In
mathematics,
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, and
engineering
Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has
magnitude (or
length) and
direction. Vectors can be added to other vectors according to
vector algebra. A Euclidean vector is frequently represented by a ''
directed line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between it ...
'', or graphically as an arrow connecting an ''initial point'' ''A'' with a ''terminal point'' ''B'', and denoted by
.
A vector is what is needed to "carry" the point ''A'' to the point ''B''; the Latin word ''vector'' means "carrier". It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of
displacement from ''A'' to ''B''. Many
algebraic operations on
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s such as
addition
Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or ''sum'' of ...
,
subtraction,
multiplication
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being ad ...
, and
negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and fals ...
have close analogues for vectors,
operations which obey the familiar algebraic laws of
commutativity,
associativity, and
distributivity. These operations and associated laws qualify
Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
.
Vectors play an important role in
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
: the
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
and
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
of a moving object and the
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
s acting on it can all be described with vectors.
Many other physical quantities can be usefully thought of as vectors. Although most of them do not represent distances (except, for example,
position
Position often refers to:
* Position (geometry), the spatial location (rather than orientation) of an entity
* Position, a job or occupation
Position may also refer to:
Games and recreation
* Position (poker), location relative to the dealer
* ...
or
displacement), their magnitude and direction can still be represented by the length and direction of an arrow. The mathematical representation of a physical vector depends on the
coordinate system used to describe it. Other vector-like objects that describe physical quantities and transform in a similar way under changes of the coordinate system include
pseudovectors and
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
s.
History
The vector concept, as we know it today, is the result of a gradual development over a period of more than 200 years. About a dozen people contributed significantly to its development.
[Michael J. Crowe, A History of Vector Analysis; see also his on the subject.] In 1835,
Giusto Bellavitis
Giusto Bellavitis (22 November 1803 – 6 November 1880) was an Italian mathematician, senator, and municipal councilor. Charles Laisant (1880) "Giusto Bellavitis. Nécrologie", ''Bulletin des sciences mathématiques et astronomiques'', 2nd sà ...
abstracted the basic idea when he established the concept of
equipollence. Working in a Euclidean plane, he made equipollent any pair of
parallel line segments of the same length and orientation. Essentially, he realized an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relatio ...
on the pairs of points (bipoints) in the plane, and thus erected the first space of vectors in the plane.
The term ''vector'' was introduced by
William Rowan Hamilton
Sir William Rowan Hamilton LL.D, DCL, MRIA, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the Andrews Professor of Astronomy at Trinity College Dublin, and Royal Astronomer of Ire ...
as part of a
quaternion, which is a sum of a
Real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
(also called ''scalar'') and a 3-dimensional ''vector''. Like Bellavitis, Hamilton viewed vectors as representative of
classes of equipollent directed segments. As
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s use an
imaginary unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition a ...
to complement the
real line
In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a po ...
, Hamilton considered the vector to be the ''imaginary part'' of a quaternion:
Several other mathematicians developed vector-like systems in the middle of the nineteenth century, including
Augustin Cauchy,
Hermann Grassmann,
August Möbius,
Comte de Saint-Venant, and
Matthew O'Brien. Grassmann's 1840 work ''Theorie der Ebbe und Flut'' (Theory of the Ebb and Flow) was the first system of spatial analysis that is similar to today's system, and had ideas corresponding to the cross product, scalar product and vector differentiation. Grassmann's work was largely neglected until the 1870s.
Peter Guthrie Tait carried the quaternion standard after Hamilton. His 1867 ''Elementary Treatise of Quaternions'' included extensive treatment of the nabla or
del operator ∇. In 1878, ''
Elements of Dynamic'' was published by
William Kingdon Clifford. Clifford simplified the quaternion study by isolating the
dot product and
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and i ...
of two vectors from the complete quaternion product. This approach made vector calculations available to engineers—and others working in three dimensions and skeptical of the fourth.
Josiah Willard Gibbs, who was exposed to quaternions through
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
's ''Treatise on Electricity and Magnetism'', separated off their vector part for independent treatment. The first half of Gibbs's ''Elements of Vector Analysis'', published in 1881, presents what is essentially the modern system of vector analysis.
In 1901,
Edwin Bidwell Wilson published ''
Vector Analysis
Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subjec ...
'', adapted from Gibb's lectures, which banished any mention of quaternions in the development of vector calculus.
