Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quaternions And Spatial Rotation
unit vector, Unit quaternions, known as versor, ''versors'', provide a convenient mathematics, mathematical notation for representing spatial Orientation (geometry), orientations and rotations of elements in three dimensional space. Specifically, they encode information about an Axis–angle representation, axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, Presented at SIGGRAPH '85. computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and Texture (crystalline), crystallographic texture analysis. When used to represent rotation, unit quaternions are also called rotation quaternions as they represent the 3D rotation group. When used to represent an Orientation (geometry), orientation (rotation relative to a reference coordinate system), they are called orientation quaternions or attitude quaternions. A spatial rotation around a fixed point of \theta radians ab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Angles
The Euler angles are three angles introduced by Leonhard Euler to describe the Orientation (geometry), orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189–207 (E478PDF/ref> They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general Basis (linear algebra), basis in three dimensional linear algebra. Classic Euler angles usually take the inclination angle in such a way that zero degrees represent the vertical orientation. Alternative forms were later introduced by Peter Guthrie Tait and George H. Bryan intended for use in aeronautics and engineering in which zero degrees represent the horizontal position. Chained rotations equivalence Euler angles can be defined by elemental geometry or by composition of rotations (i.e. chained rotations). The geometrical definition demonstrates that three consecutive ''elemental rotations'' (rotatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Rowan Hamilton
Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish astronomer, mathematician, and physicist who made numerous major contributions to abstract algebra, classical mechanics, and optics. His theoretical works and mathematical equations are considered fundamental to modern theoretical physics, particularly Hamiltonian mechanics, his reformulation of Lagrangian mechanics. His career included the analysis of geometrical optics, Fourier analysis, and quaternions, the last of which made him one of the founders of modern linear algebra. Hamilton was Andrews Professor of Astronomy at Trinity College Dublin. He was also the third director of Dunsink Observatory from 1827 to 1865. The Hamilton Institute at Maynooth University is named after him. Early life Hamilton was the fourth of nine children born to Sarah Hutton (1780–1817) and Archibald Hamilton (1778–1819), who lived in Dublin at 29 Dominick Street, Dublin, Dominick Street, later renumbered to 36. Ham ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotation Matrix
In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation (mathematics), rotation in Euclidean space. For example, using the convention below, the matrix :R = \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end rotates points in the plane counterclockwise through an angle about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates , it should be written as a column vector, and matrix multiplication, multiplied by the matrix : : R\mathbf = \begin \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end \begin x \\ y \end = \begin x\cos\theta-y\sin\theta \\ x\sin\theta+y\cos\theta \end. If and are the coordinates of the endpoint of a vector with the length ''r'' and the angle \phi with respect to the -axis, so that x = r \cos \phi and y = r \sin \phi, then the above equations become the List of trigonometric identities#Angle sum and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frobenius Theorem (real Division Algebras)
In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following: * (the real numbers) * (the complex numbers) * (the quaternions) These algebras have real dimension , and , respectively. Of these three algebras, and are commutative, but is not. Proof The main ingredients for the following proof are the Cayley–Hamilton theorem and the fundamental theorem of algebra. Introducing some notation * Let be the division algebra in question. * Let be the dimension of . * We identify the real multiples of with . * When we write for an element of , we imply that is contained in . * We can consider as a finite-dimensional -vector space. Any element of defines an endomorphism of by left-multiplication, we identify with that endomorphism. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clifford Algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford (1845–1879). The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Composition Algebra
In mathematics, a composition algebra over a field is a not necessarily associative algebra over together with a nondegenerate quadratic form that satisfies :N(xy) = N(x)N(y) for all and in . A composition algebra includes an involution called a conjugation: x \mapsto x^*. The quadratic form N(x) = x x^* is called the norm of the algebra. A composition algebra (''A'', ∗, ''N'') is either a division algebra or a split algebra, depending on the existence of a non-zero ''v'' in ''A'' such that ''N''(''v'') = 0, called a null vector. When ''x'' is ''not'' a null vector, the multiplicative inverse of ''x'' is When there is a non-zero null vector, ''N'' is an isotropic quadratic form, and "the algebra splits". Structure theorem Every unital composition algebra over a field can be obtained by repeated application of the Cayley–Dickson construction starting from (if the characteristic of is different from ) or a 2-dimensional composition subalgebra (if ). The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cayley Q8 Multiplication Graph
Cayley may refer to: __NOTOC__ People * Cayley (surname) * Cayley Illingworth (1759–1823), Anglican Archdeacon of Stow * Cayley Mercer (born 1994), Canadian women's ice hockey player Places * Cayley, Alberta, Canada, a hamlet ** Cayley/A. J. Flying Ranch Airport * Mount Cayley, a volcano in southwestern British Columbia, Canada * Cayley Glacier, Graham Land, Antarctica * Cayley (crater), a lunar crater Other uses * Cayley baronets, a title in the Baronetage of England * Cayley computer algebra system, designed to solve mathematical problems, particularly in group theory See also * W. Cayley Hamilton (died 1891), Canadian barrister and politician * Caylee (name), given name * Cèilidh, traditional Scottish or Irish social gathering * Kaylee, given name * Kaley (other) * Kayleigh (other) {{disambig, geo, given name ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative Algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of ''K''). The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a module or vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a commutative ring ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra for which the multiplication is commutative, or, equivalently, an associative algebra that is also a commutative ring. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Domain (ring Theory)
In algebra, a domain is a nonzero ring in which implies or .Lam (2001), p. 3 (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain. Mathematical literature contains multiple variants of the definition of "domain".Some authors also consider the zero ring to be a domain: see Polcino M. & Sehgal (2002), p. 65. Some authors apply the term "domain" also to rngs with the zero-product property; such authors consider ''n''Z to be a domain for each positive integer ''n'': see Lanski (2005), p. 343. But integral domains are always required to be nonzero and to have a 1. Examples and non-examples * The ring \mathbb/6\mathbb is not a domain, because the images of 2 and 3 in this ring are nonzero elements with product 0. More generally, for a positive integer n, the ring \mathbb/n\mathbb is a d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Division Algebra
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Definitions Formally, we start with a non-zero algebra ''D'' over a field. We call ''D'' a division algebra if for any element ''a'' in ''D'' and any non-zero element ''b'' in ''D'' there exists precisely one element ''x'' in ''D'' with ''a'' = ''bx'' and precisely one element ''y'' in ''D'' such that . For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element ''a'' has a multiplicative inverse (i.e. an element ''x'' with ). Associative division algebras The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite- dimensional as a vector space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |