HOME

TheInfoList



OR:

SNARE proteins – " SNAP REceptor" – are a large
protein family A protein family is a group of evolutionarily related proteins. In many cases, a protein family has a corresponding gene family, in which each gene encodes a corresponding protein with a 1:1 relationship. The term "protein family" should not be ...
consisting of at least 24 members in
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constit ...
s, more than 60 members in
mammal Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur ...
ian cells, and some numbers in plants. The primary role of SNARE proteins is to mediate vesicle fusion – the fusion of
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
with the target
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
; this notably mediates
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
, but can also mediate the fusion of vesicles with membrane-bound compartments (such as a
lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane p ...
). The best studied SNAREs are those that mediate the
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neu ...
release of synaptic vesicles in
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
s. These neuronal SNAREs are the targets of the
neurotoxin Neurotoxins are toxins that are destructive to nerve tissue (causing neurotoxicity). Neurotoxins are an extensive class of exogenous chemical neurological insultsSpencer 2000 that can adversely affect function in both developing and mature nerv ...
s responsible for
botulism Botulism is a rare and potentially fatal illness caused by a toxin produced by the bacterium ''Clostridium botulinum''. The disease begins with weakness, blurred vision, feeling tired, and trouble speaking. This may then be followed by weakne ...
and
tetanus Tetanus, also known as lockjaw, is a bacterial infection caused by ''Clostridium tetani'', and is characterized by muscle spasms. In the most common type, the spasms begin in the jaw and then progress to the rest of the body. Each spasm usually ...
produced by certain
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
.


Types

SNAREs can be divided into two categories: ''vesicle'' or ''v-SNAREs'', which are incorporated into the membranes of transport vesicles during budding, and ''target'' or ''t-SNAREs'', which are associated with nerve terminal membranes. Evidence suggests that t-SNAREs form stable subcomplexes which serve as guides for v-SNARE, incorporated into the membrane of a protein-coated vesicle, binding to complete the formation of the SNARE complex. Several SNARE proteins are located on both vesicles and target membranes, therefore, a more recent classification scheme takes into account structural features of SNAREs, dividing them into R-SNAREs and Q-SNAREs. Often, R-SNAREs act as v-SNAREs and Q-SNAREs act as t-SNAREs. R-SNAREs are proteins that contribute an arginine (R) residue in the formation of the
zero ionic layer Zero ionic layer is the main site of interaction in the core SNARE complex. Dipole-dipole interactions take place between 3 glutamine (Q) residues and 1 arginine (R) residue exposed in this layer. Despite that, the majority of the SNARE complex i ...
in the assembled core SNARE complex. One particular R-SNARE is synaptobrevin, which is located in the synaptic vesicles. Q-SNAREs are proteins that contribute a glutamine (Q) residue in the formation of the zero ionic layer in the assembled core SNARE complex. Q-SNAREs include syntaxin and SNAP-25. Q-SNAREs are further classified as Qa-, Qb-, or Qc-SNAREs depending on their location in the four-helix bundle.


Occurrence

Variants are known from yeasts, mammals ''
Drosophila ''Drosophila'' () is a genus of flies, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or (less frequently) pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many speci ...
'', and ''
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (r ...
''.


Structure

SNAREs are small, abundant, sometimes tail-anchored proteins which are often post-translationally inserted into membranes via a C-terminal transmembrane domain. Seven of the 38 known SNAREs, including
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
, do not have a transmembrane domain and are instead attached to the membrane via lipid modifications such as
palmitoylation Palmitoylation is the covalent attachment of fatty acids, such as palmitic acid, to cysteine (''S''-palmitoylation) and less frequently to serine and threonine (''O''-palmitoylation) residues of proteins, which are typically membrane prot ...
. Tail-anchored proteins can be inserted into the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
,
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
,
mitochondria A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
, and
peroxisome A peroxisome () is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen pe ...
s among other membranes, though any particular SNARE is targeted to a unique membrane. The targeting of SNAREs is accomplished by altering either the composition of the C-terminal flanking amino acid residues or the length of the transmembrane domain. Replacement of the transmembrane domain with lipid anchors leads to an intermediate stage of membrane fusion where only the two contacting leaflets fuse and not the two distal leaflets of the two membrane bilayer. Although SNAREs vary considerably in structure and size, they all share a segment in their cytosolic domain called a SNARE motif that consists of 60-70 amino acids and contains
heptad repeat The heptad repeat is an example of a structural motif that consists of a repeating pattern of seven amino acids: ''a b c d e f g'' H P P H C P C where H represents hydrophobic residues, C represents, typically, charged residues, and P repres ...
s that have the ability to form coiled-coil structures. V- and t-SNAREs are capable of reversible assembly into tight, four-helix bundles called "trans"-SNARE complexes. In synaptic vesicles, the readily-formed metastable "trans" complexes are composed of three SNAREs:
syntaxin 1 Syntaxins are a family of membrane integrated Q-SNARE proteins participating in exocytosis. Domains Syntaxins possess a single C-terminal transmembrane domain, a SNARE domain (known as H3), and an N-terminal regulatory domain (Habc). Syntax ...
and SNAP-25 resident in cell membrane and synaptobrevin (also referred to as vesicle-associated membrane protein or VAMP) anchored in the vesicle membrane. In
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
al exocytosis, syntaxin and synaptobrevin are anchored in respective membranes by their C-terminal domains, whereas SNAP-25 is tethered to the plasma membrane via several cysteine-linked palmitoyl chains. The core ''trans''-SNARE complex is a four-\alpha-helix bundle, where one \alpha-helix is contributed by syntaxin 1, one \alpha-helix by synaptobrevin and two \alpha-helices are contributed by SNAP-25. The
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
-resident SNAREs have been shown to be present in distinct microdomains or clusters, the integrity of which is essential for the exocytotic competence of the cell.


Membrane fusion

During membrane fusion, v-SNARE and t-SNARE proteins on separate membranes combine to form a trans-SNARE complex, also known as a "SNAREpin". Depending on the stage of fusion of the membranes, these complexes may be referred to differently. During fusion of ''trans''-SNARE complexes, the membranes merge and SNARE proteins involved in complex formation after fusion are then referred to as a "''cis''"-SNARE complex, because they now reside in a single (or ''cis'') resultant membrane. After fusion, the ''cis''-SNARE complex is bound and disassembled by an adaptor protein, alpha-SNAP. Then, the hexameric
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
(of the AAA type) called NSF catalyzes the ATP-dependent unfolding of the SNARE proteins and releases them into the cytosol for recycling. SNAREs are thought to be the core required components of the fusion machinery and can function independently of additional cytosolic accessory proteins. This was demonstrated by engineering "flipped" SNAREs, where the SNARE domains face the extracellular space rather than the cytosol. When cells containing v-SNAREs contact cells containing t-SNAREs, ''trans''-SNARE complexes form and cell-cell fusion ensues.


Components

The core SNARE complex is a 4-\alpha-helix bundle. Synaptobrevin and syntaxin contribute one \alpha-helix each, while SNAP-25 participates with two \alpha-helices (abbreviated as Sn1 and Sn2). The interacting amino acid residues that zip the SNARE complex can be grouped into layers. Each layer has 4 amino acid residues – one residue per each of the 4 \alpha-helices. In the center of the complex is the ''zero ionic layer'' composed of one arginine (R) and three glutamine (Q) residues, and it is flanked by leucine zippering. Layers '-1', '+1' and '+2' at the centre of the complex most closely follow ideal leucine-zipper geometry and aminoacid composition. The ''
zero ionic layer Zero ionic layer is the main site of interaction in the core SNARE complex. Dipole-dipole interactions take place between 3 glutamine (Q) residues and 1 arginine (R) residue exposed in this layer. Despite that, the majority of the SNARE complex i ...
'' is composed of R56 from VAMP-2, Q226 from syntaxin-1A, Q53 from Sn1 and Q174 from Sn2, and is completely buried within the leucine-zipper layers. The positively charged
guanidino Guanidine is the compound with the formula HNC(NH2)2. It is a colourless solid that dissolves in polar solvents. It is a strong base that is used in the production of plastics and explosives. It is found in urine predominantly in patients experie ...
group of the
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the am ...
(R) residue interact with the
carboxyl In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is or , with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic ...
groups of each of the three
glutamine Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral ...
(Q) residues. The flanking leucine-zipper layers act as a water-tight seal to shield the ionic interactions from the surrounding
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
. Exposure of the ''zero ionic layer'' to the water solvent by breaking the flanking leucine zipper leads to instability of the SNARE complex and is the putative mechanism by which \alpha-SNAP and NSF recycle the SNARE complexes after the completion of synaptic vesicle
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
.