Overview
In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
and
engineering
Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
, a vector is typically regarded as a geometric entity characterized by a
magnitude and a direction. It is formally defined as a directed
line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
, or arrow, in a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
. In
pure mathematics
Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
, a vector is defined more generally as any element of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
. In this context, vectors are abstract entities which may or may not be characterized by a magnitude and a direction. This generalized definition implies that the above-mentioned geometric entities are a special kind of vectors, as they are elements of a special kind of vector space called
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
. This particular article is about vectors strictly defined as arrows in Euclidean space. When it becomes necessary to distinguish these special vectors from vectors as defined in pure mathematics, they are sometimes referred to as geometric, spatial, or Euclidean vectors.
Being an arrow, a Euclidean vector possesses a definite ''initial point'' and ''terminal point''. A vector with fixed initial and terminal point is called a bound vector. When only the magnitude and direction of the vector matter, then the particular initial point is of no importance, and the vector is called a free vector. Thus two arrows
and
in space represent the same free vector if they have the same magnitude and direction: that is, they are
equipollent
In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', the ...
if the quadrilateral ''ABB′A′'' is a
parallelogram. If the Euclidean space is equipped with a choice of
origin
Origin(s) or The Origin may refer to:
Arts, entertainment, and media
Comics and manga
* ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002
* ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
, then a free vector is equivalent to the bound vector of the same magnitude and direction whose initial point is the origin. The term ''vector'' also has generalizations to higher dimensions, and to more formal approaches with much wider applications.
Further information
In classical
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
(i.e.,
synthetic geometry), vectors were introduced (during the 19th century) as
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es under
equipollence, of
ordered pairs of points; two pairs and being equipollent if the points , in this order, form a
parallelogram. Such an equivalence class is called a ''vector'', more precisely, a Euclidean vector. The equivalence class of is often denoted
A Euclidean vector is thus an equivalence class of directed segments with the same magnitude (e.g., the length of the
line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
) and same direction (e.g., the direction from to ).
In physics, Euclidean vectors are used to represent physical quantities that have both magnitude and direction, but are not located at a specific place, in contrast to
scalars, which have no direction.
For example,
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
,
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
s and
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
are represented by vectors.
In modern geometry, Euclidean spaces are often defined from
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as:
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as:
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matric ...
. More precisely, a Euclidean space is defined as a set to which is associated an
inner product space of finite dimension over the reals
and a
group action of the
additive group of
which is
free
Free may refer to:
Concept
* Freedom, having the ability to do something, without having to obey anyone/anything
* Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism
* Emancipate, to procur ...
and
transitive (See
Affine space for details of this construction). The elements of
are called
translations. It has been proven that the two definitions of Euclidean spaces are equivalent, and that the equivalence classes under equipollence may be identified with translations.
Sometimes, Euclidean vectors are considered without reference to a Euclidean space. In this case, a Euclidean vector is an element of a normed vector space of finite dimension over the reals, or, typically, an element of
equipped with the
dot product. This makes sense, as the addition in such a vector space acts freely and transitively on the vector space itself. That is,
is a Euclidean space, with itself as an associated vector space, and the dot product as an inner product.
The Euclidean space
is often presented as ''the'' Euclidean space of dimension . This is motivated by the fact that every Euclidean space of dimension is
isomorphic to the Euclidean space
More precisely, given such a Euclidean space, one may choose any point as an
origin
Origin(s) or The Origin may refer to:
Arts, entertainment, and media
Comics and manga
* ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002
* ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
. By
Gram–Schmidt process, one may also find an
orthonormal basis
In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For ex ...
of the associated vector space (a basis such that the inner product of two basis vectors is 0 if they are different and 1 if they are equal). This defines
Cartesian coordinates of any point of the space, as the coordinates on this basis of the vector
These choices define an isomorphism of the given Euclidean space onto
by mapping any point to the
-tuple of its Cartesian coordinates, and every vector to its
coordinate vector.
Examples in one dimension
Since the physicist's concept of
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
has a direction and a magnitude, it may be seen as a vector. As an example, consider a rightward force ''F'' of 15
newtons
The newton (symbol: N) is the unit of force in the International System of Units (SI). It is defined as 1 kgâ‹…m/s, the force which gives a mass of 1 kilogram an acceleration of 1 metre per second per second. It is named after Isaac Newton in ...
. If the positive
axis is also directed rightward, then ''F'' is represented by the vector 15 N, and if positive points leftward, then the vector for ''F'' is −15 N. In either case, the magnitude of the vector is 15 N. Likewise, the vector representation of a displacement Δ''s'' of 4
meters
The metre ( British spelling) or meter ( American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pr ...
would be 4 m or −4 m, depending on its direction, and its magnitude would be 4 m regardless.
