Vein (band) Albums
   HOME

TheInfoList



OR:

Veins are blood vessels in the circulatory system of humans and most other animals that carry blood toward the heart. Most veins carry deoxygenated blood from the tissues back to the heart; exceptions are those of the pulmonary and fetal circulations which carry oxygenated blood to the heart. In the
systemic circulation The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
arteries carry oxygenated blood away from the heart, and veins return deoxygenated blood to the heart. There are three sizes of veins, large, medium, and small. Smaller veins are called venules, and the smallest the post-capillary venules are microscopic that make up the veins of the microcirculation. Veins have less
smooth muscle Smooth muscle is an involuntary non-striated muscle, so-called because it has no sarcomeres and therefore no striations (''bands'' or ''stripes''). It is divided into two subgroups, single-unit and multiunit smooth muscle. Within single-unit mus ...
, and
connective tissue Connective tissue is one of the four primary types of animal tissue, along with epithelial tissue, muscle tissue, and nervous tissue. It develops from the mesenchyme derived from the mesoderm the middle embryonic germ layer. Connective tiss ...
than arteries, and are often closer to the skin. Because of the thinner walls in veins they are able to expand and can hold more blood. At any time, nearly 70% of the total volume of blood in the human body is in the veins. In medium and large sized veins the flow of blood is maintained by one-way (unidirectional) venous valves to prevent backflow. In the lower limbs this is also aided by skeletal muscle pumps that exert pressure on intramuscular veins when they contract and drive blood back to the heart.


Structure

There are three sizes of vein, large, medium, and small. Smaller veins are called venules. The smallest veins are the post-capillary venules. Veins have a similar three-layered structure to arteries. The layers known as tunicas have a concentric arrangement that forms the wall of the vessel. The outer layer, is a thick layer of
connective tissue Connective tissue is one of the four primary types of animal tissue, along with epithelial tissue, muscle tissue, and nervous tissue. It develops from the mesenchyme derived from the mesoderm the middle embryonic germ layer. Connective tiss ...
called the tunica externa or ''adventitia''; this layer is absent in the post-capillary venules. The middle layer, consists of bands of
smooth muscle Smooth muscle is an involuntary non-striated muscle, so-called because it has no sarcomeres and therefore no striations (''bands'' or ''stripes''). It is divided into two subgroups, single-unit and multiunit smooth muscle. Within single-unit mus ...
and is known as the tunica media. The inner layer, is a thin lining of endothelium known as the tunica intima. The tunica media in the veins is much thinner than that in the arteries as the veins are not subject to the high
systolic Systole ( ) is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood. The term originates, via New Latin, from Ancient Greek (''sustolē''), from (''sustéllein'' 'to contract'; from ''sun ...
pressures that the arteries are. There are valves present in many veins that maintain unidirectional flow. Unlike arteries, the precise location of veins varies among individuals. Veins close to the surface of the skin appear blue for a variety of reasons. The factors that contribute to this alteration of color perception are related to the light-scattering properties of the skin and the processing of visual input by the visual cortex, rather than the actual colour of the venous blood which is dark red.