Mechanism of membrane fusion


Assembly

SNARE proteins must assemble into ''trans''-SNARE complexes to provide the force that is necessary for vesicle fusion. The four
α-helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ...
domains (1 each from synaptobrevin and syntaxin, and 2 from
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
) come together to form a coiled-coil motif. The
rate-limiting step In chemical kinetics, the overall rate of a reaction is often approximately determined by the slowest step, known as the rate-determining step (RDS or RD-step or r/d step) or rate-limiting step. For a given reaction mechanism, the prediction of the ...
in the assembly process is the association of the syntaxin SNARE domain, since it is usually found in a "closed" state where it is incapable of interacting with other SNARE proteins. When syntaxin is in an open state, ''trans''-SNARE complex formation begins with the association of the four SNARE domains at their N-termini. The SNARE domains proceed in forming a coiled-coil motif in the direction of the
C-termini The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain ( protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
of their respective domains. SNAP and NSF also associate with the complex formed by SNAREs during this step and participate in the later events of priming and disassembly. The SM protein Munc18 is thought to play a role in assembly of the SNARE complex, although the exact mechanism by which it acts is still under debate. It is known that the clasp of Munc18 locks syntaxin in a closed conformation by binding to its α-helical SNARE domains, which inhibits syntaxin from entering SNARE complexes (thereby inhibiting fusion). The clasp is also capable, however, of binding the entire four-helix bundle of the ''trans''-SNARE complex. One hypothesis suggests that, during SNARE-complex assembly, the Munc18 clasp releases closed syntaxin, remains associated with the N-terminal peptide of syntaxin (allowing association of the syntaxin SNARE domain with other SNARE proteins), and then reattaches to the newly formed four-helix SNARE complex. This possible mechanism of dissociation and subsequent re-association with the SNARE domains could be calcium-dependent. This supports the idea that Munc18 plays a key regulatory role in vesicle fusion; under normal conditions the SNARE complex will be prevented from forming by Munc18, but when triggered the Munc18 will actually assist in SNARE-complex assembly and thereby act as a fusion
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
.


Zippering and fusion pore opening

Membrane fusion is an energetically demanding series of events, which requires translocation of proteins in the membrane and disruption of the lipid bilayer, followed by reformation of a highly curved membrane structure. The process of bringing together two membranes requires input energy to overcome the repulsive electrostatic forces between the membranes. The mechanism that regulates the movement of membrane associated proteins away from the membrane contact zone prior to fusion is unknown, but the local increase in membrane curvature is thought to contribute in the process. SNAREs generate energy through protein-lipid and protein-protein interactions which act as a driving force for membrane fusion. One model hypothesizes that the force required to bring two
membranes A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
together during fusion comes from the
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
in ''trans''-SNARE complexes to form ''cis''-SNARE complexes. The current hypothesis that describes this process is referred to as SNARE "zippering." When the ''trans''-SNARE complex is formed, the SNARE proteins are still found on opposing membranes. As the SNARE domains continue coiling in a
spontaneous process In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamic ...
, they form a much tighter, more stable four-helix bundle. During this "zippering" of the SNARE complex, a fraction of the released energy from binding is thought to be stored as molecular bending stress in the individual SNARE motifs. This mechanical stress is postulated to be stored in the semi-rigid linker regions between the transmembrane domains and the SNARE helical bundle. The energetically unfavorable bending is minimized when the complex moves peripherally to the site of membrane fusion. As a result, relief of the stress overcomes the repulsive forces between the
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry) In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form nat ...
and the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
and presses the two membranes together. Several models to explain the subsequent step – the formation of stalk and fusion pore – have been proposed. However, the exact nature of these processes remains debated. In accordance with the "zipper" hypothesis, as the SNARE complex forms, the tightening helix bundle puts torsional force on the transmembrane (TM) domains of synaptobrevin and syntaxin. This causes the TM domains to tilt within the separate membranes as the proteins coil more tightly. The unstable configuration of the TM domains eventually causes the two membranes to fuse and the SNARE proteins come together within the same membrane, which is referred to as a "''cis''"-SNARE complex. As a result of the lipid rearrangement, a fusion pore opens and allows the chemical contents of the
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry) In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form nat ...
to leak into the outside environment. The continuum explanation of stalk formation suggests that membrane fusion begins with an infinitesimal radius until it radially expands into a stalk-like structure. However, such a description fails to take into account the molecular dynamics of membrane lipids. Recent molecular simulations show that the close proximity of the membranes allows the lipids to splay, where a population of lipids insert their hydrophobic tails into the neighboring membrane – effectively keeping a "foot" in each membrane. The resolution of the splayed lipid state proceeds spontaneously to form the stalk structure. In this molecular view, the splayed-lipid intermediate state is the rate determining barrier rather than the formation of the stalk, which now becomes the free energy minimum. The energetic barrier for establishment of the splayed-lipid conformation is directly proportional to the intermembrane distance. The SNARE complexes and their pressing of the two membranes together, therefore, could provide the free energy required to overcome the barrier.