In physics and engineering
Vectors are fundamental in the physical sciences. They can be used to represent any quantity that has magnitude, has direction, and which adheres to the rules of vector addition. An example is
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
, the magnitude of which is
speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity ...
. For instance, the velocity ''5 meters per second upward'' could be represented by the vector (0, 5) (in 2 dimensions with the positive ''y''-axis as 'up'). Another quantity represented by a vector is
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
, since it has a magnitude and direction and follows the rules of vector addition.
Vectors also describe many other physical quantities, such as linear displacement,
displacement, linear acceleration,
angular acceleration,
linear momentum, and
angular momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed sy ...
. Other physical vectors, such as the
electric and
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and t ...
, are represented as a system of vectors at each point of a physical space; that is, a
vector field. Examples of quantities that have magnitude and direction, but fail to follow the rules of vector addition, are angular displacement and electric current. Consequently, these are not vectors.
In Cartesian space
In the
Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
, a bound vector can be represented by identifying the coordinates of its initial and terminal point. For instance, the points and in space determine the bound vector
pointing from the point on the ''x''-axis to the point on the ''y''-axis.
In Cartesian coordinates, a free vector may be thought of in terms of a corresponding bound vector, in this sense, whose initial point has the coordinates of the origin . It is then determined by the coordinates of that bound vector's terminal point. Thus the free vector represented by (1, 0, 0) is a vector of unit length—pointing along the direction of the positive ''x''-axis.
This coordinate representation of free vectors allows their algebraic features to be expressed in a convenient numerical fashion. For example, the sum of the two (free) vectors (1, 2, 3) and (−2, 0, 4) is the (free) vector
Euclidean and affine vectors
In the geometrical and physical settings, it is sometimes possible to associate, in a natural way, a ''length'' or magnitude and a direction to vectors. In addition, the notion of direction is strictly associated with the notion of an ''angle'' between two vectors. If the
dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself). In three dimensions, it is further possible to define the
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and i ...
, which supplies an algebraic characterization of the
area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
and
orientation in space of the
parallelogram defined by two vectors (used as sides of the parallelogram). In any dimension (and, in particular, higher dimensions), it's possible to define the
exterior product, which (among other things) supplies an algebraic characterization of the area and orientation in space of the ''n''-dimensional
parallelotope defined by ''n'' vectors.
In a
pseudo-Euclidean space In mathematics and theoretical physics, a pseudo-Euclidean space is a finite- dimensional real -space together with a non-degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vector , giving
q(x ...
, a vector's squared length can be positive, negative, or zero. An important example is
Minkowski space
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the ...
(which is important to our understanding of
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The law ...
).
However, it is not always possible or desirable to define the length of a vector. This more general type of spatial vector is the subject of
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s (for free vectors) and
affine spaces (for bound vectors, as each represented by an ordered pair of "points"). One physical example comes from
thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
, where many quantities of interest can be considered vectors in a space with no notion of length or angle.
[Thermodynamics and Differential Forms]
/ref>
Generalizations
In physics, as well as mathematics, a vector is often identified with a tuple
In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
of components, or list of numbers, that act as scalar coefficients for a set of basis vectors. When the basis is transformed, for example by rotation or stretching, then the components of any vector in terms of that basis also transform in an opposite sense. The vector itself has not changed, but the basis has, so the components of the vector must change to compensate. The vector is called ''covariant'' or ''contravariant'', depending on how the transformation of the vector's components is related to the transformation of the basis. In general, contravariant vectors are "regular vectors" with units of distance (such as a displacement), or distance times some other unit (such as velocity or acceleration); covariant vectors, on the other hand, have units of one-over-distance such as gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
. If you change units (a special case of a change of basis) from meters to millimeters, a scale factor of 1/1000, a displacement of 1 m becomes 1000 mm—a contravariant change in numerical value. In contrast, a gradient of 1 K/m becomes 0.001 K/mm—a covariant change in value (for more, see covariance and contravariance of vectors
In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. In modern mathematical notat ...
). Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
s are another type of quantity that behave in this way; a vector is one type of tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
.
In pure mathematics, a vector is any element of a vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
over some field and is often represented as a coordinate vector. The vectors described in this article are a very special case of this general definition, because they are contravariant with respect to the ambient space. Contravariance captures the physical intuition behind the idea that a vector has "magnitude and direction".