Venous system

The venous system is the system of veins in the systemic and pulmonary circulations that return blood to the heart. In the systemic circulation the return is of deoxygenated blood from the organs and tissues of the body, and in the pulmonary circulation the pulmonary veins return oxygenated blood from the lungs to the heart. Whilst the main veins hold a relatively constant position, unlike arteries, the precise location of veins varies among individuals. Veins vary in size from the smallest post-capillary venules, and more muscular venules, to small veins, medium veins, and large veins. In the circulatory system, blood first enters the venous system from
capillary bed A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
s where arterial blood changes to venous blood. ;Venules The first entry of venous blood is from the convergence of two or more capillaries into a microscopic, post-capillary venule. Post-capillary venules have a diameter of between 10 and 30 micrometres (μm). Their endothelium is of flattened oval or polygon shaped cells surrounded by a
basal lamina The basal lamina is a layer of extracellular matrix secreted by the epithelial cells, on which the epithelium sits. It is often incorrectly referred to as the basement membrane, though it does constitute a portion of the basement membrane. The ba ...
. Post-capillary venules are too small to have a smooth muscle layer and are instead supported by pericytes that wrap around them. Post-capillary venules become muscular venules when they reach a diameter of 50 μm, and can reach a diameter of 1 mm. These larger venules feed into small veins. ;Small, medium, and large veins The small veins merge to feed as tributaries into medium sized veins. The medium veins feed into the large veins which include the internal jugular, and renal veins, and the venae cavae that carry the blood directly into the heart. The venae cavae enter the right atrium of the heart from above and below. From above, the superior vena cava carries blood from the arms and head to the right atrium of the heart, and from below, the inferior vena cava carries blood from the legs and abdomen to the right atrium. The inferior vena cava is retroperitoneal and runs to the right and roughly parallel to the
abdominal aorta In human anatomy, the abdominal aorta is the largest artery in the abdominal cavity. As part of the aorta, it is a direct continuation of the descending aorta (of the thorax). Structure The abdominal aorta begins at the level of the thoracic d ...
along the
spine Spine or spinal may refer to: Science Biology * Vertebral column, also known as the backbone * Dendritic spine, a small membranous protrusion from a neuron's dendrite * Thorns, spines, and prickles, needle-like structures in plants * Spine (zoolog ...
. ;Deep, superficial, and perforator veins The three main compartments of the venous system are the deep veins, the
superficial vein Superficial veins are veins that are close to the surface of the body, as opposed to deep veins, which are far from the surface. Superficial veins are not paired with an artery, unlike the deep veins, which are typically associated with an arte ...
s, and the perforator veins.
Superficial vein Superficial veins are veins that are close to the surface of the body, as opposed to deep veins, which are far from the surface. Superficial veins are not paired with an artery, unlike the deep veins, which are typically associated with an arte ...
s are those closer to the surface of the body, and have no corresponding arteries. Deep veins are deeper in the body and have corresponding arteries. Perforator veins drain from the superficial to the deep veins. These are usually referred to in the lower limbs and feet. ;Venous plexuses There are a number of venous plexuses where veins are grouped or sometimes combined in networks at certain body sites.


Venous valves

Blood flows back to the heart in the deep veins, with the flow of blood maintained by one-way valves. The valves serve to prevent regurgitation (back flow) due to the low pressure of veins, and the pull of gravity. They also serve to prevent the over-widening of the vein. Venous valves are bicuspid having two cusps or leaflets. They are formed from folds of endothelium supported by a layer of connective tissue. There are more valves in the lower leg, with the number decreasing as the veins travel to the hip. The valves in the leg divide the column of blood into segments, and ensure blood flow from superficial to deep, and its direction towards the heart. The action of the valves is supported in the lower limbs by skeletal muscle pumps that exert pressure when they contract on intramuscular veins and drive blood back to the heart. Approximately 95% of the venous valves are in the small veins of less than 300 micrometres. There are no valves in the veins of the thorax or abdomen. There is a valve at the junction of the inferior vena cava (one of the great vessels) and the right atrium known as the
valve of inferior vena cava The valve of the inferior vena cava (eustachian valve) is a venous valve that lies at the junction of the inferior vena cava and right atrium. Development In prenatal development, the eustachian valve helps direct the flow of oxygen-rich blood ...
also known as the ''eustachian valve''.


