HOME





Universal Memory
Universal memory refers to a computer data storage device combining the cost benefits of DRAM, the speed of SRAM, the non-volatility of flash memory along with infinite durability, and longevity. Such a device, if it ever becomes possible to develop, would have a far-reaching impact on the computer market. Some doubt that such a type of memory will ever be possible. Computers, for most of their recent history, have depended on several different data storage technologies simultaneously as part of their operation. Each one operates at a level in the memory hierarchy where another would be unsuitable. A personal computer might include a few megabytes of fast but volatile and expensive SRAM as the CPU cache, several gigabytes of slower DRAM for program memory, and Hundreds of GB to a few TB of slow but non-volatile flash memory or "spinning platter" hard disk drive for long-term storage. For example, a university recommended students entering in 2015–2016 to have a PC with: : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Data Storage
Computer data storage or digital data storage is a technology consisting of computer components and Data storage, recording media that are used to retain digital data. It is a core function and fundamental component of computers. The central processing unit (CPU) of a computer is what manipulates data by performing computations. In practice, almost all computers use a storage hierarchy, which puts fast but expensive and small storage options close to the CPU and slower but less expensive and larger options further away. Generally, the fast technologies are referred to as "memory", while slower persistent technologies are referred to as "storage". Even the first computer designs, Charles Babbage's Analytical Engine and Percy Ludgate's Analytical Machine, clearly distinguished between processing and memory (Babbage stored numbers as rotations of gears, while Ludgate stored numbers as displacements of rods in shuttles). This distinction was extended in the Von Neumann archite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Economies Of Scale
In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of Productivity, output produced per unit of cost (production cost). A decrease in unit cost, cost per unit of output enables an increase in scale that is, increased production with lowered cost. At the basis of economies of scale, there may be technical, statistical, organizational or related factors to the degree of Market (economics), market control. Economies of scale arise in a variety of organizational and business situations and at various levels, such as a production, plant or an entire enterprise. When average costs start falling as output increases, then economies of scale occur. Some economies of scale, such as capital cost of manufacturing facilities and friction loss of transportation and industrial equipment, have a physical or engineering basis. The economic concept dates back to Adam Smith and the idea o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solid-state Computer Storage Media
Solid state, or solid matter, is one of the four fundamental states of matter. Solid state may also refer to: Electronics * Solid-state electronics, using semiconductors * Solid state ionics * Solid-state drive, a data storage device Music * Solid State Records, a Christian music label * Solid State Records (jazz label), active in the 1960s * Solid State, a musical trio with DJ Dextrous * ''Solid State'' (Leon Russell album), 1984 * ''Solid State'' (Jonathan Coulton album), 2017 * ''Solid State'', an album by Sam Phillips Science * Solid-state chemistry, the chemistry of solids * Solid-state physics Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ..., the study of how atomic-scale properties lead to large-scale properties See also

* * {{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memristor
A memristor (; a portmanteau of ''memory resistor'') is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of fundamental electrical components which also comprises the resistor, capacitor and inductor. Chua and Kang later generalized the concept to memristive systems. Such a system comprises a circuit, of multiple conventional components, which mimics key properties of the ideal memristor component and is also commonly referred to as a memristor. Several such memristor system technologies have been developed, notably ReRAM. The identification of memristive properties in electronic devices has attracted controversy. Experimentally, the ideal memristor has yet to be demonstrated. As a fundamental electrical component Chua in his 1971 paper identified a theoretical symmetry between the non-linear resistor (voltage vs. current), non-linear cap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nano-RAM
Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of non-volatile memory, nonvolatile random-access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small size of the nanotubes allows for very high density memories. Nantero also refers to it as NRAM. Technology The first generation Nantero NRAM technology was based on a three-terminal semiconductor device where a third terminal is used to switch the memory cell between memory states. The second generation NRAM technology is based on a two-terminal memory cell. The two-terminal cell has advantages such as a smaller cell size, better scalability to sub-20 nm nodes (see semiconductor device fabrication), and the ability to Passivation (chemistry), passivate the memory cell during fabrication. In a non-woven fabric matrix of carbon nanotubes (CNTs), crossed nanotubes can either be touching or slightly separated depending on their positio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RRAM
