Solubility Enhancer
   HOME

TheInfoList



OR:

In
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
, solubility is the ability of a
substance Substance may refer to: * Matter, anything that has mass and takes up space Chemistry * Chemical substance, a material with a definite chemical composition * Drug substance ** Substance abuse, drug-related healthcare and social policy diagnosis ...
, the solute, to form a
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Soluti ...
with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubility of a substance in a specific solvent is generally measured as the concentration of the solute in a
saturated Saturation, saturated, unsaturation or unsaturated may refer to: Chemistry * Saturation, a property of organic compounds referring to carbon-carbon bonds ** Saturated and unsaturated compounds **Degree of unsaturation ** Saturated fat or fatty ac ...
solution, one in which no more solute can be dissolved. At this point, the two substances are said to be at the solubility equilibrium. For some solutes and solvents, there may be no such limit, in which case the two substances are said to be "
miscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
in all proportions" (or just "miscible"). The solute can be a solid, a
liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
, or a gas, while the solvent is usually solid or liquid. Both may be pure substances, or may themselves be solutions. Gases are always miscible in all proportions, except in very extreme situations,J. de Swaan Arons and G. A. M. Diepen (1966): "Gas—Gas Equilibria". ''Journal of Chemical Physics'', volume 44, issue 6, page 2322. and a solid or liquid can be "dissolved" in a gas only by passing into the gaseous state first. The solubility mainly depends on the composition of solute and solvent (including their pH and the presence of other dissolved substances) as well as on temperature and pressure. The dependency can often be explained in terms of interactions between the particles ( atoms, molecules, or ions) of the two substances, and of thermodynamic concepts such as enthalpy and entropy. Under certain conditions, the concentration of the solute can exceed its usual solubility limit. The result is a supersaturated solution, which is metastable and will rapidly exclude the excess solute if a suitable
nucleation In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that deter ...
site appears. The concept of solubility does not apply when there is an irreversible chemical reaction between the two substances, such as the reaction of
calcium hydroxide Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca( OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed or slaked with water. It has m ...
with hydrochloric acid; even though one might say, informally, that one "dissolved" the other. The solubility is also not the same as the rate of solution, which is how fast a solid solute dissolves in a liquid solvent. This property depends on many other variables, such as the physical form of the two substances and the manner and intensity of mixing. The concept and measure of solubility are extremely important in many sciences besides chemistry, such as geology, biology, physics, and
oceanography Oceanography (), also known as oceanology and ocean science, is the scientific study of the oceans. It is an Earth science, which covers a wide range of topics, including ecosystem dynamics; ocean currents, waves, and geophysical fluid dynamic ...
, as well as in engineering, medicine, agriculture, and even in non-technical activities like painting,
cleaning Cleaning is the process of removing unwanted substances, such as dirt, infectious agents, and other impurities, from an object or environment. Cleaning is often performed for aesthetic, hygienic, functional, environmental, or safety purposes. Cl ...
,
cooking Cooking, cookery, or culinary arts is the art, science and craft of using heat to Outline of food preparation, prepare food for consumption. Cooking techniques and ingredients vary widely, from grilling food over an open fire to using electric ...
, and
brewing Brewing is the production of beer by steeping a starch source (commonly cereal grains, the most popular of which is barley) in water and #Fermenting, fermenting the resulting sweet liquid with Yeast#Beer, yeast. It may be done in a brewery ...
. Most chemical reactions of scientific, industrial, or practical interest only happen after the
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s have been dissolved in a suitable solvent. Water is by far the most common such solvent. The term "soluble" is sometimes used for materials that can form
colloidal suspensions A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
of very fine solid particles in a liquid.Claudius Kormann, Detlef W. Bahnemann, and Michael R. Hoffmann (1988): "Preparation and characterization of quantum-size titanium dioxide". ''Journal of Physical Chemistry'',volume 92, issue 18, pages 5196–5201. The quantitative solubility of such substances is generally not well-defined, however.


Quantification of solubility

The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.


