physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
,
astronomy
Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
,
biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
(including human anatomy) and chemistry transformed the views of society about nature.Galilei, Galileo (1974) ''Two New Sciences'', trans.
Stillman Drake
Stillman Drake (December 24, 1910 – October 6, 1993) was a Canadian historian of science best known for his work on Galileo Galilei (1569–1642). Drake published over 131 books, articles, and book chapters on Galileo. Including his translati ...
, (Madison: Univ. of Wisconsin Pr. pp. 217, 225, 296–67.Clagett, Marshall (1961) ''The Science of Mechanics in the Middle Ages''. Madison, Univ. of Wisconsin Pr. pp. 218–19, 252–55, 346, 409–16, 547, 576–78, 673–82Hannam, p. 342 The Scientific Revolution took place in Europe starting towards the second half of the
Renaissance
The Renaissance ( , ) , from , with the same meanings. is a period in European history
The history of Europe is traditionally divided into four time periods: prehistoric Europe (prior to about 800 BC), classical antiquity (800 BC to AD ...
period, with the 1543
Nicolaus Copernicus
Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic canon, who formulated ...
publication ''
De revolutionibus orbium coelestium
''De revolutionibus orbium coelestium'' (English translation: ''On the Revolutions of the Heavenly Spheres'') is the seminal work on the heliocentric theory of the astronomer Nicolaus Copernicus (1473–1543) of the Polish Renaissance. The book, ...
'' (''On the Revolutions of the Heavenly Spheres'') often cited as its beginning.
The era of the Scientific Renaissance focused to some degree on recovering the knowledge of the ancients, and is considered to have culminated in the 1687
Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
universal gravitation
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the dist ...
, thereby completing the synthesis of a new cosmology. The subsequent
Age of Enlightenment
The Age of Enlightenment or the Enlightenment; german: Aufklärung, "Enlightenment"; it, L'Illuminismo, "Enlightenment"; pl, Oświecenie, "Enlightenment"; pt, Iluminismo, "Enlightenment"; es, La Ilustración, "Enlightenment" was an intel ...
saw the concept of a scientific revolution emerge in the 18th-century work of
Jean Sylvain Bailly
Jean Sylvain Bailly (; 15 September 1736 – 12 November 1793) was a French astronomer, mathematician, freemason, and political leader of the early part of the French Revolution. He presided over the Tennis Court Oath, served as the mayor of Pa ...
, who described a two-stage process of sweeping away the old and establishing the new. There continues to be scholarly engagement regarding the boundaries of the Scientific Revolution and its chronology.
Introduction
Great advances in science have been termed "revolutions" since the 18th century. For example, in 1747, the French mathematician
Alexis Clairaut
Alexis Claude Clairaut (; 13 May 1713 – 17 May 1765) was a French mathematician, astronomer, and geophysicist. He was a prominent Newtonian whose work helped to establish the validity of the principles and results that Sir Isaac Newton had ou ...
wrote that " Newton was said in his own life to have created a revolution". The word was also used in the preface to
Antoine Lavoisier
Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794), CNRS (
William Whewell
William Whewell ( ; 24 May 17946 March 1866) was an English polymath, scientist, Anglican priest, philosopher, theologian, and historian of science. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved ...
described the revolution in
science
Science is a systematic endeavor that Scientific method, builds and organizes knowledge in the form of Testability, testable explanations and predictions about the universe.
Science may be as old as the human species, and some of the earli ...
itself – the
scientific method
The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article history of scientific ...
– that had taken place in the 15th–16th century. "Among the most conspicuous of the revolutions which opinions on this subject have undergone, is the transition from an implicit trust in the internal powers of man's mind to a professed dependence upon external observation; and from an unbounded reverence for the wisdom of the past, to a fervid expectation of change and improvement." This gave rise to the common view of the Scientific Revolution today:
The Scientific Revolution is traditionally assumed to start with the
Copernican Revolution
The Copernican Revolution was the paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the center of the universe, to the heliocentric model with the Sun at the center of the Solar Sys ...
(initiated in 1543) and to be complete in the "grand synthesis" of Isaac Newton's 1687 '' Principia''. Much of the change of attitude came from
Francis Bacon
Francis Bacon, 1st Viscount St Alban (; 22 January 1561 – 9 April 1626), also known as Lord Verulam, was an English philosopher and statesman who served as Attorney General and Lord Chancellor of England. Bacon led the advancement of both ...
whose "confident and emphatic announcement" in the modern progress of science inspired the creation of scientific societies such as the
Royal Society
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
Copernicus
Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic canon, who formulated ...
and developed the science of motion.
The Scientific Revolution was enabled by advances in book production. Before the advent of the printing press, introduced in Europe in the 1440s by Johannes Gutenberg, there was no mass market on the continent for scientific treatises, as there had been for religious books. Printing decisively changed the way scientific knowledge was created, as well as how it was disseminated. It enabled accurate diagrams, maps, anatomical drawings, and representations of flora and fauna to be reproduced, and printing made scholarly books more widely accessible, allowing researchers to consult ancient texts freely and to compare their own observations with those of fellow scholars. Although printers' blunders still often resulted in the spread of false data (for instance, in
Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He wa ...
's ''
Sidereus Nuncius
''Sidereus Nuncius'' (usually ''Sidereal Messenger'', also ''Starry Messenger'' or ''Sidereal Message'') is a short Astronomy, astronomical treatise (or ''pamphlet'') published in New Latin by Galileo Galilei on March 13, 1610. It was the first ...
'' (The Starry Messenger), published in Venice in 1610, his telescopic images of the lunar surface mistakenly appeared back to front), the development of engraved metal plates allowed accurate visual information to be made permanent, a change from previously, when woodcut illustrations deteriorated through repetitive use. The ability to access previous scientific research meant that researchers did not have to always start from scratch in making sense of their own observational data.