Representations
Vectors are usually denoted in lowercase
Letter case is the distinction between the letters that are in larger uppercase or capitals (or more formally ''majuscule'') and smaller lowercase (or more formally ''minuscule'') in the written representation of certain languages. The writing ...
boldface, as in , and , or in lowercase italic boldface, as in ''a''. (Uppercase
Letter case is the distinction between the letters that are in larger uppercase or capitals (or more formally ''majuscule'') and smaller lowercase (or more formally ''minuscule'') in the written representation of certain languages. The writing ...
letters are typically used to represent matrices.) Other conventions include or ''a'', especially in handwriting. Alternatively, some use a tilde
The tilde () or , is a grapheme with several uses. The name of the character came into English from Spanish, which in turn came from the Latin ''titulus'', meaning "title" or "superscription". Its primary use is as a diacritic (accent) in ...
(~) or a wavy underline drawn beneath the symbol, e.g. , which is a convention for indicating boldface type. If the vector represents a directed distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
or displacement from a point ''A'' to a point ''B'' (see figure), it can also be denoted as or ''AB''. In German literature, it was especially common to represent vectors with small fraktur
Fraktur () is a calligraphic hand of the Latin alphabet and any of several blackletter typefaces derived from this hand. The blackletter lines are broken up; that is, their forms contain many angles when compared to the curves of the Anti ...
letters such as .
Vectors are usually shown in graphs or other diagrams as arrows (directed line segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
s), as illustrated in the figure. Here, the point ''A'' is called the ''origin'', ''tail'', ''base'', or ''initial point'', and the point ''B'' is called the ''head'', ''tip'', ''endpoint'', ''terminal point'' or ''final point''. The length of the arrow is proportional to the vector's magnitude, while the direction in which the arrow points indicates the vector's direction.
On a two-dimensional diagram, a vector perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to the plane of the diagram is sometimes desired. These vectors are commonly shown as small circles. A circle with a dot at its centre (Unicode U+2299 ⊙) indicates a vector pointing out of the front of the diagram, toward the viewer. A circle with a cross inscribed in it (Unicode U+2297 ⊗) indicates a vector pointing into and behind the diagram. These can be thought of as viewing the tip of an arrow
An arrow is a fin-stabilized projectile launched by a bow. A typical arrow usually consists of a long, stiff, straight shaft with a weighty (and usually sharp and pointed) arrowhead attached to the front end, multiple fin-like stabilizers ...
head on and viewing the flights of an arrow from the back.
In order to calculate with vectors, the graphical representation may be too cumbersome. Vectors in an ''n''-dimensional Euclidean space can be represented as coordinate vectors in a Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
. The endpoint of a vector can be identified with an ordered list of ''n'' real numbers (''n''-tuple
In mathematics, a tuple is a finite ordered list (sequence) of elements. An -tuple is a sequence (or ordered list) of elements, where is a non-negative integer. There is only one 0-tuple, referred to as ''the empty tuple''. An -tuple is defi ...
). These numbers are the coordinates
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is si ...
of the endpoint of the vector, with respect to a given Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
, and are typically called the scalar components (or scalar projections) of the vector on the axes of the coordinate system.
As an example in two dimensions (see figure), the vector from the origin ''O'' = (0, 0) to the point ''A'' = (2, 3) is simply written as
The notion that the tail of the vector coincides with the origin is implicit and easily understood. Thus, the more explicit notation is usually deemed not necessary (and is indeed rarely used).
In ''three dimensional'' Euclidean space (or ), vectors are identified with triples of scalar components:
also written,
This can be generalised to ''n-dimensional'' Euclidean space (or ).
These numbers are often arranged into a column vector
In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example,
\boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end.
Similarly, a row vector is a 1 \times n matrix for some n, ...
or row vector, particularly when dealing with matrices, as follows:
Another way to represent a vector in ''n''-dimensions is to introduce the standard basis vectors. For instance, in three dimensions, there are three of them:
These have the intuitive interpretation as vectors of unit length pointing up the ''x''-, ''y''-, and ''z''-axis of a Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
, respectively. In terms of these, any vector a in can be expressed in the form:
or
where a1, a2, a3 are called the vector components (or vector projections) of a on the basis vectors or, equivalently, on the corresponding Cartesian axes ''x'', ''y'', and ''z'' (see figure), while ''a''1, ''a''2, ''a''3 are the respective scalar components (or scalar projections).