Per quantity of solvent

In particular, chemical handbooks will often express the solubility of a substance in a liquid as grams of solute per
decilitre The litre (international spelling) or liter (American English spelling) (SI symbols L and l, other symbol used: ℓ) is a metric unit of volume. It is equal to 1 cubic decimetre (dm3), 1000 cubic centimetres (cm3) or 0.001 cubic metre (m3). ...
(100 mL) of solvent (g/dL); or, less commonly, as grams per litre (g/L). The quantity of solvent can instead be expressed in mass, as in g/100g" or g/kg. The number may be expressed as a percentage in this case, and the abbreviation "w/w" may be used to indicate "weight per weight".Abler (2021):
W/W (Weight/Weight)
. Online page a
Abler.com website
Accessed on 2021-11-26.
(The values in g/L and g/kg are practically the same for water, but not for other solvents.) Alternatively, the quantity of solute can be expressed in moles instead of mass; if the quantity of solvent is given in
kilograms The kilogram (also kilogramme) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially ...
, the value is the molality of the solution (mol/kg).


Per quantity of solution

The solubility of a substance in a liquid may also be expressed as the quantity of solute per quantity of ''solution'', rather than of solvent. For example, following the common practice in titration, it may be expressed as moles of solute per litre of solution (mol/L), the molarity of the latter. In more specialized contexts the solubility may be given by the mole fraction (moles of solute per total moles of solute plus solvent) or by the mass fraction at equilibrium (mass of solute per mass of solute plus solvent), both adimensional numbers between 0 and 1 which may be expressed as percentages.


Liquid and gaseous solutes

For solutions of liquids or gases in liquids, the quantities of both substances may be given volume rather than mass or mole amount; such as litre of solute per litre of solvent, or litre of solute per litre of solution. The value may be given as a percentage, and the abbreviation "v/v" for "volume per volume" may be used to indicate this choice.


Conversion of solubility values

Conversion between these various ways of measuring solubility may not be trivial, since it may require knowing the density of the solution — which is often not measured, and cannot be predicted. While the total mass is conserved by dissolution, the final volume may be different from both the volume of the solvent and the sum of the two volumes.I. Lee and J. Lee (2012): "Measurement of mixing ratio and volume change of ethanol-water binary mixtures using suspended microchannel resonators." ''SENSORS'', volume 2012, pages 1-3. . Moreover, many solids (such as
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
s and salts) will dissociate in non-trivial ways when dissolved; conversely, the solvent may form coordination complexes with the molecules or ions of the solute. In those cases, the sum of the moles of molecules of solute and solvent is not really the total moles of independent particles solution. To sidestep that problem, the solubility per mole of solution is usually computed and quoted as if the solute does not dissociate or form complexes -- that is, by pretending that the mole amount of solution is the sum of the mole amounts of the two substances.


Qualifiers used to describe extent of solubility

The extent of solubility ranges widely, from infinitely soluble (without limit, i. e.
miscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
) such as ethanol in water, to essentially insoluble, such as titanium dioxide in water. A number of other descriptive terms are also used to qualify the extent of solubility for a given application. For example,
U.S. Pharmacopoeia The ''United States Pharmacopeia'' (''USP'') is a pharmacopeia (compendium of drug information) for the United States published annually by the United States Pharmacopeial Convention (usually also called the USP), a nonprofit organization that ...
gives the following terms, according to the mass ''m''sv of solvent required to dissolve one unit of mass ''m''su of solute: (The solubilities of the examples are approximate, for water at 20-25 °C.) The thresholds to describe something as insoluble, or similar terms, may depend on the application. For example, one source states that substances are described as "insoluble" when their solubility is less than 0.1 g per 100 mL of solvent.


Molecular view

Solubility occurs under dynamic equilibrium, which means that solubility results from the simultaneous and opposing processes of dissolution and phase joining (e.g. precipitation of solids). The solubility equilibrium occurs when the two processes proceed at equal and opposite rates. The term ''solubility'' is also used in some fields where the solute is altered by solvolysis. For example, many metals and their
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s are said to be "soluble in hydrochloric acid", although in fact the aqueous acid irreversibly degrades the solid to give soluble products. It is also true that most ionic solids are dissolved by polar solvents, but such processes are reversible. In those cases where the solute is not recovered upon evaporation of the solvent, the process is referred to as solvolysis. The thermodynamic concept of solubility does not apply straightforwardly to solvolysis. When a solute dissolves, it may form several species in the solution. For example, an aqueous suspension of
ferrous hydroxide Iron(II) hydroxide or ferrous hydroxide is an inorganic compound with the formula Fe(OH)2. It is produced when iron(II) salts, from a compound such as iron(II) sulfate, are treated with hydroxide ions. Iron(II) hydroxide is a white solid, but even ...
, , will contain the series as well as other species. Furthermore, the solubility of ferrous hydroxide and the composition of its soluble components depend on pH. In general, solubility in the solvent phase can be given only for a specific solute that is thermodynamically stable, and the value of the solubility will include all the species in the solution (in the example above, all the iron-containing complexes).


Factors affecting solubility

Solubility is defined for specific phases. For example, the solubility of aragonite and
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
in water are expected to differ, even though they are both polymorphs of calcium carbonate and have the same chemical formula. The solubility of one substance in another is determined by the balance of intermolecular forces between the solvent and solute, and the entropy change that accompanies the solvation. Factors such as temperature and pressure will alter this balance, thus changing the solubility. Solubility may also strongly depend on the presence of other species dissolved in the solvent, for example, complex-forming anions ( ligands) in liquids. Solubility will also depend on the excess or deficiency of a common ion in the solution, a phenomenon known as the common-ion effect. To a lesser extent, solubility will depend on the
ionic strength The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as ...
of solutions. The last two effects can be quantified using the equation for solubility equilibrium. For a solid that dissolves in a redox reaction, solubility is expected to depend on the potential (within the range of potentials under which the solid remains the thermodynamically stable phase). For example, solubility of gold in high-temperature water is observed to be almost an order of magnitude higher (i.e. about ten times higher) when the redox potential is controlled using a highly oxidizing Fe3O4-Fe2O3 redox buffer than with a moderately oxidizing Ni-NiO buffer. Solubility (metastable, at concentrations approaching saturation) also depends on the physical size of the crystal or droplet of solute (or, strictly speaking, on the specific surface area or molar surface area of the solute). For quantification, see the equation in the article on solubility equilibrium. For highly defective crystals, solubility may increase with the increasing degree of disorder. Both of these effects occur because of the dependence of solubility constant on the Gibbs energy of the crystal. The last two effects, although often difficult to measure, are of practical importance. For example, they provide the driving force for precipitate aging (the crystal size spontaneously increasing with time).


Temperature

The solubility of a given solute in a given solvent is function of temperature. Depending on the change in enthalpy (Δ''H'') of the dissolution reaction, ''i.e.'', on the endothermic (Δ''H'' > 0) or
exothermic In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e ...
(Δ''H'' < 0) character of the dissolution reaction, the solubility of a given compound may increase or decrease with temperature. The van 't Hoff equation relates the change of solubility equilibrium constant (''K''sp) to temperature change and to reaction enthalpy change. For most solids and liquids, their solubility increases with temperature because their dissolution reaction is endothermic (Δ''H'' > 0).John W. Hill, Ralph H. Petrucci, ''General Chemistry'', 2nd edition, Prentice Hall, 1999. In liquid water at high temperatures, (e.g. that approaching the
critical temperature Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
), the solubility of ionic solutes tends to decrease due to the change of properties and structure of liquid water; the lower
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulat ...
results in a less polar solvent and in a change of hydration energy affecting the Δ''G'' of the dissolution reaction. Gaseous solutes exhibit more complex behavior with temperature. As the temperature is raised, gases usually become less soluble in water (exothermic dissolution reaction related to their hydration) (to a minimum, which is below 120 °C for most permanent gases), but more soluble in organic solvents (endothermic dissolution reaction related to their solvation). The chart shows solubility curves for some typical solid inorganic salts in liquid water (temperature is in degrees
Celsius The degree Celsius is the unit of temperature on the Celsius scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the Kelvin scale. The ...
, i.e. kelvins minus 273.15). Many salts behave like barium nitrate and disodium hydrogen arsenate, and show a large increase in solubility with temperature (Δ''H'' > 0). Some solutes (e.g.
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g ...
in water) exhibit solubility that is fairly independent of temperature (Δ''H'' ≈ 0). A few, such as calcium sulfate ( gypsum) and
cerium(III) sulfate Cerium(III) sulfate, also called cerous sulfate, is an inorganic compound with the formula Ce2(SO4)3. It is one of the few salts whose solubility in water decreases with rising temperature. Cerium (III) sulfate ( anhydrous) is a hygroscopic wh ...
, become less soluble in water as temperature increases (Δ''H'' < 0). This is also the case for
calcium hydroxide Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca( OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed or slaked with water. It has m ...
(
portlandite Portlandite is a hydroxide-bearing mineral typically included in the oxide mineral class. It is the naturally occurring form of calcium hydroxide (Ca(OH)2) and the calcium analogue of brucite (Mg(OH)2). Occurrence Portlandite occurs in a variety ...
), whose solubility at 70 °C is about half of its value at 25 °C. The dissolution of calcium hydroxide in water is also an exothermic process (Δ''H'' < 0) and obeys the van 't Hoff equation and
Le Chatelier's principle Le Chatelier's principle (pronounced or ), also called Chatelier's principle (or the Equilibrium Law), is a principle of chemistry used to predict the effect of a change in conditions on chemical equilibria. The principle is named after French c ...
. A lowering of temperature favors the removal of dissolution heat from the system and thus favors dissolution of Ca(OH)2: so portlandite solubility increases at low temperature. This temperature dependence is sometimes referred to as "retrograde" or "inverse" solubility. Occasionally, a more complex pattern is observed, as with
sodium sulfate Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 milli ...
, where the less soluble deca
hydrate In chemistry, a hydrate is a substance that contains water or its constituent elements. The chemical state of the water varies widely between different classes of hydrates, some of which were so labeled before their chemical structure was understo ...
crystal ( mirabilite) loses water of crystallization at 32 °C to form a more soluble
anhydrous A substance is anhydrous if it contains no water. Many processes in chemistry can be impeded by the presence of water; therefore, it is important that water-free reagents and techniques are used. In practice, however, it is very difficult to achie ...
phase ( thenardite) with a smaller change in Gibbs free energy (Δ''G'') in the dissolution reaction. The solubility of organic compounds nearly always increases with temperature. The technique of recrystallization, used for purification of solids, depends on a solute's different solubilities in hot and cold solvent. A few exceptions exist, such as certain cyclodextrins.


Pressure

For condensed phases (solids and liquids), the pressure dependence of solubility is typically weak and usually neglected in practice. Assuming an
ideal solution In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero ...
, the dependence can be quantified as: : \left(\frac \right)_T = -\frac where the index i iterates the components, N_i is the mole fraction of the i-th component in the solution, P is the pressure, the index T refers to constant temperature, V_ is the partial molar volume of the i-th component in the solution, V_ is the partial molar volume of the i-th component in the dissolving solid, and R is the universal gas constant. The pressure dependence of solubility does occasionally have practical significance. For example, precipitation fouling of oil fields and wells by calcium sulfate (which decreases its solubility with decreasing pressure) can result in decreased productivity with time.


Solubility of gases

Henry's law is used to quantify the solubility of gases in solvents. The solubility of a gas in a solvent is directly proportional to the
partial pressure In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas ...
of that gas above the solvent. This relationship is similar to Raoult's law and can be written as: : p = k_\, c where k_ is a temperature-dependent constant (for example, 769.2 L· atm/ mol for dioxygen (O2) in water at 298 K), p is the partial pressure (in atm), and c is the concentration of the dissolved gas in the liquid (in mol/L). The solubility of gases is sometimes also quantified using
Bunsen solubility coefficient In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formul ...
. In the presence of small
bubble Bubble, Bubbles or The Bubble may refer to: Common uses * Bubble (physics), a globule of one substance in another, usually gas in a liquid ** Soap bubble * Economic bubble, a situation where asset prices are much higher than underlying fundame ...
s, the solubility of the gas does not depend on the bubble radius in any other way than through the effect of the radius on pressure (i.e. the solubility of gas in the liquid in contact with small bubbles is increased due to pressure increase by Δ''p'' = 2γ/''r''; see
Young–Laplace equation In physics, the Young–Laplace equation () is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or ...
). Henry's law is valid for gases that do not undergo change of chemical speciation on dissolution.
Sieverts' law Sieverts' law, in physical metallurgy and in chemistry, is a rule to predict the solubility of gases in metals. It is named after German chemist Adolf Sieverts (1874–1947). The law states that the solubility of a diatomic gas in metal is propor ...
shows a case when this assumption does not hold. The carbon dioxide solubility in seawater is also affected by temperature, pH of the solution, and by the carbonate buffer. The decrease of solubility of carbon dioxide in seawater when temperature increases is also an important retroaction factor (positive feedback) exacerbating past and future
climate changes In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
as observed in ice cores from the Vostok site in Antarctica. At the
geological time The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronol ...
scale, because of the
Milankovich cycle Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypot ...
s, when the astronomical parameters of the Earth orbit and its rotation axis progressively change and modify the
solar irradiance Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/ ...
at the Earth surface, temperature starts to increase. When a deglaciation period is initiated, the progressive warming of the oceans releases CO2 into the atmosphere because of its lower solubility in warmer sea water. In turn, higher levels of CO2 in the atmosphere increase the greenhouse effect and carbon dioxide acts as an amplifier of the general warming.