In the 20th century,
Alexandre Koyré
Alexandre Koyré (, ; born Alexandr Vladimirovich (or Volfovich) Koyra (russian: Александр Владимирович (Вольфович) Койра); 29 August 1892 – 28 April 1964), also anglicized as Alexander Koyre, was a Fren ...
introduced the term "scientific revolution", centering his analysis on Galileo. The term was popularized by
Butterfield Butterfield may refer to:
* Butterfield (surname)
* Butterfield Market
Places
* Butterfield, Dublin, a suburb and townland of Dublin, Ireland
* Butterfield Green, Luton, England
United States
* Butterfield, Minnesota
* Butterfield, Misso ...
in his ''Origins of Modern Science''.
Thomas Kuhn
Thomas Samuel Kuhn (; July 18, 1922 – June 17, 1996) was an American philosopher of science whose 1962 book '' The Structure of Scientific Revolutions'' was influential in both academic and popular circles, introducing the term ''paradig ...
's 1962 work ''
The Structure of Scientific Revolutions
''The Structure of Scientific Revolutions'' (1962; second edition 1970; third edition 1996; fourth edition 2012) is a book about the history of science by philosopher Thomas S. Kuhn. Its publication was a landmark event in the history, philoso ...
'' emphasized that different theoretical frameworks—such as Einstein's
theory of relativity
The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in ...
The period saw a fundamental transformation in scientific ideas across mathematics, physics, astronomy, and biology in institutions supporting scientific investigation and in the more widely held picture of the universe. The Scientific Revolution led to the establishment of several modern sciences. In 1984,
Joseph Ben-David
Joseph Ben-David (August 19, 1920 – January 12, 1986) was a Hungarian-born Israeli sociologist who was a pioneer in the sociology of science.
Biography
Ben-David was born József Gross in Győr, Hungary, on August 19, 1920. He moved to Jerusale ...
wrote:
Many contemporary writers and modern historians claim that there was a revolutionary change in world view. In 1611 the English poet, John Donne, wrote:
Mid-20th-century historian
Herbert Butterfield
Sir Herbert Butterfield (7 October 1900 – 20 July 1979) was an English historian and philosopher of history, who was Regius Professor of Modern History and Vice-Chancellor of the University of Cambridge. He is remembered chiefly for a shor ...
was less disconcerted, but nevertheless saw the change as fundamental:
The history professor Peter Harrison attributes Christianity to having contributed to the rise of the Scientific Revolution:
Ancient and medieval background
The Scientific Revolution was built upon the foundation of
ancient Greek
Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic p ...
learning and
science in the Middle Ages
The history of science covers the development of science from ancient times to the present. It encompasses all three major branches of science: natural, social, and formal.
Science's earliest roots can be traced to Ancient Egypt and Meso ...
Grant
Grant or Grants may refer to:
Places
*Grant County (disambiguation)
Australia
* Grant, Queensland, a locality in the Barcaldine Region, Queensland, Australia
United Kingdom
* Castle Grant
United States
* Grant, Alabama
* Grant, Inyo County, ...
, pp. 29–30, 42–47. Some scholars have noted a direct tie between "particular aspects of traditional Christianity" and the rise of science. The " Aristotelian tradition" was still an important intellectual framework in the 17th century, although by that time
natural philosophers
Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics, that is, nature and the physical universe. It was dominant before the development of modern science.
From the ancient wor ...
had moved away from much of it. Key scientific ideas dating back to
classical antiquity
Classical antiquity (also the classical era, classical period or classical age) is the period of cultural history between the 8th century BC and the 5th century AD centred on the Mediterranean Sea, comprising the interlocking civilizations of ...
had changed drastically over the years, and in many cases been discredited. The ideas that remained, which were transformed fundamentally during the Scientific Revolution, include:
*
Aristotle
Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
's cosmology that placed the
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
at the center of a spherical hierarchic
cosmos
The cosmos (, ) is another name for the Universe. Using the word ''cosmos'' implies viewing the universe as a complex and orderly system or entity.
The cosmos, and understandings of the reasons for its existence and significance, are studied in ...
. The terrestrial and celestial regions were made up of different elements which had different kinds of ''natural movement''.
** The terrestrial region, according to Aristotle, consisted of concentric spheres of the four elements—
earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
,
water
Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
,
air
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing f ...
, and
fire
Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products.
At a certain point in the combustion reaction, called the ignition point, flames a ...
. All bodies naturally moved in straight lines until they reached the sphere appropriate to their elemental composition—their ''natural place''. All other terrestrial motions were non-natural, or ''violent''.
** The celestial region was made up of the fifth element, aether, which was unchanging and moved naturally with
uniform circular motion
In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rot ...
. In the Aristotelian tradition, astronomical theories sought to explain the observed irregular motion of celestial objects through the combined effects of multiple uniform circular motions.
* The Ptolemaic model of planetary motion: based on the geometrical model of Eudoxus of Cnidus,
Ptolemy
Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importance ...
's '' Almagest'', demonstrated that calculations could compute the exact positions of the Sun, Moon, stars, and planets in the future and in the past, and showed how these computational models were derived from astronomical observations. As such they formed the model for later astronomical developments. The physical basis for Ptolemaic models invoked layers of spherical shells, though the most complex models were inconsistent with this physical explanation.
It is important to note that ancient precedent existed for alternative theories and developments which prefigured later discoveries in the area of physics and mechanics; but in light of the limited number of works to survive translation in a period when many books were lost to warfare, such developments remained obscure for centuries and are traditionally held to have had little effect on the re-discovery of such phenomena; whereas the invention of the
printing press
A printing press is a mechanical device for applying pressure to an inked surface resting upon a print medium (such as paper or cloth), thereby transferring the ink. It marked a dramatic improvement on earlier printing methods in which the ...
made the wide dissemination of such incremental advances of knowledge commonplace. Meanwhile, however, significant progress in geometry, mathematics, and astronomy was made in medieval times.
It is also true that many of the important figures of the Scientific Revolution shared in the general
Renaissance
The Renaissance ( , ) , from , with the same meanings. is a period in European history
The history of Europe is traditionally divided into four time periods: prehistoric Europe (prior to about 800 BC), classical antiquity (800 BC to AD ...
respect for ancient learning and cited ancient pedigrees for their innovations. Nicolaus Copernicus (1473–1543), Galileo Galilei (1564–1642),Johannes Kepler (1571–1630) and Isaac Newton (1642–1727) all traced different ancient and medieval ancestries for the
heliocentric system
Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at ...