Circulatory routes

There are some separate systemic circulatory routes that supply specific organs. They include the coronary circulation, the cerebral circulation, the bronchial circulation, and the renal circulation. ;Coronary circulation In the
coronary circulation Coronary circulation is the circulation of blood in the blood vessels that supply the heart muscle (myocardium). Coronary arteries supply oxygenated blood to the heart muscle. Cardiac veins then drain away the blood after it has been deoxygenat ...
, the blood supply to the heart, is drained by cardiac veins (or coronary veins) that remove the deoxygenated blood from the heart muscle. These include the great cardiac vein, the middle cardiac vein, the small cardiac vein, the
smallest cardiac veins In the anatomy of the heart, the smallest cardiac veins, also known as the Thebesian veins (for Adam Christian Thebesius), are small valveless veins in the walls of all four heart chambers. Structure Course The smallest cardiac veins are mo ...
, and the anterior cardiac veins. Cardiac veins carry blood with a poor level of oxygen, from the heart muscle to the right atrium. Most of the blood of the cardiac veins returns through the coronary sinus. The anatomy of the veins of the heart is very variable, but generally it is formed by the following veins: heart veins that go into the coronary sinus: the great cardiac vein, the middle cardiac vein, the small cardiac vein, the posterior vein of the left ventricle, and the oblique vein of the left atrium (oblique vein of Marshall). Heart veins that go directly to the right atrium: the anterior cardiac veins, and the smallest cardiac veins (Thebesian veins). ;Bronchial circulation In the bronchial circulation that supplies blood to the lung tissues, bronchial veins drain venous blood from the large main bronchi into the
azygous vein The azygos vein is a vein running up the right side of the thoracic vertebral column draining itself towards the superior vena cava. It connects the systems of superior vena cava and inferior vena cava and can provide an alternative path for blood ...
, and ultimately the right atrium. Venous blood from the bronchi inside the lungs drains into the pulmonary veins and empties into the left atrium; since this blood never went through a capillary bed it was never oxygenated and so provides a small amount of shunted deoxygenated blood into the systemic circulation. ;Cerebral circulation In the cerebral circulation supplying the cerebrum the venous drainage can be separated into two subdivisions: superficial and deep. The superficial system is composed of dural venous sinuses, which have walls composed of dura mater as opposed to a traditional vein. The dural sinuses are therefore located on the surface of the cerebrum. The most prominent of these sinuses is the
superior sagittal sinus The superior sagittal sinus (also known as the superior longitudinal sinus), within the human head, is an unpaired area along the attached margin of the falx cerebri. It allows blood to drain from the lateral aspects of anterior cerebral hemispher ...
which flows in the sagittal plane under the midline of the cerebral vault, posteriorly and inferiorly to the confluence of sinuses, where the superficial drainage joins with the sinus that primarily drains the deep venous system. From here, two transverse sinuses bifurcate and travel laterally and inferiorly in an S-shaped curve that forms the sigmoid sinuses which go on to form the two jugular veins. In the neck, the jugular veins parallel the upward course of the carotid arteries and drain blood into the superior vena cava. The deep venous drainage is primarily composed of traditional veins inside the deep structures of the brain, which join behind the midbrain to form the vein of Galen. This vein merges with the inferior sagittal sinus to form the
straight sinus The straight sinus, also known as tentorial sinus or the , is an area within the skull beneath the brain. It receives blood from the inferior sagittal sinus and the great cerebral vein, and drains into the confluence of sinuses. Structure The s ...
which then joins the superficial venous system mentioned above at the confluence of sinuses. ;Portal venous systems A portal venous system is a series of veins or venules that directly connect two
capillary bed A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
s. The two systems in verebrates are the hepatic portal system, and the hypophyseal portal system. ;Anastomoses An
anastomosis An anastomosis (, plural anastomoses) is a connection or opening between two things (especially cavities or passages) that are normally diverging or branching, such as between blood vessels, leaf#Veins, leaf veins, or streams. Such a connection m ...
is a joining of two structures such as blood vessels. In the circulation these are called circulatory anastomoses, one of which is the join between an artery with a vein known as an arteriovenous anastomosis. This connection enables venous blood to travel directly from an artery into a vein without having passed from a capillary bed. Abnormal connections can be present known as
arteriovenous malformation Arteriovenous malformation is an abnormal connection between arteries and veins, bypassing the capillary system. This vascular anomaly is widely known because of its occurrence in the central nervous system (usually cerebral AVM), but can appea ...
s. These are usually congenital and the connections are made from a tangle of capillaries. A cerebral arteriovenous malformation is one that is located in the brain. An irregular connection between an artery and a vein is known as arteriovenous fistula. A small specialised arteriovenous anastomosis known as a glomus body or organ serves to transfer heat in the fingers and toes. The small connection is surrounded by a capsule of thickened connective tissue. In the hands and feet there are a great number of glomera. * Communicating veins are veins that directly connect superficial veins to deep veins. * Peripheral veins carry blood from the limbs and
hand A hand is a prehensile, multi-fingered appendage located at the end of the forearm or forelimb of primates such as humans, chimpanzees, monkeys, and lemurs. A few other vertebrates such as the koala (which has two opposable thumbs on each "h ...
s and feet.


Microanatomy

The three layers of the vein wall are the outer tunica externa, the middle tunica media and the inner tunica intima. There are also numerous valves present in many of the veins. The outer tunica external is a sheath of thick connective tissue. The middle tunica media is mainly of smooth muscle cells, elastic fibres and
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
. This layer is much thinner than that in arteries The inner tunica intima is a lining of endothelium comprising a single layer of extremely flattened epithelial cells, supported by delicate connective tissue. The endothelial cells continuously produce
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its che ...
a soluble gas, to the cells of the adjacent smooth muscle layer. This constant synthesis is carried out by the enzyme endothelial nitric oxide synthase (eNOS). Other endothelial secretions are endothelin, and thromboxane (vasoconstrictors), and prostacyclin a vasodilator.