Polarity

A popular aphorism used for predicting solubility is "''like dissolves like''" also expressed in the ''Latin'' language as "''Similia similibus solventur''". This statement indicates that a solute will dissolve best in a solvent that has a similar chemical structure to itself, based on favorable
entropy of mixing In thermodynamics, the entropy of mixing is the increase in the total entropy when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the thermo ...
. This view is simplistic, but it is a useful rule of thumb. The overall solvation capacity of a solvent depends primarily on its
polarity Polarity may refer to: Science *Electrical polarity, direction of electrical current *Polarity (mutual inductance), the relationship between components such as transformer windings * Polarity (projective geometry), in mathematics, a duality of ord ...
. For example, a very polar ( hydrophilic) solute such as urea is very soluble in highly polar water, less soluble in fairly polar
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
, and practically insoluble in non-polar solvents such as benzene. In contrast, a non-polar or lipophilic solute such as
naphthalene Naphthalene is an organic compound with formula . It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08  ppm by mass. As an aromati ...
is insoluble in water, fairly soluble in methanol, and highly soluble in non-polar benzene. In even more simple terms a simple
ionic compound In chemistry, an ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding. The compound is neutral overall, but consists of positively charged ions called cations and negatively charged i ...
(with positive and negative ions) such as
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g ...
(common salt) is easily soluble in a highly
polar Polar may refer to: Geography Polar may refer to: * Geographical pole, either of two fixed points on the surface of a rotating body or planet, at 90 degrees from the equator, based on the axis around which a body rotates * Polar climate, the c ...
solvent (with some separation of positive (δ+) and negative (δ-) charges in the covalent molecule) such as water, as thus the sea is salty as it accumulates dissolved salts since early geological ages. The solubility is favored by
entropy of mixing In thermodynamics, the entropy of mixing is the increase in the total entropy when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the thermo ...
(Δ''S'') and depends on
enthalpy of dissolution In thermochemistry, the enthalpy of solution ( heat of solution or enthalpy of solvation) is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The enthalpy of so ...
(Δ''H'') and the hydrophobic effect. The free energy of dissolution ( Gibbs energy) depends on temperature and is given by the relationship: Δ''G'' = Δ''H'' – TΔ''S''. Smaller Δ''G'' means greater solubility. Chemists often exploit differences in solubilities to separate and purify compounds from reaction mixtures, using the technique of liquid-liquid extraction. This applies in vast areas of chemistry from drug synthesis to spent nuclear fuel reprocessing.


Rate of dissolution

Dissolution is not an instantaneous process. The rate of solubilization (in kg/s) is related to the solubility product and the surface area of the material. The speed at which a solid dissolves may depend on its crystallinity or lack thereof in the case of
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' ("wi ...
solids and the surface area (crystallite size) and the presence of
polymorphism Polymorphism, polymorphic, polymorph, polymorphous, or polymorphy may refer to: Computing * Polymorphism (computer science), the ability in programming to present the same programming interface for differing underlying forms * Ad hoc polymorphis ...
. Many practical systems illustrate this effect, for example in designing methods for controlled drug delivery. In some cases, solubility equilibria can take a long time to establish (hours, days, months, or many years; depending on the nature of the solute and other factors). The rate of dissolution can be often expressed by the
Noyes–Whitney equation Arthur Amos Noyes (September 13, 1866 – June 3, 1936) was an American chemist, inventor and educator. He received a PhD in 1890 from Leipzig University under the guidance of Wilhelm Ostwald. He served as the acting president of MIT between ...
or the Nernst and Brunner equation of the form: :\frac = A \frac (C_\mathrm-C_\mathrm) where: * m = mass of dissolved material * t = time * A = surface area of the interface between the dissolving substance and the solvent * D =
diffusion coefficient Diffusivity, mass diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration of the species (or the driving force for diffusion). Diffusivity is enco ...
* d = thickness of the boundary layer of the solvent at the surface of the dissolving substance * C_s = mass concentration of the substance on the surface * C_b = mass concentration of the substance in the bulk of the solvent For dissolution limited by diffusion (or mass transfer if mixing is present), C_s is equal to the solubility of the substance. When the dissolution rate of a pure substance is normalized to the surface area of the solid (which usually changes with time during the dissolution process), then it is expressed in kg/m2s and referred to as "intrinsic dissolution rate". The intrinsic dissolution rate is defined by the United States Pharmacopeia. Dissolution rates vary by orders of magnitude between different systems. Typically, very low dissolution rates parallel low solubilities, and substances with high solubilities exhibit high dissolution rates, as suggested by the Noyes-Whitney equation.