. In the Axioms Scholium of his '' Principia,'' Newton said its axiomatic three laws of motion were already accepted by mathematicians such as Christiaan Huygens (1629–1695), Wallace, Wren and others. While preparing a revised edition of his ''Principia'', Newton attributed his law of gravity and his first law of motion to a range of historical figures.
Despite these qualifications, the standard theory of the history of the Scientific Revolution claims that the 17th century was a period of revolutionary scientific changes. Not only were there revolutionary theoretical and experimental developments, but that even more importantly, the way in which scientists worked was radically changed. For instance, although intimations of the concept of
inertia
Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
are suggested sporadically in ancient discussion of motion, the salient point is that Newton's theory differed from ancient understandings in key ways, such as an external force being a requirement for violent motion in Aristotle's theory.
Scientific method
Under the scientific method as conceived in the 17th century, natural and artificial circumstances were set aside as a research tradition of systematic experimentation was slowly accepted by the scientific community. The philosophy of using an inductive approach to obtain knowledge—to abandon assumption and to attempt to observe with an open mind—was in contrast with the earlier, Aristotelian approach of deduction, by which analysis of known facts produced further understanding. In practice, many scientists and philosophers believed that a healthy mix of both was needed—the willingness to question assumptions, yet also to interpret observations assumed to have some degree of validity.
By the end of the Scientific Revolution the qualitative world of book-reading philosophers had been changed into a mechanical, mathematical world to be known through experimental research. Though it is certainly not true that Newtonian science was like modern science in all respects, it conceptually resembled ours in many ways. Many of the hallmarks of modern science, especially with regard to its institutionalization and professionalization, did not become standard until the mid-19th century.
Empiricism
The Aristotelian scientific tradition's primary mode of interacting with the world was through observation and searching for "natural" circumstances through reasoning. Coupled with this approach was the belief that rare events which seemed to contradict theoretical models were aberrations, telling nothing about nature as it "naturally" was. During the Scientific Revolution, changing perceptions about the role of the scientist in respect to nature, the value of evidence, experimental or observed, led towards a scientific methodology in which empiricism played a large, but not absolute, role.
By the start of the Scientific Revolution, empiricism had already become an important component of science and natural philosophy. Prior thinkers, including the early-14th-century
nominalist
In metaphysics, nominalism is the view that universals and abstract objects do not actually exist other than being merely names or labels. There are at least two main versions of nominalism. One version denies the existence of universalsthings th ...
philosopher
William of Ockham
William of Ockham, OFM (; also Occam, from la, Gulielmus Occamus; 1287 – 10 April 1347) was an English Franciscan friar, scholastic philosopher, apologist, and Catholic theologian, who is believed to have been born in Ockham, a small vil ...
, had begun the intellectual movement toward empiricism.
The term British empiricism came into use to describe philosophical differences perceived between two of its founders
Francis Bacon
Francis Bacon, 1st Viscount St Alban (; 22 January 1561 – 9 April 1626), also known as Lord Verulam, was an English philosopher and statesman who served as Attorney General and Lord Chancellor of England. Bacon led the advancement of both ...
, described as empiricist, and
René Descartes
René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Ma ...
, who was described as a rationalist.
Thomas Hobbes
Thomas Hobbes ( ; 5/15 April 1588 – 4/14 December 1679) was an English philosopher, considered to be one of the founders of modern political philosophy. Hobbes is best known for his 1651 book ''Leviathan'', in which he expounds an influ ...
David Hume
David Hume (; born David Home; 7 May 1711 NS (26 April 1711 OS) – 25 August 1776) Cranston, Maurice, and Thomas Edmund Jessop. 2020 999br>David Hume" ''Encyclopædia Britannica''. Retrieved 18 May 2020. was a Scottish Enlightenment phil ...
were the philosophy's primary exponents, who developed a sophisticated empirical tradition as the basis of human knowledge.
An influential formulation of empiricism was John Locke's ''
An Essay Concerning Human Understanding
''An Essay Concerning Human Understanding'' is a work by John Locke concerning the foundation of human knowledge and understanding. It first appeared in 1689 (although dated 1690) with the printed title ''An Essay Concerning Humane Understan ...
'' (1689), in which he maintained that the only true knowledge that could be accessible to the human mind was that which was based on experience. He wrote that the human mind was created as a ''
tabula rasa
''Tabula rasa'' (; "blank slate") is the theory that individuals are born without built-in mental content, and therefore all knowledge comes from experience or perception. Epistemological proponents of ''tabula rasa'' disagree with the doctri ...
'', a "blank tablet," upon which sensory impressions were recorded and built up knowledge through a process of reflection.
Bacon's contributions
The philosophical underpinnings of the Scientific Revolution were laid out by Francis Bacon, who has been called the father of empiricism. His works established and popularised inductive methodologies for scientific inquiry, often called the ''
Baconian method
The Baconian method is the investigative method developed by Sir Francis Bacon, one of the founders of modern science, and thus a first formulation of a modern scientific method. The method was put forward in Bacon's book ''Novum Organum'' (1620) ...
'', or simply the scientific method. His demand for a planned procedure of investigating all things natural marked a new turn in the rhetorical and theoretical framework for science, much of which still surrounds conceptions of proper
methodology
In its most common sense, methodology is the study of research methods. However, the term can also refer to the methods themselves or to the philosophical discussion of associated background assumptions. A method is a structured procedure for br ...
today.
Bacon proposed a great reformation of all process of knowledge for the advancement of learning divine and human, which he called ''Instauratio Magna'' (The Great Instauration). For Bacon, this reformation would lead to a great advancement in science and a progeny of new inventions that would relieve mankind's miseries and needs. His ''
Novum Organum
The ''Novum Organum'', fully ''Novum Organum, sive Indicia Vera de Interpretatione Naturae'' ("New organon, or true directions concerning the interpretation of nature") or ''Instaurationis Magnae, Pars II'' ("Part II of The Great Instauration ...
'' was published in 1620. He argued that man is "the minister and interpreter of nature", that "knowledge and human power are synonymous", that "effects are produced by the means of instruments and helps", and that "man while operating can only apply or withdraw natural bodies; nature internally performs the rest", and later that "nature can only be commanded by obeying her". Here is an abstract of the philosophy of this work, that by the knowledge of nature and the using of instruments, man can govern or direct the natural work of nature to produce definite results. Therefore, that man, by seeking knowledge of nature, can reach power over it—and thus reestablish the "Empire of Man over creation", which had been lost by the Fall together with man's original purity. In this way, he believed, would mankind be raised above conditions of helplessness, poverty and misery, while coming into a condition of peace, prosperity and security.
For this purpose of obtaining knowledge of and power over nature, Bacon outlined in this work a new system of logic he believed to be superior to the old ways of syllogism, developing his scientific method, consisting of procedures for isolating the formal cause of a phenomenon (heat, for example) through eliminative induction. For him, the philosopher should proceed through inductive reasoning from fact to axiom to
physical law
Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) ...
. Before beginning this induction, though, the enquirer must free his or her mind from certain false notions or tendencies which distort the truth. In particular, he found that philosophy was too preoccupied with words, particularly discourse and debate, rather than actually observing the material world: "For while men believe their reason governs words, in fact, words turn back and reflect their power upon the understanding, and so render philosophy and science sophistical and inactive."
Bacon considered that it is of greatest importance to science not to keep doing intellectual discussions or seeking merely contemplative aims, but that it should work for the bettering of mankind's life by bringing forth new inventions, having even stated that "inventions are also, as it were, new creations and imitations of divine works". He explored the far-reaching and world-changing character of inventions, such as the
printing press
A printing press is a mechanical device for applying pressure to an inked surface resting upon a print medium (such as paper or cloth), thereby transferring the ink. It marked a dramatic improvement on earlier printing methods in which the ...
,
gunpowder
Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, carbon (in the form of charcoal) and potassium nitrate (saltpeter). Th ...
and the
compass
A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It commonly consists of a magnetized needle or other element, such as a compass card or compass rose, which can pivot to align itself wit ...
.
Despite his influence on scientific methodology, he himself rejected correct novel theories such as William Gilbert's magnetism, Copernicus's heliocentrism, and Kepler's laws of planetary motion.
Scientific experimentation
Bacon first described the experimental method.
William Gilbert was an early advocate of this method. He passionately rejected both the prevailing Aristotelian philosophy and the Scholastic method of university teaching. His book ''
De Magnete
''De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure'' (''On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth'') is a scientific work published in 1600 by the English physician and scientist William Gilbert. A h ...
'' was written in 1600, and he is regarded by some as the father of
electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describ ...
and magnetism. In this work, he describes many of his experiments with his model Earth called the
terrella
A terrella (Latin for "little earth") is a small magnetised model ball representing the Earth, that is thought to have been invented by the English physician William Gilbert while investigating magnetism, and further developed 300 years later b ...
. From these experiments, he concluded that the Earth was itself magnetic and that this was the reason
compass
A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It commonly consists of a magnetized needle or other element, such as a compass card or compass rose, which can pivot to align itself wit ...
es point north.
''De Magnete'' was influential not only because of the inherent interest of its subject matter, but also for the rigorous way in which Gilbert described his experiments and his rejection of ancient theories of magnetism. According to
Thomas Thomson Thomas Thomson may refer to:
* Tom Thomson (1877–1917), Canadian painter
* Thomas Thomson (apothecary) (died 1572), Scottish apothecary
* Thomas Thomson (advocate) (1768–1852), Scottish lawyer
* Thomas Thomson (botanist) (1817–1878), Scottis ...
, "Gilbert s.. book on magnetism published in 1600, is one of the finest examples of inductive philosophy that has ever been presented to the world. It is the more remarkable, because it preceded the ''Novum Organum'' of Bacon, in which the inductive method of philosophizing was first explained."
Galileo Galilei has been called the "father of modern
observational astronomy
Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical ...
", the "father of modern physics", the "father of science", and "the Father of Modern Science". His original contributions to the science of motion were made through an innovative combination of experiment and mathematics.
Galileo was one of the first modern thinkers to clearly state that the laws of nature are mathematical. In ''
The Assayer
''The Assayer'' ( it, Il Saggiatore) was a book published in Rome by Galileo Galilei in October 1623 and is generally considered to be one of the pioneering works of the scientific method, first broaching the idea that the book of nature is to be ...
'' he wrote "Philosophy is written in this grand book, the universe ... It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures;...." His mathematical analyses are a further development of a tradition employed by late scholastic natural philosophers, which Galileo learned when he studied philosophy. He ignored Aristotelianism. In broader terms, his work marked another step towards the eventual separation of science from both philosophy and religion; a major development in human thought. He was often willing to change his views in accordance with observation. In order to perform his experiments, Galileo had to set up standards of length and time, so that measurements made on different days and in different laboratories could be compared in a reproducible fashion. This provided a reliable foundation on which to confirm mathematical laws using inductive reasoning.
Galileo showed an appreciation for the relationship between mathematics, theoretical physics, and experimental physics. He understood the
parabola
In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exact ...
, both in terms of
conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a spe ...
s and in terms of the
ordinate
In common usage, the abscissa refers to the (''x'') coordinate and the ordinate refers to the (''y'') coordinate of a standard two-dimensional graph.
The distance of a point from the y-axis, scaled with the x-axis, is called abscissa or x c ...
(y) varying as the square of the
abscissa
In common usage, the abscissa refers to the (''x'') coordinate and the ordinate refers to the (''y'') coordinate of a standard two-dimensional graph.
The distance of a point from the y-axis, scaled with the x-axis, is called abscissa or x coo ...
(x). Galilei further asserted that the parabola was the theoretically ideal
trajectory
A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete tra ...
of a uniformly accelerated projectile in the absence of
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of ...
and other disturbances. He conceded that there are limits to the validity of this theory, noting on theoretical grounds that a projectile trajectory of a size comparable to that of the Earth could not possibly be a parabola, but he nevertheless maintained that for distances up to the range of the artillery of his day, the deviation of a projectile's trajectory from a parabola would be only very slight.
Mathematization
Scientific knowledge, according to the Aristotelians, was concerned with establishing true and necessary causes of things. To the extent that medieval natural philosophers used mathematical problems, they limited social studies to theoretical analyses of local speed and other aspects of life. The actual measurement of a physical quantity, and the comparison of that measurement to a value computed on the basis of theory, was largely limited to the mathematical disciplines of
astronomy
Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
and
optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
in Europe.McCluskey, Stephen C. (1998) ''Astronomies and Cultures in Early Medieval Europe''. Cambridge: Cambridge Univ. Pr. pp. 180–84, 198–202.
In the 16th and 17th centuries, European scientists began increasingly applying quantitative measurements to the measurement of physical phenomena on the Earth. Galileo maintained strongly that mathematics provided a kind of necessary certainty that could be compared to God's: "...with regard to those few
propositions
In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, " meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the n ...
] which the human intellect does understand, I believe its knowledge equals the Divine in objective certainty..."
Galileo anticipates the concept of a systematic mathematical interpretation of the world in his book ''
Il Saggiatore
''The Assayer'' ( it, Il Saggiatore) was a book published in Rome by Galileo Galilei in October 1623 and is generally considered to be one of the pioneering works of the scientific method, first broaching the idea that the book of nature is to be ...
'':
The mechanical philosophy
Aristotle recognized four kinds of causes, and where applicable, the most important of them is the "final cause". The final cause was the aim, goal, or purpose of some natural process or man-made thing. Until the Scientific Revolution, it was very natural to see such aims, such as a child's growth, for example, leading to a mature adult. Intelligence was assumed only in the purpose of man-made artifacts; it was not attributed to other animals or to nature.
In "
mechanical philosophy
The mechanical philosophy is a form of natural philosophy which compares the universe to a large-scale mechanism (i.e. a machine). The mechanical philosophy is associated with the scientific revolution of early modern Europe. One of the first expo ...
" no field or action at a distance is permitted, particles or corpuscles of matter are fundamentally inert. Motion is caused by direct physical collision. Where natural substances had previously been understood organically, the mechanical philosophers viewed them as machines. As a result, Isaac Newton's theory seemed like some kind of throwback to "spooky
action at a distance
In physics, action at a distance is the concept that an object can be affected without being physically touched (as in mechanical contact) by another object. That is, it is the non-local interaction of objects that are separated in space.
Non- ...
". According to Thomas Kuhn, Newton and Descartes held the teleological principle that God conserved the amount of motion in the universe:
Gravity, interpreted as an innate attraction between every pair of particles of matter, was an occult quality in the same sense as the scholastics' "tendency to fall" had been.... By the mid eighteenth century that interpretation had been almost universally accepted, and the result was a genuine reversion (which is not the same as a retrogression) to a scholastic standard. Innate attractions and repulsions joined size, shape, position and motion as physically irreducible primary properties of matter.
Newton had also specifically attributed the inherent power of inertia to matter, against the mechanist thesis that matter has no inherent powers. But whereas Newton vehemently denied gravity was an inherent power of matter, his collaborator
Roger Cotes
Roger Cotes (10 July 1682 – 5 June 1716) was an English mathematician, known for working closely with Isaac Newton by proofreading the second edition of his famous book, the '' Principia'', before publication. He also invented the quadratur ...
made gravity also an inherent power of matter, as set out in his famous preface to the ''Principia's'' 1713 second edition which he edited, and contradicted Newton himself. And it was Cotes's interpretation of gravity rather than Newton's that came to be accepted.
Institutionalization
The first moves towards the institutionalization of scientific investigation and dissemination took the form of the establishment of societies, where new discoveries were aired, discussed, and published. The first scientific society to be established was the
Royal Society
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
of London. This grew out of an earlier group, centered around
Gresham College
Gresham College is an institution of higher learning located at Barnard's Inn Hall off Holborn in Central London, England. It does not enroll students or award degrees. It was founded in 1596 under the will of Sir Thomas Gresham, and hosts ove ...
in the 1640s and 1650s. According to a history of the College:
The scientific network which centered on Gresham College played a crucial part in the meetings which led to the formation of the Royal Society.
These physicians and natural philosophers were influenced by the " new science", as promoted by Francis Bacon in his ''
New Atlantis
''New Atlantis'' is an incomplete utopian novel by Sir Francis Bacon, published posthumously in 1626. It appeared unheralded and tucked into the back of a longer work of natural history, ''Sylva Sylvarum'' (forest of materials). In ''New Atlan ...
'', from approximately 1645 onwards. A group known as ''The Philosophical Society of Oxford'' was run under a set of rules still retained by the Bodleian Library.
On 28 November 1660, the 1660 committee of 12 announced the formation of a "College for the Promoting of Physico-Mathematical Experimental Learning", which would meet weekly to discuss science and run experiments. At the second meeting,
Robert Moray
Sir Robert Moray (alternative spellings: Murrey, Murray) FRS (1608 or 1609 – 4 July 1673) was a Scottish soldier, statesman, diplomat, judge, spy, and natural philosopher. He was well known to Charles I and Charles II, and to the French ...
announced that the
King
King is the title given to a male monarch in a variety of contexts. The female equivalent is queen, which title is also given to the consort of a king.
*In the context of prehistory, antiquity and contemporary indigenous peoples, the tit ...
approved of the gatherings, and a
Royal charter
A royal charter is a formal grant issued by a monarch under royal prerogative as letters patent. Historically, they have been used to promulgate public laws, the most famous example being the English Magna Carta (great charter) of 1215, but s ...
was signed on 15 July 1662 creating the "Royal Society of London", with
Lord Brouncker
William Brouncker, 2nd Viscount Brouncker, Fellow of the Royal Society, PRS (1620 – 5 April 1684) was an Irish born mathematician who introduced Brouncker's formula, and was the first president of the Royal Society. He was also a civil serv ...
serving as the first President. A second Royal Charter was signed on 23 April 1663, with the King noted as the Founder and with the name of "the Royal Society of London for the Improvement of Natural Knowledge"; Robert Hooke was appointed as Curator of Experiments in November. This initial royal favour has continued, and since then every monarch has been the patron of the Society.
The Society's first Secretary was
Henry Oldenburg
Henry Oldenburg (also Henry Oldenbourg) FRS (c. 1618 as Heinrich Oldenburg – 5 September 1677), was a German theologian, diplomat, and natural philosopher, known as one of the creators of modern scientific peer review. He was one of the fo ...
. Its early meetings included experiments performed first by Robert Hooke and then by
Denis Papin
Denis Papin FRS (; 22 August 1647 – 26 August 1713) was a French physicist, mathematician and inventor, best known for his pioneering invention of the steam digester, the forerunner of the pressure cooker and of the steam engine.
Early ...
, who was appointed in 1684. These experiments varied in their subject area, and were both important in some cases and trivial in others.Henderson (1941) p. 29 The society began publication of '' Philosophical Transactions'' from 1665, the oldest and longest-running scientific journal in the world, which established the important principles of
scientific priority In science, priority is the credit given to the individual or group of individuals who first made the discovery or propose the theory. Fame and honours usually go to the first person or group to publish a new finding, even if several researchers arr ...
and
peer review
Peer review is the evaluation of work by one or more people with similar competencies as the producers of the work ( peers). It functions as a form of self-regulation by qualified members of a profession within the relevant field. Peer revie ...
.
The French established the
Academy of Sciences
An academy of sciences is a type of learned society or academy (as special scientific institution) dedicated to sciences that may or may not be state funded. Some state funded academies are tuned into national or royal (in case of the Unit ...
in 1666. In contrast to the private origins of its British counterpart, the Academy was founded as a government body by Jean-Baptiste Colbert. Its rules were set down in 1699 by King
Louis XIV
, house = Bourbon
, father = Louis XIII
, mother = Anne of Austria
, birth_date =
, birth_place = Château de Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
, death_date =
, death_place = Palace of Ver ...
, when it received the name of 'Royal Academy of Sciences' and was installed in the
Louvre
The Louvre ( ), or the Louvre Museum ( ), is the world's most-visited museum, and an historic landmark in Paris, France. It is the home of some of the best-known works of art, including the ''Mona Lisa'' and the ''Venus de Milo''. A central l ...
in Paris.
New ideas
As the Scientific Revolution was not marked by any single change, the following new ideas contributed to what is called the Scientific Revolution. Many of them were revolutions in their own fields.
Astronomy
;Heliocentrism
For almost five millennia, the geocentric model of the Earth as the center of the universe had been accepted by all but a few astronomers. In Aristotle's cosmology, Earth's central location was perhaps less significant than its identification as a realm of imperfection, inconstancy, irregularity, and change, as opposed to the "heavens" (Moon, Sun, planets, stars), which were regarded as perfect, permanent, unchangeable, and in religious thought, the realm of heavenly beings. The Earth was even composed of different material, the four elements "earth", "water", "fire", and "air", while sufficiently far above its surface (roughly the Moon's orbit), the heavens were composed of a different substance called "aether". The heliocentric model that replaced it involved not only the radical displacement of the earth to an orbit around the sun, but its sharing a placement with the other planets implied a universe of heavenly components made from the same changeable substances as the Earth. Heavenly motions no longer needed to be governed by a theoretical perfection, confined to circular orbits.
Copernicus' 1543 work on the heliocentric model of the solar system tried to demonstrate that the sun was the center of the universe. Few were bothered by this suggestion, and the pope and several archbishops were interested enough by it to want more detail. His model was later used to create the calendar of
Pope Gregory XIII
Pope Gregory XIII ( la, Gregorius XIII; it, Gregorio XIII; 7 January 1502 – 10 April 1585), born Ugo Boncompagni, was head of the Catholic Church and ruler of the Papal States from 13 May 1572 to his death in April 1585. He is best known for ...
. However, the idea that the earth moved around the sun was doubted by most of Copernicus' contemporaries. It contradicted not only empirical observation, due to the absence of an observable stellar parallax, but more significantly at the time, the authority of Aristotle.
The discoveries of Johannes Kepler and Galileo gave the theory credibility. Kepler was an astronomer who, using the accurate observations of
Tycho Brahe
Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
, proposed that the planets move around the sun not in circular orbits, but in elliptical ones. Together with his other laws of planetary motion, this allowed him to create a model of the solar system that was an improvement over Copernicus' original system. Galileo's main contributions to the acceptance of the heliocentric system were his mechanics, the observations he made with his telescope, as well as his detailed presentation of the case for the system. Using an early theory of
inertia
Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
, Galileo could explain why rocks dropped from a tower fall straight down even if the earth rotates. His observations of the moons of Jupiter, the phases of Venus, the spots on the sun, and mountains on the moon all helped to discredit the Aristotelian philosophy and the
Ptolemaic Ptolemaic is the adjective formed from the name Ptolemy, and may refer to:
Pertaining to the Ptolemaic dynasty
* Ptolemaic dynasty, the Macedonian Greek dynasty that ruled Egypt founded in 305 BC by Ptolemy I Soter
* Ptolemaic Kingdom
Pertaining ...
theory of the solar system. Through their combined discoveries, the heliocentric system gained support, and at the end of the 17th century, it was generally accepted by astronomers.
This work culminated in the work of Isaac Newton. Newton's ''Principia'' formulated the laws of motion and universal gravitation, which dominated scientists' view of the physical universe for the next three centuries. By deriving Kepler's laws of planetary motion from his mathematical description of gravity, and then using the same principles to account for the trajectories of
comets
A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
, the tides, the precession of the equinoxes, and other phenomena, Newton removed the last doubts about the validity of the heliocentric model of the cosmos. This work also demonstrated that the motion of objects on Earth and of celestial bodies could be described by the same principles. His prediction that the Earth should be shaped as an oblate spheroid was later vindicated by other scientists. His laws of motion were to be the solid foundation of mechanics; his law of universal gravitation combined terrestrial and celestial mechanics into one great system that seemed to be able to describe the whole world in mathematical formulae.
;Gravitation
As well as proving the heliocentric model, Newton also developed the theory of gravitation. In 1679, Newton began to consider gravitation and its effect on the orbits of planets with reference to Kepler's laws of planetary motion. This followed stimulation by a brief exchange of letters in 1679–80 with Robert Hooke, who had been appointed to manage the Royal Society's correspondence, and who opened a correspondence intended to elicit contributions from Newton to Royal Society transactions. Newton's reawakening interest in astronomical matters received further stimulus by the appearance of a comet in the winter of 1680–1681, on which he corresponded with
John Flamsteed
John Flamsteed (19 August 1646 – 31 December 1719) was an English astronomer and the first Astronomer Royal. His main achievements were the preparation of a 3,000-star catalogue, ''Catalogus Britannicus'', and a star atlas called '' Atlas C ...
Edmond Halley
Edmond (or Edmund) Halley (; – ) was an English astronomer, mathematician and physicist. He was the second Astronomer Royal in Britain, succeeding John Flamsteed in 1720.
From an observatory he constructed on Saint Helena in 1676–77, H ...
and to the Royal Society in ''
De motu corporum in gyrum
(from Latin: "On the motion of bodies in an orbit"; abbreviated ) is the presumed title of a manuscript by Isaac Newton sent to Edmond Halley in November 1684. The manuscript was prompted by a visit from Halley earlier that year when he had q ...
'', in 1684. This tract contained the nucleus that Newton developed and expanded to form the ''Principia''.
The '' Principia'' was published on 5 July 1687 with encouragement and financial help from Edmond Halley. In this work, Newton stated the three universal laws of motion that contributed to many advances during the
Industrial Revolution
The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
which soon followed and were not to be improved upon for more than 200 years. Many of these advancements continue to be the underpinnings of non-relativistic technologies in the modern world. He used the Latin word ''gravitas'' (weight) for the effect that would become known as
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
, and defined the law of
universal gravitation
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the dist ...
.
Newton's postulate of an invisible force able to act over vast distances led to him being criticised for introducing " occult agencies" into science. Later, in the second edition of the ''Principia'' (1713), Newton firmly rejected such criticisms in a concluding
General Scholium
The "General Scholium" (''Scholium Generale'' in the original Latin) is an essay written by Isaac Newton, appended to his work of ''Philosophiæ Naturalis Principia Mathematica'', known as the ''Principia''. It was first published with the secon ...
, writing that it was enough that the phenomena implied a gravitational attraction, as they did; but they did not so far indicate its cause, and it was both unnecessary and improper to frame hypotheses of things that were not implied by the phenomena. (Here Newton used what became his famous expression "hypotheses non fingo").
Biology and medicine
;Medical discoveries
The writings of Greek physician
Galen
Aelius Galenus or Claudius Galenus ( el, Κλαύδιος Γαληνός; September 129 – c. AD 216), often Anglicized as Galen () or Galen of Pergamon, was a Greek physician, surgeon and philosopher in the Roman Empire. Considered to be one ...
had dominated European medical thinking for over a millennium. The Flemish scholar
Vesalius
Andreas Vesalius (Latinized from Andries van Wezel) () was a 16th-century anatomist, physician, and author of one of the most influential books on human anatomy, ''De Humani Corporis Fabrica Libri Septem'' (''On the fabric of the human body'' '' ...
demonstrated mistakes in Galen's ideas. Vesalius dissected human corpses, whereas Galen dissected animal corpses. Published in 1543, Vesalius' ''
De humani corporis fabrica
''De Humani Corporis Fabrica Libri Septem'' (Latin, lit. "On the fabric of the human body in seven books") is a set of books on human anatomy written by Andreas Vesalius (1514–1564) and published in 1543. It was a major advance in the history ...
'' was a groundbreaking work of human anatomy. It emphasized the priority of dissection and what has come to be called the "anatomical" view of the body, seeing human internal functioning as an essentially corporeal structure filled with organs arranged in three-dimensional space. This was in stark contrast to many of the anatomical models used previously, which had strong Galenic/Aristotelean elements, as well as elements of
astrology
Astrology is a range of divinatory practices, recognized as pseudoscientific since the 18th century, that claim to discern information about human affairs and terrestrial events by studying the apparent positions of celestial objects. Di ...
.
Besides the first good description of the sphenoid bone, he showed that the
sternum
The sternum or breastbone is a long flat bone located in the central part of the chest. It connects to the ribs via cartilage and forms the front of the rib cage, thus helping to protect the heart, lungs, and major blood vessels from injury. Sha ...
consists of three portions and the sacrum of five or six; and described accurately the vestibule in the interior of the temporal bone. He not only verified the observation of Etienne on the valves of the hepatic veins, but he described the
vena azygos
The azygos vein is a vein running up the right side of the thoracic vertebral column draining itself towards the superior vena cava. It connects the systems of superior vena cava and inferior vena cava and can provide an alternative path for blood ...
, and discovered the canal which passes in the fetus between the umbilical vein and the vena cava, since named ductus venosus. He described the greater omentum, omentum, and its connections with the stomach, the spleen and the colon (anatomy), colon; gave the first correct views of the structure of the pylorus; observed the small size of the caecal appendix in man; gave the first good account of the mediastinum and pleura and the fullest description of the anatomy of the brain yet advanced. He did not understand the inferior recesses; and his account of the nerves is confused by regarding the optic as the first pair, the third as the fifth and the fifth as the seventh.
