read-only memory Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing ...
, flash memory, most types of magnetic computer storage devices (e.g.
hard disk drive A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with mag ...
s, floppy disks and magnetic tape),
optical disc In computing and optical disc recording technologies, an optical disc (OD) is a flat, usually circular disc that encodes binary data ( bits) in the form of pits and lands on a special material, often aluminum, on one of its flat surface ...
s, and early computer storage methods such as paper tape and punched cards. Non-volatile memory technologies under development include ferroelectric RAM,
programmable metallization cell The programmable metallization cell, or PMC, is a non-volatile computer memory developed at Arizona State University. PMC, a technology developed to replace the widely used flash memory, providing a combination of longer lifetimes, lower power, ...
, Spin-transfer torque magnetic RAM, SONOS, resistive random-access memory, racetrack memory, Nano-RAM, 3D XPoint, and millipede memory.


Semi-volatile memory

A third category of memory is ''semi-volatile''. The term is used to describe a memory that has some limited non-volatile duration after power is removed, but then data is ultimately lost. A typical goal when using a semi-volatile memory is to provide the high performance and durability associated with volatile memories while providing some benefits of non-volatile memory. For example, some non-volatile memory types experience wear when written. A ''worn'' cell has increased volatility but otherwise continues to work. Data locations which are written frequently can thus be directed to use worn circuits. As long as the location is updated within some known retention time, the data stays valid. After a period of time without update, the value is copied to a less-worn circuit with longer retention. Writing first to the worn area allows a high write rate while avoiding wear on the not-worn circuits. As a second example, an STT-RAM can be made non-volatile by building large cells, but doing so raises the cost per bit and power requirements and reduces the write speed. Using small cells improves cost, power, and speed, but leads to semi-volatile behavior. In some applications, the increased volatility can be managed to provide many benefits of a non-volatile memory, for example by removing power but forcing a wake-up before data is lost; or by caching read-only data and discarding the cached data if the power-off time exceeds the non-volatile threshold. The term semi-volatile is also used to describe semi-volatile behavior constructed from other memory types. For example, a volatile and a non-volatile memory may be combined, where an external signal copies data from the volatile memory to the non-volatile memory, but if power is removed before the copy occurs, the data is lost. Or, a battery-backed volatile memory, and if external power is lost there is some known period where the battery can continue to power the volatile memory, but if power is off for an extended time, the battery runs down and data is lost.


Management

Proper management of memory is vital for a computer system to operate properly. Modern
operating system An operating system (OS) is system software that manages computer hardware, software resources, and provides common daemon (computing), services for computer programs. Time-sharing operating systems scheduler (computing), schedule tasks for ef ...
s have complex systems to properly manage memory. Failure to do so can lead to bugs, slow performance, or takeover by viruses and malicious software.


Bugs

Improper management of memory is a common cause of bugs, including the following types: * A memory leak occurs when a program requests memory from the operating system and never returns the memory when it's done with it. A program with this bug will gradually require more and more memory until the program fails as the operating system runs out. * A segmentation fault results when a program tries to access memory that it does not have permission to access. Generally, a program doing so will be terminated by the operating system. * A buffer overflow occurs when a program writes data to the end of its allocated space and then continues to write data beyond this to memory that has been allocated for other purposes. This may result in erratic program behavior, including memory access errors, incorrect results, a crash, or a breach of system security. They are thus the basis of many software vulnerabilities and can be maliciously exploited.


Early computer systems

In early computer systems, programs typically specified the location to write memory and what data to put there. This location was a physical location on the actual memory hardware. Early computers did not have the complex memory management systems used today. This approach has its pitfalls. If the location specified is incorrect, this will cause the computer to write the data to some other part of the program. The results of an error like this are unpredictable. In some cases, the error might overwrite memory used by the operating system. Hackers can take advantage of this lack of protection to create viruses and malware.


Virtual memory

Virtual memory is a system where physical memory is managed by the operating system typically with assistance from a memory management unit. It allows multiple types of memory to be used. For example, some data can be stored in RAM while other data is stored on a
hard drive A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with mag ...
(e.g. in a swapfile), functioning as an extension of the cache hierarchy. This offers several advantages. Computer programmers no longer need to worry about where their data is physically stored or whether the user's computer will have enough memory. The operating system will place actively used data in RAM, which is much faster than hard disks. When the amount of RAM is not sufficient to run all the current programs, it can result in a situation where the computer spends more time moving data from RAM to disk and back than it does accomplishing tasks; this is known as thrashing.


Protected memory

Protected memory is a system where each program is given an area of memory to use and is prevented from going outside that range. If the operating system detects that a program has tried to alter memory that does not belong to it, the program is terminated (or otherwise restricted or redirected). This way, only the offending program crashes, and other programs are not affected by the misbehavior (whether accidental or intentional). Use of protected memory greatly enhances both the reliability and security of a computer system. Without protected memory, it is possible that a bug in one program will alter the memory used by another program. This will cause that other program to run off of corrupted memory with unpredictable results. If the operating system's memory is corrupted, the entire computer system may crash and need to be
rebooted ''Rebooted'' is the third season of the computer-animated television series '' Ninjago: Masters of Spinjitzu'' (titled ''Ninjago'' from the eleventh season onward). The series was created by Michael Hegner and Tommy Andreasen. The season aired fr ...
. At times programs intentionally alter the memory used by other programs. This is done by viruses and malware to take over computers. It may also be used benignly by desirable programs which are intended to modify other programs, debuggers, for example, to insert breakpoints or hooks.


See also

* Memory geometry * Memory hierarchy * Memory organization * Processor registers store data but normally are not considered as memory, since they only store one word and do not include an addressing mechanism. * Semiconductor memory * Units of information


Notes


References


Further reading

* * {{Benchmark MOSFETs Digital electronics