Theories of solubility


Solubility product

Solubility constant Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reacti ...
s are used to describe saturated solutions of ionic compounds of relatively low solubility (see solubility equilibrium). The solubility constant is a special case of an equilibrium constant. Since it is a product of ion concentrations in equilibrium, it is also known as the solubility product. It describes the balance between dissolved ions from the salt and undissolved salt. The solubility constant is also "applicable" (i.e. useful) to precipitation, the reverse of the dissolving reaction. As with other equilibrium constants, temperature can affect the numerical value of solubility constant. While the solubility constant is not as simple as solubility, the value of this constant is generally independent of the presence of other species in the solvent.


Other theories

The Flory–Huggins solution theory is a theoretical model describing the solubility of polymers. The
Hansen solubility parameters Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 as a way of predicting if one material will dissolve in another and form a solution. They are based on the idea that like dissolves like where one molecul ...
and the Hildebrand solubility parameters are empirical methods for the prediction of solubility. It is also possible to predict solubility from other physical constants such as the enthalpy of fusion. The octanol-water partition coefficient, usually expressed as its logarithm (Log P), is a measure of differential solubility of a compound in a hydrophobic solvent (
1-octanol 1-Octanol, also known as octan-1-ol, is the organic compound with the molecular formula CH3(CH2)7OH. It is a fatty alcohol. Many other isomers are also known generically as octanols. 1-Octanol is manufactured for the synthesis of esters for use ...
) and a hydrophilic solvent (water). The logarithm of these two values enables compounds to be ranked in terms of hydrophilicity (or hydrophobicity). The energy change associated with dissolving is usually given per mole of solute as the enthalpy of solution.


Applications

Solubility is of fundamental importance in a large number of scientific disciplines and practical applications, ranging from ore processing and nuclear reprocessing to the use of medicines, and the transport of pollutants. Solubility is often said to be one of the "characteristic properties of a substance", which means that solubility is commonly used to describe the substance, to indicate a substance's polarity, to help to distinguish it from other substances, and as a guide to applications of the substance. For example, indigo is described as "insoluble in water, alcohol, or ether but soluble in chloroform, nitrobenzene, or concentrated sulfuric acid". Solubility of a substance is useful when separating mixtures. For example, a mixture of salt (
sodium chloride Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g ...
) and silica may be separated by dissolving the salt in water, and filtering off the undissolved silica. The synthesis of chemical compounds, by the milligram in a laboratory, or by the ton in industry, both make use of the relative solubilities of the desired product, as well as unreacted starting materials, byproducts, and side products to achieve separation. Another example of this is the synthesis of benzoic acid from
phenylmagnesium bromide Phenylmagnesium bromide, with the simplified formula , is a magnesium-containing organometallic compound. It is commercially available as a solution in diethyl ether or tetrahydrofuran (THF). Phenylmagnesium bromide is a Grignard reagent. It is o ...
and dry ice. Benzoic acid is more soluble in an organic solvent such as
dichloromethane Dichloromethane (DCM or methylene chloride, methylene bichloride) is an organochlorine compound with the formula . This colorless, volatile liquid with a chloroform-like, sweet odour is widely used as a solvent. Although it is not miscible with ...
or diethyl ether, and when shaken with this organic solvent in a separatory funnel, will preferentially dissolve in the organic layer. The other reaction products, including the magnesium bromide, will remain in the aqueous layer, clearly showing that separation based on solubility is achieved. This process, known as
liquid–liquid extraction Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an org ...
, is an important technique in synthetic chemistry. Recycling is used to ensure maximum extraction.


Differential solubility

In flowing systems, differences in solubility often determine the dissolution-precipitation driven transport of species. This happens when different parts of the system experience different conditions. Even slightly different conditions can result in significant effects, given sufficient time. For example, relatively low solubility compounds are found to be soluble in more extreme environments, resulting in geochemical and geological effects of the activity of hydrothermal fluids in the Earth's crust. These are often the source of high quality economic mineral deposits and precious or semi-precious gems. In the same way, compounds with low solubility will dissolve over extended time (geological time), resulting in significant effects such as extensive cave systems or Karstic land surfaces.