Disassembly

The energy input that is required for SNARE-mediated fusion to take place comes from SNARE-complex disassembly. The suspected energy source is N-ethylmaleimide-sensitive factor (NSF), an
ATPase ATPases (, Adenosine 5'-TriPhosphatase, adenylpyrophosphatase, ATP monophosphatase, triphosphatase, SV40 T-antigen, ATP hydrolase, complex V (mitochondrial electron transport), (Ca2+ + Mg2+)-ATPase, HCO3−-ATPase, adenosine triphosphatase) are ...
that is involved with membrane fusion. NSF homohexamers, along with the NSF cofactor α-SNAP, bind and dissociate the SNARE complex by coupling the process with ATP hydrolysis. This process allows for reuptake of synaptobrevin for further use in
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
, whereas the other SNARE proteins remain associated with the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
. The dissociated SNARE proteins have a higher energy state than the more stable ''cis''-SNARE complex. It is believed that the energy that drives fusion is derived from the transition to a lower energy ''cis''-SNARE complex. The ATP hydrolysis-coupled dissociation of SNARE complexes is an energy investment that can be compared to "cocking the gun" so that, once vesicle fusion is triggered, the process takes place spontaneously and at optimum velocity. A comparable process takes place in muscles, in which the myosin heads must first hydrolyze ATP in order to adapt the necessary conformation for interaction with actin and the subsequent power stroke to occur.


Regulatory effects on exocytosis


Regulation via SNAP-25 palmitoylation

The Q-SNARE protein Synaptosomal-associated protein 25 (
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
) is composed of two α-helical domains connected by a random coil linker. The random coil linker region is most notable for its four
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
residues. The α-helical domains combine with those of both syntaxin and synaptobrevin (also known as
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry) In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form nat ...
associated membrane protein or VAMP) to form the 4-α-helix coiled-coil SNARE complex critical to efficient
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
. While syntaxin and synaptobrevin both contain transmembrane domains which allow for docking with target and vesicle
membranes A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
respectively,
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
relies on the
palmitoylation Palmitoylation is the covalent attachment of fatty acids, such as palmitic acid, to cysteine (''S''-palmitoylation) and less frequently to serine and threonine (''O''-palmitoylation) residues of proteins, which are typically membrane prot ...
of
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
residues found in its random coil region for docking to the target membrane. Some studies have suggested that association with syntaxin via SNARE interactions precludes the need for such docking mechanisms. Syntaxin knockdown studies however, failed to show a decrease in membrane bound SNAP-25 suggesting alternate docking means exist. The
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between ato ...
ing of
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, f ...
chains to SNAP-25 via thioester linkages with one or more
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
residues therefore, provides for regulation of docking and ultimately SNARE mediated
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
. This process is mediated by a specialized enzyme called DHHC palmitoyl transferase. The
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
rich domain of
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
has also been shown to weakly associate with the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
possibly allowing it to be localized near the
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
for subsequent
palmitoylation Palmitoylation is the covalent attachment of fatty acids, such as palmitic acid, to cysteine (''S''-palmitoylation) and less frequently to serine and threonine (''O''-palmitoylation) residues of proteins, which are typically membrane prot ...
. The reverse of this process is carried out by another enzyme called palmitoyl protein thioesterase (see figure). The availability of SNAP-25 in the SNARE complex is also theorized to possibly be spatially regulated via localization of
lipid microdomain Lipid microdomains are formed when lipids undergo lateral phase separations yielding stable coexisting lamellar domains. These phase separations can be induced by changes in temperature, pressure, ionic strength or by the addition of divalent cation ...
s in the target membrane. Palmitoylated cysteine residues could be localized to the desired target membrane region via a favorable lipid environment (possibly
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell memb ...
rich) complementary to the
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, f ...
chains bonded to the cysteine residues of SNAP-25.