In introductory physics textbooks, the standard basis vectors are often denoted instead (or , in which the hat symbol ^ typically denotes unit vectors). In this case, the scalar and vector components are denoted respectively ''ax'', ''ay'', ''az'', and a''x'', a''y'', a''z'' (note the difference in boldface). Thus,
The notation e''i'' is compatible with the index notation and the summation convention commonly used in higher level mathematics, physics, and engineering.
Decomposition or resolution
As explained above, a vector is often described by a set of vector components that add up to form the given vector. Typically, these components are the projections of the vector on a set of mutually perpendicular reference axes (basis vectors). The vector is said to be ''decomposed'' or ''resolved with respect to'' that set.
The decomposition or resolution of a vector into components is not unique, because it depends on the choice of the axes on which the vector is projected.
Moreover, the use of Cartesian unit vectors such as as a basis in which to represent a vector is not mandated. Vectors can also be expressed in terms of an arbitrary basis, including the unit vectors of a cylindrical coordinate system () or spherical coordinate system
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' me ...
(). The latter two choices are more convenient for solving problems which possess cylindrical or spherical symmetry, respectively.
The choice of a basis does not affect the properties of a vector or its behaviour under transformations.
A vector can also be broken up with respect to "non-fixed" basis vectors that change their orientation as a function of time or space. For example, a vector in three-dimensional space can be decomposed with respect to two axes, respectively ''normal'', and ''tangent'' to a surface (see figure). Moreover, the ''radial'' and '' tangential components'' of a vector relate to the ''radius
In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
of rotation'' of an object. The former is parallel to the radius and the latter is orthogonal
In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
to it.
In these cases, each of the components may be in turn decomposed with respect to a fixed coordinate system or basis set (e.g., a ''global'' coordinate system, or inertial reference frame).
Basic properties
The following section uses the Cartesian coordinate system
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
with basis vectors
and assumes that all vectors have the origin as a common base point. A vector a will be written as
Equality
Two vectors are said to be equal if they have the same magnitude and direction. Equivalently they will be equal if their coordinates are equal. So two vectors
and
are equal if
Opposite, parallel, and antiparallel vectors
Two vectors are opposite if they have the same magnitude but opposite direction. So two vectors
and
are opposite if
Two vectors are parallel if they have the same direction but not necessarily the same magnitude, or antiparallel if they have opposite direction but not necessarily the same magnitude.
Addition and subtraction
The sum of a and b of two vectors may be defined as
The resulting vector is sometimes called the resultant vector of a and b.
The addition may be represented graphically by placing the tail of the arrow b at the head of the arrow a, and then drawing an arrow from the tail of a to the head of b. The new arrow drawn represents the vector a + b, as illustrated below:
This addition method is sometimes called the ''parallelogram rule'' because a and b form the sides of a parallelogram and a + b is one of the diagonals. If a and b are bound vectors that have the same base point, this point will also be the base point of a + b. One can check geometrically that a + b = b + a and (a + b) + c = a + (b + c).
The difference of a and b is
Subtraction of two vectors can be geometrically illustrated as follows: to subtract b from a, place the tails of a and b at the same point, and then draw an arrow from the head of b to the head of a. This new arrow represents the vector (-b) + a, with (-b) being the opposite of b, see drawing. And (-b) + a = a − b.
Scalar multiplication
A vector may also be multiplied, or re-''scaled'', by a real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
''r''. In the context of conventional vector algebra, these real numbers are often called scalars (from ''scale'') to distinguish them from vectors. The operation of multiplying a vector by a scalar is called ''scalar multiplication''. The resulting vector is
Intuitively, multiplying by a scalar ''r'' stretches a vector out by a factor of ''r''. Geometrically, this can be visualized (at least in the case when ''r'' is an integer) as placing ''r'' copies of the vector in a line where the endpoint of one vector is the initial point of the next vector.
If ''r'' is negative, then the vector changes direction: it flips around by an angle of 180°. Two examples (''r'' = −1 and ''r'' = 2) are given below:
Scalar multiplication is distributive over vector addition in the following sense: ''r''(a + b) = ''r''a + ''r''b for all vectors a and b and all scalars ''r''. One can also show that a − b = a + (−1)b.
Length
The '' length'' or '' magnitude'' or '' norm'' of the vector a is denoted by ‖a‖ or, less commonly, , a, , which is not to be confused with the absolute value (a scalar "norm").
The length of the vector a can be computed with the '' Euclidean norm'',
which is a consequence of the Pythagorean theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposit ...
since the basis vectors e1, e2, e3 are orthogonal unit vectors.