Solubility of ionic compounds in water

Some ionic compounds ( salts) dissolve in water, which arises because of the attraction between positive and negative charges (see: solvation). For example, the salt's positive ions (e.g. Ag+) attract the partially negative oxygen atom in . Likewise, the salt's negative ions (e.g. Cl) attract the partially positive hydrogens in . Note: the oxygen atom is partially negative because it is more electronegative than hydrogen, and vice versa (see:
chemical polarity In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar ...
). : However, there is a limit to how much salt can be dissolved in a given volume of water. This concentration is the solubility and related to the solubility product, ''K''sp. This equilibrium constant depends on the type of salt ( vs. , for example), temperature, and the common ion effect. One can calculate the amount of that will dissolve in 1 liter of pure water as follows: :''K''sp = g+× l/ M2 (definition of solubility product; M = mol/L) :''K''sp = 1.8 × 10−10 (from a table of solubility products) g+= l in the absence of other silver or chloride salts, so : g+sup>2 = 1.8 × 10−10 M2 : g+= 1.34 × 10−5 mol/L The result: 1 liter of water can dissolve 1.34 × 10−5 moles of at room temperature. Compared with other salts, is poorly soluble in water. For instance, table salt () has a much higher ''K''sp = 36 and is, therefore, more soluble. The following table gives an overview of solubility rules for various ionic compounds.


Solubility of organic compounds

The principle outlined above under
polarity Polarity may refer to: Science *Electrical polarity, direction of electrical current *Polarity (mutual inductance), the relationship between components such as transformer windings * Polarity (projective geometry), in mathematics, a duality of ord ...
, that ''like dissolves like'', is the usual guide to solubility with organic systems. For example,
petroleum jelly Petroleum jelly, petrolatum, white petrolatum, soft paraffin, or multi-hydrocarbon, CAS number 8009-03-8, is a semi-solid mixture of hydrocarbons (with carbon numbers mainly higher than 25), originally promoted as a topical ointment for its h ...
will dissolve in gasoline because both petroleum jelly and gasoline are non-polar hydrocarbons. It will not, on the other hand, dissolve in ethyl alcohol or water, since the polarity of these solvents is too high. Sugar will not dissolve in gasoline, since sugar is too polar in comparison with gasoline. A mixture of gasoline and sugar can therefore be separated by
filtration Filtration is a physical separation process that separates solid matter and fluid from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter ...
or
extraction Extraction may refer to: Science and technology Biology and medicine * Comedo extraction, a method of acne treatment * Dental extraction, the surgical removal of a tooth from the mouth Computing and information science * Data extraction, the pro ...
with water.


Solid solution

This term is often used in the field of
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sc ...
to refer to the extent that an alloying element will dissolve into the base metal without forming a separate phase. The
solvus In a physical or geochemical system, a solvus is a line (binary system) or surface (ternary system) on a phase diagram which separates a homogeneous solid solution from a field of several phases which may form by exsolution or incongruent melting. ...
or solubility line (or curve) is the line (or lines) on a
phase diagram A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, volume, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous ...
that give the limits of solute addition. That is, the lines show the maximum amount of a component that can be added to another component and still be in solid solution. In the solid's crystalline structure, the 'solute' element can either take the place of the matrix within the lattice (a substitutional position; for example, chromium in iron) or take a place in a space between the lattice points (an interstitial position; for example, carbon in iron). In microelectronic fabrication, solid solubility refers to the maximum concentration of impurities one can place into the substrate. In solid compounds (as opposed to elements), the solubility of a solute element can also depend on the phases separating out in equilibrium. For example, amount of Sn soluble in the ZnSb phase can depend significantly on whether the phases separating out in equilibrium are (Zn4Sb3+Sn(L)) or (ZnSnSb2+Sn(L)). Besides these, the ZnSb compound with Sn as a solute can separate out into other combinations of phases after the solubility limit is reached depending on the initial
chemical composition A chemical composition specifies the identity, arrangement, and ratio of the elements making up a compound. Chemical formulas can be used to describe the relative amounts of elements present in a compound. For example, the chemical formula for ...
during synthesis. Each combination produces a different solubility of Sn in ZnSb. Hence solubility studies in compounds, concluded upon the first instance of observing secondary phases separating out might underestimate solubility. While the maximum number of phases separating out at once in equilibrium can be determined by the Gibb's phase rule, for chemical compounds there is no limit on the number of such phase separating combinations itself. Hence, establishing the "maximum solubility" in solid compounds experimentally can be difficult, requiring equilibration of many samples. If the dominant crystallographic defect (mostly interstitial or substitutional point defects) involved in the solid-solution can be chemically intuited beforehand, then using some simple thermodynamic guidelines can considerably reduce the number of samples required to establish maximum solubility.