Function

Veins serve to return blood from organs, and tissues to the heart. Veins are also called "capacitance vessels" because most of the blood volume (60%) is contained within veins. In
systemic circulation The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
oxygenated blood is pumped by the left ventricle through the arteries to the muscles and organs of the body, where its nutrients and gases are exchanged at capillaries. After taking up cellular waste and carbon dioxide in capillaries, blood is channeled through vessels that converge with one another to form venules, which continue to converge and form the larger veins. The de- oxygenated blood is taken by veins to the right atrium of the heart, which transfers the blood to the right ventricle, where it is then pumped through the pulmonary arteries to the
lung The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of t ...
s. In pulmonary circulation the pulmonary veins return oxygenated blood from the lungs to the left atrium, which empties into the left ventricle, completing the cycle of blood circulation. The return of blood to the heart is assisted by the action of the muscle pump, and by the thoracic pump action of breathing during respiration. Standing or sitting for a prolonged period of time can cause low venous return from venous pooling (vascular) shock. Fainting can occur but usually baroreceptors within the aortic sinuses initiate a
baroreflex The baroreflex or baroreceptor reflex is one of the body's homeostatic mechanisms that helps to maintain blood pressure at nearly constant levels. The baroreflex provides a rapid negative feedback loop in which an elevated blood pressure causes the ...
such that angiotensin II and norepinephrine stimulate vasoconstriction and heart rate increases to return blood flow. Neurogenic and hypovolaemic shock can also cause fainting. In these cases, the smooth muscles surrounding the veins become slack and the veins fill with the majority of the blood in the body, keeping blood away from the brain and causing unconsciousness. Jet pilots wear pressurized suits to help maintain their venous return and blood pressure.


Clinical significance


Venous diseases

Most disorders of the veins involve obstruction such as a thrombus or insufficiency of the valves, or both of these. Other conditions may be due to inflammation. The medical speciality involved with the diagnosis and treatment of venous disorders is known as phlebology (also ''venology''), and the specialist concerned is a phlebologist. There are a number of vascular surgeries and endovascular surgeries carried out by vascular surgeons to treat many venous diseases.


Phlebitis

Phlebitis is the inflammation of a vein. It is usually accompanied by a blood clot when it is known as thrombophlebitis. When the affected vein is a superficial vein in the leg, it is known as
superficial thrombophlebitis Superficial thrombophlebitis is a thrombosis and inflammation of superficial veins which presents as a painful induration with erythema, often in a linear or branching configuration forming cords. Superficial thrombophlebitis is due to inflammat ...
, and unlike deep vein thrombosis there is little risk of the clot breaking off as an embolus.


Venous insufficiency

Venous insufficiency is the most common disorder of the venous system, and is usually manifested as either spider veins or varicose veins. Several treatments are available including endovenous thermal ablation (using radiofrequency or laser energy), vein stripping, ambulatory phlebectomy, foam sclerotherapy, laser, or compression. Postphlebitic syndrome is venous insufficiency that develops following deep vein thrombosis.


Deep vein thrombosis

Deep vein thrombosis is a condition in which a blood clot forms in a deep vein. This is usually the veins of the legs, although it can also occur in the veins of the arms. Immobility, active cancer, obesity, traumatic damage and congenital disorders that make clots more likely are all risk factors for deep vein thrombosis. It can cause the affected limb to swell, and cause pain and an overlying skin rash. In the worst case, a deep vein thrombosis can extend, or a part of a clot can break off and land in the lungs, called pulmonary embolism. The decision to treat deep vein thrombosis depends on its size, a person's symptoms, and their risk factors. It generally involves anticoagulation to prevents clots or to reduce the size of the clot. Intermittent pneumatic compression is a method used to improve venous circulation in cases of edema or in those at risk from a deep vein thrombosis.


Portal hypertension

The
portal vein The portal vein or hepatic portal vein (HPV) is a blood vessel that carries blood from the gastrointestinal tract, gallbladder, pancreas and spleen to the liver. This blood contains nutrients and toxins extracted from digested contents. Approxima ...
also known as the ''hepatic portal vein'' carries blood drained from most of the
gastrointestinal tract The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organ (biology), organs of the digestive syste ...
to the liver.
Portal hypertension Portal hypertension is abnormally increased portal venous pressure – blood pressure in the portal vein and its branches, that drain from most of the intestine to the liver. Portal hypertension is defined as a hepatic venous pressure gradient gr ...
is mainly caused by cirrhosis of the liver. Other causes can include an obstructing clot in a hepatic vein ( Budd Chiari syndrome) or compression from tumors or tuberculosis lesions. When the pressure increases in the portal vein, a collateral circulation develops, causing visible veins such as
esophageal varices Esophageal varices are extremely dilated sub-mucosal veins in the lower third of the esophagus. They are most often a consequence of portal hypertension, commonly due to cirrhosis. People with esophageal varices have a strong tendency to develop ...
.