SNAP-25 regulation of voltage-gated Ca2+ channels in neuronal axon terminals

As an
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells ...
reaches the
axon terminal Axon terminals (also called synaptic boutons, terminal boutons, or end-feet) are distal terminations of the telodendria (branches) of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell, or neuron, that cond ...
,
depolarization In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is ess ...
events stimulate the opening of voltage-gated calcium channels (VGCCs) allowing the rapid influx of
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
down its
electrochemical gradient An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts, the chemical gradient, or difference in solute concentration across a membrane, and ...
. Calcium goes on to stimulate
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
via binding with
synaptotagmin 1 Synaptotagmin-1 is a protein that in humans is encoded by the ''SYT1'' gene. Function Synaptotagmins are integral membrane proteins of synaptic vesicles thought to serve as sensors for calcium ions (Ca2+) in the process of vesicular trafficking ...
.
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
however, has been shown to negatively regulate VGCC function in
glutamatergic Glutamatergic means "related to glutamate". A glutamatergic agent (or drug) is a chemical that directly modulates the excitatory amino acid (glutamate/aspartate) system in the body or brain. Examples include excitatory amino acid receptor agonis ...
neuronal cells. SNAP-25 leads to a reduction of
current density In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional a ...
through VGCC's and therefore a decrease in the amount of
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
that is binding the synaptotagmin, causing a decrease in neuronal
glutamatergic Glutamatergic means "related to glutamate". A glutamatergic agent (or drug) is a chemical that directly modulates the excitatory amino acid (glutamate/aspartate) system in the body or brain. Examples include excitatory amino acid receptor agonis ...
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
. Conversely, underexpression of SNAP-25 allows for an increase in VGCC current density and increase in exocytosis. Further investigation has suggested possible relationships between SNAP-25 over/underexpression and a variety of brain diseases. In attention-deficit/hyperactivity disorder or ADHD, polymorphisms at the SNAP-25 gene locus in humans have been linked to the disease suggesting a potential role in its manifestation. This is further suggested by
heterogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
SNAP-25 knockout studies performed on coloboma mutant mice, which led to
phenotypic In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
characteristics of ADHD. Studies have also shown a correlation of SNAP-25 over/underexpression and the onset of
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social w ...
.


Syntaxin and the Habc domain

Syntaxin consists of a transmembrane domain (TMD),
alpha-helical The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ea ...
SNARE domain, a short linker region, and the Habc domain which consists of three alpha-helical regions. The SNARE domain in syntaxin serves as a target site for docking of
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
and synaptobrevin in order to form the four helix bundle requisite to the SNARE complex and subsequent fusion. The Habc domain, however, serves as an autoinhibitory domain in syntaxin. It has been shown to fold over and associate with the SNARE domain of syntaxin inducing a "closed" state, creating a physical barrier to the formation of the SNARE motif. Conversely, the Habc domain can again disassociate with the SNARE domain leaving syntaxin free to associate with both
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
and synaptobrevin.


Syntaxin 1B and readily releasable pool of vesicles

There is an immense diversity of syntaxin subtypes, with 15 varieties in the human genome. It has been suggested that syntaxin1B has a role in regulating number of synaptic vesicles ready for exocytosis in the axon terminal. This is also called the readily releasable pool (RRP) of vesicles. A knock out study in 2014 showed that the lack of syntaxin1B led to a significant decrease in RRP size.


Toxins

Many
neurotoxin Neurotoxins are toxins that are destructive to nerve tissue (causing neurotoxicity). Neurotoxins are an extensive class of exogenous chemical neurological insultsSpencer 2000 that can adversely affect function in both developing and mature nerv ...
s directly affect SNARE complexes. Such toxins as the botulinum and
tetanus Tetanus, also known as lockjaw, is a bacterial infection caused by ''Clostridium tetani'', and is characterized by muscle spasms. In the most common type, the spasms begin in the jaw and then progress to the rest of the body. Each spasm usually ...
toxins work by targeting the SNARE components. These toxins prevent proper vesicle recycling and result in poor muscle control, spasms, paralysis, and even death.