Resistive random-access memory (ReRAM or RRAM) is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor. One major advantage of ReRAM over other NVRAM technologies is the ability to scale below 10 nm. ReRAM bears some similarities to conductive-bridging RAM (CBRAM) and phase-change memory (PCM) in that they change dielectric material properties. CBRAM involves one electrode providing ions that dissolve readily in an electrolyte material, while PCM involves generating sufficient Joule heating to effect amorphous-to-crystalline or crystalline-to-amorphous phase changes. By contrast, ReRAM involves generating defects in a thin oxide layer, known as oxygen vacancies (oxide bond locations where the oxygen has been removed), which can subsequently charge and drift under an electric field. The motion of oxygen ions and vacancies in the oxide would be analogous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Programmable Metallization Cell
The programmable metallization cell, or PMC, is a non-volatile computer memory developed at Arizona State University. PMC, a technology developed to replace the widely used flash memory, providing a combination of longer lifetimes, lower power, and better memory density. Infineon Technologies, who licensed the technology in 2004, refers to it as conductive-bridging RAM, or CBRAM. CBRAM became a registered trademark of Adesto Technologies in 2011. NEC has a variant called "Nanobridge" and Sony calls their version "electrolytic memory". Description PMC is a two terminal resistive memory technology developed at Arizona State University. PMC is an electrochemical metallization memory that relies on redox reactions to form and dissolve a conductive filament. The state of the device is determined by the resistance across the two terminals. The existence of a filament between the terminals produces a low resistance state (LRS) while the absence of a filament results in a high ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase-change Memory
Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat produced by the passage of an electric current through a heating element generally made of titanium nitride is used to either quickly heat and quench the glass, making it amorphous, or to hold it in its crystallization temperature range for some time, thereby switching it to a crystalline state. PCM also has the ability to achieve a number of distinct intermediary states, thereby having the ability to hold multiple bits in a single cell, but the difficulties in programming cells in this way has prevented these capabilities from being implemented in other technologies (most notably flash memory) with the same capability. Recent research on PCM has been directed towards attempting to find viable material alternatives to the phase-change m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ferroelectric RAM
Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory. FeRAM's advantages over Flash include: lower power usage, faster write speeds and a much greater maximum read/write endurance (about 1010 to 1015 cycles). FeRAMs have data retention times of more than 10 years at +85 °C (up to many decades at lower ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bubble Memory
Bubble memory is a type of non-volatile memory, non-volatile computer memory that uses a thin film of a magnetic material to hold small magnetized areas, known as ''bubbles'' or ''domains'', each storing one bit of data. The material is arranged to form a series of parallel tracks that the bubbles can move along under the action of an external magnetic field. The bubbles are read by moving them to the edge of the material, where they can be read by a conventional magnetic pickup, and then rewritten on the far edge to keep the memory cycling through the material. In operation, bubble memories are similar to delay-line memory systems. Bubble memory started out as a promising technology in the 1970s, offering performance similar to core memory, memory density similar to hard drives, and no moving parts. This led many to consider it a contender for a "universal memory" that could be used for all storage needs. The introduction of dramatically faster semiconductor memory chips in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetoresistive RAM
Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as Flash memory, flash RAM and Dynamic random-access memory, DRAM have practical advantages that have so far kept MRAM in a niche role in the market. Description Unlike conventional random-access memory, RAM chip technologies, data in MRAM is not stored as electric charge or current flows, but by magnetism, magnetic storage elements. The elements are formed from two Ferromagnetism, ferromagnetic plates, each of which can hold a magnetization, separated by a thin insulating layer. One of the two plates is a permanent magnet set to a particular polarity; the other plate's magnetization can be changed to match that of an external field to store ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]