This happens to be equal to the square root of the dot product, discussed below, of the vector with itself:
Unit vector
A ''unit vector'' is any vector with a length of one; normally unit vectors are used simply to indicate direction. A vector of arbitrary length can be divided by its length to create a unit vector. This is known as ''normalizing'' a vector. A unit vector is often indicated with a hat as in â.
To normalize a vector , scale the vector by the reciprocal of its length ‖a‖. That is:
Zero vector
The ''zero vector'' is the vector with length zero. Written out in coordinates, the vector is , and it is commonly denoted , 0, or simply 0. Unlike any other vector, it has an arbitrary or indeterminate direction, and cannot be normalized (that is, there is no unit vector that is a multiple of the zero vector). The sum of the zero vector with any vector a is a (that is, ).
Dot product
The ''dot product'' of two vectors a and b (sometimes called the '' inner product'', or, since its result is a scalar, the ''scalar product'') is denoted by a ∙ b, and is defined as:
where ''θ'' is the measure of the angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles ...
between a and b (see trigonometric function
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in ...
for an explanation of cosine). Geometrically, this means that a and b are drawn with a common start point, and then the length of a is multiplied with the length of the component of b that points in the same direction as a.
The dot product can also be defined as the sum of the products of the components of each vector as
Cross product
The ''cross product'' (also called the ''vector product'' or ''outer product'') is only meaningful in three or seven dimensions. The cross product differs from the dot product primarily in that the result of the cross product of two vectors is a vector. The cross product, denoted a × b, is a vector perpendicular to both a and b and is defined as
where ''θ'' is the measure of the angle between a and b, and n is a unit vector perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It can ...
to both a and b which completes a right-handed system. The right-handedness constraint is necessary because there exist ''two'' unit vectors that are perpendicular to both a and b, namely, n and (−n).
The cross product a × b is defined so that a, b, and a × b also becomes a right-handed system (although a and b are not necessarily orthogonal
In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
). This is the right-hand rule.
The length of a × b can be interpreted as the area of the parallelogram having a and b as sides.
The cross product can be written as
For arbitrary choices of spatial orientation (that is, allowing for left-handed as well as right-handed coordinate systems) the cross product of two vectors is a pseudovector instead of a vector (see below).
Scalar triple product
The ''scalar triple product'' (also called the ''box product'' or ''mixed triple product'') is not really a new operator, but a way of applying the other two multiplication operators to three vectors. The scalar triple product is sometimes denoted by (a b c) and defined as:
It has three primary uses. First, the absolute value of the box product is the volume of the parallelepiped which has edges that are defined by the three vectors. Second, the scalar triple product is zero if and only if the three vectors are linearly dependent, which can be easily proved by considering that in order for the three vectors to not make a volume, they must all lie in the same plane. Third, the box product is positive if and only if the three vectors a, b and c are right-handed.
In components (''with respect to a right-handed orthonormal basis''), if the three vectors are thought of as rows (or columns, but in the same order), the scalar triple product is simply the determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
of the 3-by-3 matrix
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** '' The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
having the three vectors as rows
The scalar triple product is linear in all three entries and anti-symmetric in the following sense:
Conversion between multiple Cartesian bases
All examples thus far have dealt with vectors expressed in terms of the same basis, namely, the ''e'' basis . However, a vector can be expressed in terms of any number of different bases that are not necessarily aligned with each other, and still remain the same vector. In the ''e'' basis, a vector a is expressed, by definition, as
The scalar components in the ''e'' basis are, by definition,
In another orthonormal basis ''n'' = that is not necessarily aligned with ''e'', the vector a is expressed as
and the scalar components in the ''n'' basis are, by definition,
The values of ''p'', ''q'', ''r'', and ''u'', ''v'', ''w'' relate to the unit vectors in such a way that the resulting vector sum is exactly the same physical vector a in both cases. It is common to encounter vectors known in terms of different bases (for example, one basis fixed to the Earth and a second basis fixed to a moving vehicle). In such a case it is necessary to develop a method to convert between bases so the basic vector operations such as addition and subtraction can be performed. One way to express ''u'', ''v'', ''w'' in terms of ''p'', ''q'', ''r'' is to use column matrices along with a direction cosine matrix containing the information that relates the two bases. Such an expression can be formed by substitution of the above equations to form
Distributing the dot-multiplication gives
Replacing each dot product with a unique scalar gives
and these equations can be expressed as the single matrix equation
This matrix equation relates the scalar components of a in the ''n'' basis (''u'',''v'', and ''w'') with those in the ''e'' basis (''p'', ''q'', and ''r''). Each matrix element ''c''''jk'' is the direction cosine
In analytic geometry, the direction cosines (or directional cosines) of a vector are the cosines of the angles between the vector and the three positive coordinate axes. Equivalently, they are the contributions of each component of the basis to a ...