Incongruent dissolution

Many substances dissolve congruently (i.e. the composition of the solid and the dissolved solute stoichiometrically match). However, some substances may dissolve incongruently, whereby the composition of the solute in solution does not match that of the solid. This solubilization is accompanied by alteration of the "primary solid" and possibly formation of a secondary solid phase. However, in general, some primary solid also remains and a complex solubility equilibrium establishes. For example, dissolution of albite may result in formation of gibbsite. : . In this case, the solubility of albite is expected to depend on the solid-to-solvent ratio. This kind of solubility is of great importance in geology, where it results in formation of metamorphic rocks. In principle, both congruent and incongruent dissolution can lead to the formation of secondary solid phases in equilibrium. So, in the field of Materials Science, the solubility for both cases is described more generally on
chemical composition A chemical composition specifies the identity, arrangement, and ratio of the elements making up a compound. Chemical formulas can be used to describe the relative amounts of elements present in a compound. For example, the chemical formula for ...
phase diagram A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, volume, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous ...
s.


Solubility prediction

Solubility is a property of interest in many aspects of science, including but not limited to: environmental predictions, biochemistry, pharmacy, drug-design, agrochemical design, and protein ligand binding. Aqueous solubility is of fundamental interest owing to the vital biological and transportation functions played by water. In addition, to this clear scientific interest in water solubility and solvent effects; accurate predictions of solubility are important industrially. The ability to accurately predict a molecule's solubility represents potentially large financial savings in many chemical product development processes, such as pharmaceuticals. In the pharmaceutical industry, solubility predictions form part of the early stage lead optimisation process of drug candidates. Solubility remains a concern all the way to formulation. A number of methods have been applied to such predictions including quantitative structure–activity relationships (QSAR), quantitative structure–property relationships (QSPR) and data mining. These models provide efficient predictions of solubility and represent the current standard. The draw back such models is that they can lack physical insight. A method founded in physical theory, capable of achieving similar levels of accuracy at an sensible cost, would be a powerful tool scientifically and industrially. Methods founded in physical theory tend to use thermodynamic cycles, a concept from classical thermodynamics. The two common thermodynamic cycles used involve either the calculation of the free energy of
sublimation Sublimation or sublimate may refer to: * ''Sublimation'' (album), by Canvas Solaris, 2004 * Sublimation (phase transition), directly from the solid to the gas phase * Sublimation (psychology), a mature type of defense mechanism * Sublimate of mer ...
(solid to gas without going through a liquid state) and the free energy of solvating a gaseous molecule (gas to solution), or the free energy of fusion (solid to a molten phase) and the free energy of mixing (molten to solution). These two process are represented in the following diagrams. These cycles have been used for attempts at first principles predictions (solving using the fundamental physical equations) using physically motivated
solvent models In computational chemistry, a solvent model is a computational method that accounts for the behavior of solvated condensed phases. Solvent models enable simulations and thermodynamic calculations applicable to reactions and processes which take pla ...
, to create parametric equations and QSPR models and combinations of the two. The use of these cycles enables the calculation of the solvation free energy indirectly via either gas (in the sublimation cycle) or a melt (fusion cycle). This is helpful as calculating the free energy of solvation directly is extremely difficult. The free energy of solvation can be converted to a solubility value using various formulae, the most general case being shown below, where the numerator is the free energy of solvation, ''R'' is the gas constant and ''T'' is the temperature in kelvins. :\log S(V_) = \frac Well known fitted equations for solubility prediction are the general solubility equations. These equations stem from the work of Yalkowsky ''et al''. The original formula is given first, followed by a revised formula which takes a different assumption of complete miscibility in octanol. : \log_ (S) = 0.8 - \log_ (P) - 0.01(\text -25) : \log_ (S) = 0.5 - \log_ (P) - 0.01(\text -25) These equations are founded on the principles of the fusion cycle.


See also

* * * * * * * * * * * * *


Notes


References


External links

{{Authority control Chemical properties Physical quantities Solutions Underwater diving physics