Botulinum neurotoxin

Botulinum Toxin Botulinum toxin, or botulinum neurotoxin (BoNT), is a neurotoxic protein produced by the bacterium ''Clostridium botulinum'' and related species. It prevents the release of the neurotransmitter acetylcholine from axon endings at the neurom ...
(BoNT) is one of the most potent toxins to have ever been discovered. It is a proteolytic enzyme that cleaves
SNARE proteins SNARE proteins – " SNAP REceptor" – are a large protein family consisting of at least 24 members in yeasts, more than 60 members in mammalian cells, and some numbers in plants. The primary role of SNARE proteins is to mediate vesicle fu ...
in
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
. Its
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
structure is composed of two peptide subunits, a heavy chain (100kDas) and a light chain (50kDas), which are held together by a
disulfide bond In biochemistry, a disulfide (or disulphide in British English) refers to a functional group with the structure . The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In ...
. The action of BoNT follows a 4-step mechanism including binding to the neuronal membrane,
endocytosis Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. ...
, membrane translocation, and
proteolysis Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called protease ...
of SNARE proteins. In its mechanism of action, the heavy chain of BoNT is first used to find its neuronal targets and bind to the gangliosides and membrane proteins of presynaptic neurons. Next, the toxin is then endocytosed into the cell membrane. The heavy chain undergoes a conformational change important for translocating the light chain into the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
of the neuron. Finally, after the light chain of BoNT is brought into the cytosol of the targeted neuron, it is released from the heavy chain so that it can reach its active cleavage sites on the SNARE proteins. The light chain is released from the heavy chain by the reduction of the disulfide bond holding the two together. The reduction of this disulfide bond is mediated by the NADPH-
thioredoxin reductase Thioredoxin reductases (TR, TrxR) () are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction ...
- thioredoxin system. The light chain of BoNT acts as a
metalloprotease A metalloproteinase, or metalloprotease, is any protease enzyme whose catalytic mechanism involves a metal. An example is ADAM12 which plays a significant role in the fusion of muscle cells during embryo development, in a process known as myo ...
on SNARE proteins that is dependent on Zn(II) ions, cleaving them and eliminating their function in
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
. There are 8 known isotypes of BoNT, BoNT/A – BoNT/H, each with different specific cleavage sites on SNARE proteins.
SNAP25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
, a member of the SNARE protein family located in the membrane of cells, is cleaved by BoNT isotypes A, C, and E. The cleavage of SNAP-25 by these isotypes of BoNT greatly inhibits their function in forming the SNARE complex for fusion of vesicles to the synaptic membrane. BoNT/C also targets Syntaxin-1, another SNARE protein located in the synaptic membrane. It degenerates these Syntaxin proteins with a similar outcome as with SNAP-25. A third SNARE protein, Synaptobrevin (VAMP), is located on cell
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
. VAMP2 is targeted and cleaved by BoNT isotypes B, D, and F in synaptic neurons. The targets of these various isotypes of BoNT as well as Tetanus Neurotoxin (TeNT) are shown in the figure to the right. In each of these cases, Botulinum Neurotoxin causes functional damage to SNARE proteins, which has significant physiological and medical implications. By damaging SNARE proteins, the toxin prevents synaptic vesicles from fusing to the synaptic membrane and releasing their
neurotransmitters A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neurot ...
into the synaptic cleft. With the inhibition of neurotransmitter release into the synaptic cleft,
action potentials An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells ...
cannot be propagated to stimulate muscle cells. This result in
paralysis Paralysis (also known as plegia) is a loss of motor function in one or more muscles. Paralysis can also be accompanied by a loss of feeling (sensory loss) in the affected area if there is sensory damage. In the United States, roughly 1 in 5 ...
of those infected and in serious cases, it can cause death. Although the effects of Botulinum Neurotoxin can be fatal, it has also been used as a therapeutic agent in medical and cosmetic treatments.


Tetanus neurotoxin

Tetanus toxin, or TeNT, is composed of a heavy chain (100KDa) and a light chain (50kDa) connected by a
disulfide In biochemistry, a disulfide (or disulphide in British English) refers to a functional group with the structure . The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In ...
bond. The heavy chain is responsible for neurospecific binding of TeNT to the nerve terminal membrane,
endocytosis Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. ...
of the toxin, and translocation of the light chain into the cytosol. The light chain has zinc-dependent endopeptidase or more specifically matrix metalloproteinase (MMP) activity through which cleaveage of synaptobrevin or VAMP is carried out. For the light chain of TeNT to be activated one atom of
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
must be bound to every molecule of toxin. When zinc is bound reduction of the disulfide bond will be carried out primarily via the NADPH-thioredoxin reductase-thioredoxin redox system. Then the light chain is free to cleave the Gln76-Phe77 bond of synaptobrevin. Cleavage of synaptobrevin affects the stability of the SNARE core by restricting it from entering the low energy conformation which is the target for NSF binding. This cleavage of synaptobrevin is the final target of TeNT and even in low doses the neurotoxin will inhibit neurotransmitter
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
.


Role in neurotransmitter release

Neurotransmitters A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neurot ...
are stored in
readily releasable pool In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve imp ...
s of
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
confined within the presynaptic terminal. During
neurosecretion Neurosecretion is the storage, synthesis and release of hormones from neurons. These neurohormones, produced by neurosecretory cells, are normally secreted from nerve cells in the brain that then circulate into the blood. These neurohormones are ...
/
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
, SNAREs play a crucial role in vesicle docking, priming, fusion, and synchronization of neurotransmitter release into the synaptic cleft. The first step in synaptic vesicle fusion is tethering, where the vesicles are translocated from the reserve pool into physical contact with the membrane. At the membrane,
Munc-18 Munc-18 (an acronym for mammalian uncoordinated-18) proteins are the mammalian homologue of UNC-18 (which was first discovered in the nematode worm C. elegans) and are a member of the Sec1/Munc18-like (SM) protein family. Munc-18 proteins have been ...
is initially bound to
syntaxin 1A Syntaxin-1A is a protein that in humans is encoded by the ''STX1A'' gene. Function Synaptic vesicles store neurotransmitters that are released during calcium-regulated exocytosis. The specificity of neurotransmitter release requires the locali ...
in a closed structure. It is postulated that the dissociation of Munc-18 from the complex frees syntaxin 1A to bind with the v-SNARE proteins. The next step in release is the docking of vesicles, where the v- and t-SNARE proteins transiently associate in a calcium-independent manner. The vesicles are then primed, wherein the SNARE motifs form a stable interaction between the vesicle and membrane. Complexins stabilize the primed SNARE-complex rendering the vesicles ready for rapid exocytosis. The span of presynaptic membrane containing the primed vesicles and dense collection of SNARE proteins is referred to as the
active zone The active zone or synaptic active zone is a term first used by Couteaux and Pecot-Dechavassinein in 1970 to define the site of neurotransmitter release. Two neurons make near contact through structures called synapses allowing them to communicate ...
. Voltage-gated calcium channels are highly concentrated around active zones and open in response to membrane
depolarization In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is ess ...
at the synapse. The influx of calcium is sensed by
synaptotagmin 1 Synaptotagmin-1 is a protein that in humans is encoded by the ''SYT1'' gene. Function Synaptotagmins are integral membrane proteins of synaptic vesicles thought to serve as sensors for calcium ions (Ca2+) in the process of vesicular trafficking ...
, which in turn dislodges complexin protein and allows the vesicle to fuse with the presynaptic membrane to release neurotransmitter. It has also been shown that the voltage-gated calcium channels directly interact with the t-SNAREs syntaxin 1A and SNAP-25, as well as with synaptotagmin 1. The interactions are able to inhibit calcium channel activity as well as tightly aggregate the molecules around the release site. There have been many clinical cases that link SNARE genes with neural disorders. Deficiency in SNAP-25
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
has been observed in hippocampal tissue of some
schizophrenic Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social w ...
patients, a SNAP-25 single-nucleotide polymorphism is linked to hyperactivity in autism-spectrum disorders, and overexpression of SNAP-25B leads to the early onset of
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of Depression (mood), depression and periods of abnormally elevated Mood (psychology), mood that last from days to weeks each. If the elevat ...
.


Role in autophagy

Macroautophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent r ...
is a catabolic process involving the formation of double-membrane bound
organelles In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
called autophagosomes, which aid in degradation of cellular components through fusion with lysosomes. During
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
, portions of the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
are engulfed by a cup-shaped double-membrane structure called a phagophore and eventually become the contents of the fully assembled autophagosome. Autophagosome biogenesis requires the initiation and growth of phagophores, a process that was once thought to occur through de novo addition of lipids. However, recent evidence suggests that the lipids that contribute to the growing phagophores originate from numerous sources of membrane, including
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
, Golgi,
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
, and
mitochondria A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
. SNAREs play important roles in mediating vesicle fusion during phagophore initiation and expansion as well as autophagosome-lysosome fusion in the later stages of autophagy. Though the mechanism of phagophore initiation in mammals is unknown, SNAREs have been implicated in phagophore formation through homotypic fusion of small,
clathrin Clathrin is a protein that plays a major role in the formation of coated vesicles. Clathrin was first isolated and named by Barbara Pearse in 1976. It forms a triskelion shape composed of three clathrin heavy chains and three light chains. When ...
-coated, single-membrane vesicles containing Atg16L, the v-SNARE
VAMP7 Synaptobrevin-like protein 1 (SYBL1), also known as vesicle-associated membrane protein 7 (VAMP7), is a protein that in humans is encoded by the ''VAMP7'', or ''SYBL1'', gene. Function SYBL1 is a transmembrane protein that is a member of the ...
, and its partner t-SNAREs: Syntaxin-7, Syntaxin-8, and VTI1B. In yeast, the t-SNAREs Sec9p and Sso2p are required for exocytosis and promote tubulovesicular budding of Atg9 positive vesicles, which are also required for autophagosome biogenesis. Knocking out either of these SNAREs leads to accumulation of small Atg9 containing vesicles that do not fuse, therefore preventing the formation of the pre-autophagosomal structure. In addition to phagophore assembly, SNAREs are also important in mediating autophagosome-lysosome fusion. In mammals, the SNAREs
VAMP7 Synaptobrevin-like protein 1 (SYBL1), also known as vesicle-associated membrane protein 7 (VAMP7), is a protein that in humans is encoded by the ''VAMP7'', or ''SYBL1'', gene. Function SYBL1 is a transmembrane protein that is a member of the ...
,
VAMP8 Vesicle-associated membrane protein 8 is a protein that in humans is encoded by the ''VAMP8'' gene. Synaptobrevins/VAMPs, syntaxins, and the 25-kD synaptosomal-associated protein SNAP25 are the main components of a protein complex involved in th ...
, and VTI1B are required in autophagosome-lysosome fusion and this process is impaired in lysosomal storage disorders where cholesterol accumulates in the lysosome and sequesters SNAREs in cholesterol rich regions of the membrane preventing their recycling. Recently, syntaxin 17 ( STX17) was identified as an autophagosome associated SNARE that interacts with VAMP8 and SNAP29 and is required for fusion with the lysosome. STX17 is localized on the outer membrane of autophagosomes, but not phagophores or other autophagosome precursors, which prevents them from prematurely fusing with the lysosome. In yeast, the fusion of autophagosomes with vacuoles (the yeast equivalent of lysosomes) requires SNAREs and related proteins such as the syntaxin homolog Vam3, SNAP-25 homolog Vam7, Ras-like GTPase Ypt7, and the NSF ortholog, Sec18.


Flexible substitution of components

Several complexes are known to flexibly substitute one protein for another: Two Qa-SNAREs in yeasts can substitute for each other to some degree. Yeasts which lose the R-SNARE - Sec22p - automatically increase levels of a homolog - Ykt6p - and use it the same way. Although ''Drosophilae'' cannot survive the loss of the
SNAP-25 Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (''N''-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the ''SNAP25'' gene found on chromosome 20p12.2 in humans. SNAP-25 is a com ...
component, SNAP-24 can fully replace it. And also in ''Drosophila'', an R-SNARE not normally found in
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
s can substitute for synaptobrevin.


In plants

SNAREs also occur in plants and some understanding of their occurrence and role has obtained. These have often been found to be essential to
vesicle transport In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis) and transport of mater ...
, including Zheng et al 1999's finding regarding Golgi-
vacuole A vacuole () is a membrane-bound organelle which is present in plant and fungal cells and some protist, animal, and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic m ...
trafficking. Much of this study has been in ''
Arabidopsis ''Arabidopsis'' (rockcress) is a genus in the family Brassicaceae. They are small flowering plants related to cabbage and mustard. This genus is of great interest since it contains thale cress (''Arabidopsis thaliana''), one of the model organ ...
''.


References


External links

* * {{Vesicular transport proteins, state=collapsed Single-pass transmembrane proteins Neural synapse Membrane proteins Lipoproteins Protein superfamilies Molecular neuroscience