relating n''j'' to e''k''. The term ''direction cosine'' refers to the cosine of the angle between two unit vectors, which is also equal to their dot product. Therefore,
By referring collectively to e1, e2, e3 as the ''e'' basis and to n1, n2, n3 as the ''n'' basis, the matrix containing all the ''c''''jk'' is known as the " transformation matrix from ''e'' to ''n''", or the " rotation matrix from ''e'' to ''n''" (because it can be imagined as the "rotation" of a vector from one basis to another), or the "direction cosine matrix from ''e'' to ''n''" (because it contains direction cosines). The properties of a rotation matrix are such that its inverse
Inverse or invert may refer to:
Science and mathematics
* Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence
* Additive inverse (negation), the inverse of a number that, when ad ...
is equal to its transpose. This means that the "rotation matrix from ''e'' to ''n''" is the transpose of "rotation matrix from ''n'' to ''e''".
The properties of a direction cosine matrix, C are:
* the determinant is unity, , C, = 1;
* the inverse is equal to the transpose;
* the rows and columns are orthogonal unit vectors, therefore their dot products are zero.
The advantage of this method is that a direction cosine matrix can usually be obtained independently by using Euler angles or a quaternion to relate the two vector bases, so the basis conversions can be performed directly, without having to work out all the dot products described above.
By applying several matrix multiplications in succession, any vector can be expressed in any basis so long as the set of direction cosines is known relating the successive bases.
Other dimensions
With the exception of the cross and triple products, the above formulae generalise to two dimensions and higher dimensions. For example, addition generalises to two dimensions as
and in four dimensions as
The cross product does not readily generalise to other dimensions, though the closely related exterior product does, whose result is a bivector. In two dimensions this is simply a pseudoscalar
A seven-dimensional cross product is similar to the cross product in that its result is a vector orthogonal to the two arguments; there is however no natural way of selecting one of the possible such products.
Physics
Vectors have many uses in physics and other sciences.
Length and units
In abstract vector spaces, the length of the arrow depends on a dimensionless scale
Scale or scales may refer to:
Mathematics
* Scale (descriptive set theory), an object defined on a set of points
* Scale (ratio), the ratio of a linear dimension of a model to the corresponding dimension of the original
* Scale factor, a number ...
. If it represents, for example, a force, the "scale" is of physical dimension
Size in general is the magnitude or dimensions of a thing. More specifically, ''geometrical size'' (or ''spatial size'') can refer to linear dimensions (length, width, height, diameter, perimeter), area, or volume. Size can also be measur ...
length/force. Thus there is typically consistency in scale among quantities of the same dimension, but otherwise scale ratios may vary; for example, if "1 newton" and "5 m" are both represented with an arrow of 2 cm, the scales are 1 m:50 N and 1:250 respectively. Equal length of vectors of different dimension has no particular significance unless there is some proportionality constant inherent in the system that the diagram represents. Also length of a unit vector (of dimension length, not length/force, etc.) has no coordinate-system-invariant significance.
Vector-valued functions
Often in areas of physics and mathematics, a vector evolves in time, meaning that it depends on a time parameter ''t''. For instance, if r represents the position vector of a particle, then r(''t'') gives a parametric representation of the trajectory of the particle. Vector-valued functions can be differentiated and integrated by differentiating or integrating the components of the vector, and many of the familiar rules from calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
continue to hold for the derivative and integral of vector-valued functions.
Position, velocity and acceleration
The position of a point x = (''x''1, ''x''2, ''x''3) in three-dimensional space can be represented as a position vector whose base point is the origin
The position vector has dimensions of length.
Given two points x = (''x''1, ''x''2, ''x''3), y = (''y''1, ''y''2, ''y''3) their displacement is a vector
which specifies the position of ''y'' relative to ''x''. The length of this vector gives the straight-line distance from ''x'' to ''y''. Displacement has the dimensions of length.
The velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
v of a point or particle is a vector, its length gives the speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity ...