Venous malformations

A venous malformation is a typically ill-defined mass, coloured from pale to dark blue. They can affect any tissue in the body. The mass is soft, and easily compressed, and their blue colouring is due to the dilated anomalous involved veins. They are most commonly found in the head and neck. Venous malformations can often extend deeper from their surface appearance, reaching underlying muscle or bone. In the neck they may extend into the lining of the mouth cavity or into the salivary glands. They are the most common of the vascular malformations. A severe venous malformation can involve the lymph vessels as a ''lymphaticovenous malformation''.


Imaging

Ultrasound, particularly duplex ultrasound, is very often used to view veins in the diagnosis of venous disease. Venography is an invasive procedure that uses a catheter to deliver a contrast agent in giving an X-ray of a vein.


Veins of clinical significance

The Batson venous plexus, or simply Batson's plexus, runs through the inner vertebral column connecting the thoracic and pelvic veins. These veins are noted for being valveless, which is believed to be the reason for metastasis of certain cancers. The great saphenous vein is the most important superficial vein of the lower limb. First described by the Persian physician
Avicenna Ibn Sina ( fa, ابن سینا; 980 – June 1037 CE), commonly known in the West as Avicenna (), was a Persian polymath who is regarded as one of the most significant physicians, astronomers, philosophers, and writers of the Islamic G ...
, this vein derives its name from the word ''safina'', meaning "hidden". This vein is "hidden" in its own fascial compartment in the thigh and exits the fascia only near the knee. Incompetence of this vein is an important cause of varicose veins of lower limbs. The dural venous sinuses within the dura mater surrounding the brain receive blood from the brain and also are a point of entry of cerebrospinal fluid from arachnoid villi absorption. Blood eventually enters the internal jugular vein.


History

The Greek physician Herophilus distinguished veins from arteries but thought that the pulse was a property of arteries themselves. Greek anatomist Erasistratus observed that arteries that were cut during life bleed. He ascribed the fact to the phenomenon that air escaping from an artery is replaced with blood that entered by very small vessels between veins and arteries. Thus he apparently postulated capillaries but with reversed flow of blood. In 2nd century AD Rome, the Greek physician Galen knew that blood vessels carried blood and identified venous (dark red) and arterial (brighter and thinner) blood, each with distinct and separate functions. Growth and energy were derived from venous blood created in the liver from chyle, while arterial blood gave vitality by containing pneuma (air) and originated in the heart. Blood flowed from both creating organs to all parts of the body where it was consumed and there was no return of blood to the heart or liver. The heart did not pump blood around, the heart's motion sucked blood in during diastole and the blood moved by the pulsation of the arteries themselves. Galen believed that the arterial blood was created by venous blood passing from the left ventricle to the right by passing through 'pores' in the interventricular septum, air passed from the lungs via the pulmonary artery to the left side of the heart. As the arterial blood was created 'sooty' vapors were created and passed to the lungs also via the pulmonary artery to be exhaled. In addition, Ibn al-Nafis had an insight into what would become a larger theory of the capillary circulation. He stated that "there must be small communications or pores (''manafidh'' in Arabic) between the pulmonary artery and vein," a prediction that preceded the discovery of the capillary system by more than 400 years. Ibn al-Nafis' theory, however, was confined to blood transit in the lungs and did not extend to the entire body. Finally, William Harvey, a pupil of Hieronymus Fabricius (who had earlier described the valves of the veins without recognizing their function), performed a sequence of experiments, and published ''Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus'' in 1628, which "demonstrated that there had to be a direct connection between the venous and arterial systems throughout the body, and not just the lungs. Most importantly, he argued that the beat of the heart produced a continuous circulation of blood through minute connections at the extremities of the body. This is a conceptual leap that was quite different from Ibn al-Nafis' refinement of the anatomy and bloodflow in the heart and lungs."Pormann, Peter E. and Smith, E. Savage (2007) ''Medieval Islamic medicine'' Georgetown University, Washington DC, p. 48, . This work, with its essentially correct exposition, slowly convinced the medical world. However, Harvey was not able to identify the capillary system connecting arteries and veins; these were later discovered by Marcello Malpighi in 1661.


Additional images

File:Diagram of the human heart (cropped).svg, Positions of venae cavae and vessels of the pulmonary circulation


See also

* May–Thurner syndrome * Nutcracker syndrome * Thoracic outlet syndrome *
Cardiovascular disease Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels. CVD includes coronary artery diseases (CAD) such as angina and myocardial infarction (commonly known as a heart attack). Other CVDs include stroke, h ...
* Cardiology


References


Bibliography

*


Further reading

*


External links


Merck Manual article on veins
* A on the veins' and lymphatic systems of the upper limb {{Use dmy dates, date=April 2017 Veins Cardiovascular physiology