. For constant velocity the position at time ''t'' will be
where x0 is the position at time ''t'' = 0. Velocity is the time derivative of position. Its dimensions are length/time.
Acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
a of a point is vector which is the time derivative of velocity. Its dimensions are length/time2.
Force, energy, work
Force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
is a vector with dimensions of mass×length/time2 and Newton's second law is the scalar multiplication
Work is the dot product of force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
and displacement
Vectors, pseudovectors, and transformations
An alternative characterization of Euclidean vectors, especially in physics, describes them as lists of quantities which behave in a certain way under a coordinate transformation. A ''contravariant vector'' is required to have components that "transform opposite to the basis" under changes of basis. The vector itself does not change when the basis is transformed; instead, the components of the vector make a change that cancels the change in the basis. In other words, if the reference axes (and the basis derived from it) were rotated in one direction, the component representation of the vector would rotate in the opposite way to generate the same final vector. Similarly, if the reference axes were stretched in one direction, the components of the vector would reduce in an exactly compensating way. Mathematically, if the basis undergoes a transformation described by an invertible matrix ''M'', so that a coordinate vector x is transformed to , then a contravariant vector v must be similarly transformed via . This important requirement is what distinguishes a contravariant vector from any other triple of physically meaningful quantities. For example, if ''v'' consists of the ''x'', ''y'', and ''z''-components of velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
, then ''v'' is a contravariant vector: if the coordinates of space are stretched, rotated, or twisted, then the components of the velocity transform in the same way. On the other hand, for instance, a triple consisting of the length, width, and height of a rectangular box could make up the three components of an abstract vector, but this vector would not be contravariant, since rotating the box does not change the box's length, width, and height. Examples of contravariant vectors include displacement, velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
, electric field, momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
, force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
, and acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
.
In the language of differential geometry, the requirement that the components of a vector transform according to the same matrix of the coordinate transition is equivalent to defining a ''contravariant vector'' to be a tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
of contravariant rank one. Alternatively, a contravariant vector is defined to be a tangent vector, and the rules for transforming a contravariant vector follow from the chain rule
In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x) ...
.
Some vectors transform like contravariant vectors, except that when they are reflected through a mirror, they flip gain a minus sign. A transformation that switches right-handedness to left-handedness and vice versa like a mirror does is said to change the '' orientation'' of space. A vector which gains a minus sign when the orientation of space changes is called a '' pseudovector'' or an ''axial vector''. Ordinary vectors are sometimes called ''true vectors'' or ''polar vectors'' to distinguish them from pseudovectors. Pseudovectors occur most frequently as the cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and i ...
of two ordinary vectors.
One example of a pseudovector is angular velocity. Driving in a car, and looking forward, each of the wheels has an angular velocity vector pointing to the left. If the world is reflected in a mirror which switches the left and right side of the car, the ''reflection'' of this angular velocity vector points to the right, but the angular velocity vector of the wheel still points to the left, corresponding to the minus sign. Other examples of pseudovectors include magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and t ...
, torque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of t ...
, or more generally any cross product of two (true) vectors.
This distinction between vectors and pseudovectors is often ignored, but it becomes important in studying symmetry properties. See parity (physics).
See also
* Affine space, which distinguishes between vectors and points
Point or points may refer to:
Places
* Point, Lewis, a peninsula in the Outer Hebrides, Scotland
* Point, Texas, a city in Rains County, Texas, United States
* Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland
* Point ...
* Array (data structure)
* Banach space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between ve ...
* Clifford algebra
* Complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
* Coordinate system
* Covariance and contravariance of vectors
In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. In modern mathematical notat ...
* Four-vector
In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as ...
, a non-Euclidean vector in Minkowski space (i.e. four-dimensional spacetime), important in relativity
* Function space
* Grassmann's ''Ausdehnungslehre''
* Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natu ...
* Normal vector
In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve ...
* Null vector
* Position (geometry)
* Pseudovector
* Quaternion
* Tangential and normal components (of a vector)
* Tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
* Unit vector
* Vector bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
* Vector calculus
* Vector notation
* Vector-valued function
Notes
References
Mathematical treatments
*
*
*.
*.
*.
*.
*
*
Physical treatments
*
*
External links
*
Online vector identities
( PDF)
Introducing Vectors
A conceptual introduction (applied mathematics
Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathemat ...
)
{{Authority control
Kinematics
Abstract algebra
Vector calculus
Linear algebra
Concepts in physics
Vectors (mathematics and physics)
Analytic geometry
Euclidean geometry