Before Vesalius, the anatomical notes by Alessandro Achillini demonstrate a detailed description of the human body and compares what he has found during his dissections to what others like Galen and Avicenna have found and notes their similarities and differences. Niccolò Massa was an Italian anatomist who wrote an early anatomy text ''Anatomiae Libri Introductorius'' in 1536, described the cerebrospinal fluid and was the author of several medical works. Jean Fernel was a French physician who introduced the term "physiology" to describe the study of the body's function and was the first person to describe the spinal canal.
Further groundbreaking work was carried out by William Harvey, who published ''De Motu Cordis'' in 1628. Harvey made a detailed analysis of the overall structure of the heart, going on to an analysis of the arteries, showing how their pulsation depends upon the contraction of the left ventricle, while the contraction of the right ventricle propels its charge of blood into the pulmonary artery. He noticed that the two Ventricle (heart), ventricles move together almost simultaneously and not independently like had been thought previously by his predecessors.
In the eighth chapter, Harvey estimated the capacity of the heart, how much blood is expelled through each pump of the heart, and the number of times the heart beats in half an hour. From these estimations, he demonstrated that according to Gaelen's theory that blood was continually produced in the liver, the absurdly large figure of 540 pounds of blood would have to be produced every day. Having this simple mathematical proportion at hand—which would imply a seemingly impossible role for the liver—Harvey went on to demonstrate how the blood circulated in a circle by means of countless experiments initially done on snake, serpents and fish: tying their veins and arteries in separate periods of time, Harvey noticed the modifications which occurred; indeed, as he tied the veins, the heart would become empty, while as he did the same to the arteries, the organ would swell up.
This process was later performed on the human body (in the image on the left): the physician tied a tight ligature onto the upper arm of a person. This would cut off blood flow from the arteries and the veins. When this was done, the arm below the ligature (medicine), ligature was cool and pale, while above the ligature it was warm and swollen. The ligature was loosened slightly, which allowed blood from the arteries to come into the arm, since arteries are deeper in the flesh than the veins. When this was done, the opposite effect was seen in the lower arm. It was now warm and swollen. The veins were also more visible, since now they were full of blood.
Various other advances in medical understanding and practice were made. French physician Pierre Fauchard started dentistry science as we know it today, and he has been named "the father of modern dentistry". surgery, Surgeon Ambroise Paré (c. 1510–1590) was a leader in surgical techniques and battlefield medicine, especially the treatment of wounds, and Herman Boerhaave (1668–1738) is sometimes referred to as a "father of physiology" due to his exemplary teaching in Leiden and his textbook ''Institutiones medicae'' (1708).
Chemistry
Chemistry, and its antecedent alchemy, became an increasingly important aspect of scientific thought in the course of the 16th and 17th centuries. The importance of chemistry is indicated by the range of important scholars who actively engaged in chemical research. Among them were the astronomer
Tycho Brahe
Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
, the chemical physician Paracelsus, Robert Boyle, Thomas Browne and
Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
. Unlike the mechanical philosophy, the chemical philosophy stressed the active powers of matter, which alchemists frequently expressed in terms of vital or active principles—of spirits operating in nature.
Practical attempts to improve the refining of ores and their extraction to smelt metals were an important source of information for early chemists in the 16th century, among them Georg Agricola (1494–1555), who published his great work ''De re metallica'' in 1556. His work describes the highly developed and complex processes of mining metal ores, metal extraction and metallurgy of the time. His approach removed the mysticism associated with the subject, creating the practical base upon which others could build.
Anglo-Irish chemist Robert Boyle (1627–1691) is considered to have refined the modern scientific method for alchemy and to have separated chemistry further from alchemy. Although his research clearly has its roots in the Alchemy, alchemical tradition, Boyle is largely regarded today as the first modern chemist, and therefore one of the founders of modern chemistry, and one of the pioneers of modern experimental
scientific method
The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article history of scientific ...
. Although Boyle was not the original discoverer, he is best known for Boyle's law, which he presented in 1662: the law describes the inversely proportional relationship between the absolute pressure and volume of a gas, if the temperature is kept constant within a closed system.
Boyle is also credited for his landmark publication ''The Sceptical Chymist'' in 1661, which is seen as a cornerstone book in the field of chemistry. In the work, Boyle presents his hypothesis that every phenomenon was the result of collisions of particles in motion. Boyle appealed to chemists to experiment and asserted that experiments denied the limiting of chemical elements to only the Classical element, classic four: earth, fire, air, and water. He also pleaded that chemistry should cease to be subservient to medicine or to alchemy, and rise to the status of a science. Importantly, he advocated a rigorous approach to scientific experiment: he believed all theories must be tested experimentally before being regarded as true. The work contains some of the earliest modern ideas of atoms, molecules, and chemical reaction, and marks the beginning of the history of modern chemistry.
Physical
;Optics
Important work was done in the field of
optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
. Johannes Kepler published ''Astronomiae Pars Optica'' (''The Optical Part of Astronomy'') in 1604. In it, he described the inverse-square law governing the intensity of light, reflection by flat and curved mirrors, and principles of pinhole cameras, as well as the astronomical implications of optics such as parallax and the apparent sizes of heavenly bodies. ''Astronomiae Pars Optica'' is generally recognized as the foundation of modern optics (though the Snell's law, law of refraction is conspicuously absent).
Willebrord Snellius (1580–1626) found the mathematical law of refraction, now known as Snell's law, in 1621. It had been published earlier in 984 A. D. by Ibn Sahl. Subsequently
René Descartes
René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Ma ...
(1596–1650) showed, by using geometric construction and the law of refraction (also known as Descartes' law), that the angular radius of a rainbow is 42° (i.e. the angle subtended at the eye by the edge of the rainbow and the rainbow's centre is 42°). He also independently discovered the Specular reflection, law of reflection, and his essay on optics was the first published mention of this law.
Christiaan Huygens (1629–1695) wrote several works in the area of optics. These included the ''Opera reliqua'' (also known as ''Christiani Hugenii Zuilichemii, dum viveret Zelhemii toparchae, opuscula posthuma'') and the ''Traité de la lumière''.
Isaac Newton investigated the refraction of light, demonstrating that a Dispersive prism, prism could decompose white light into a Visible spectrum, spectrum of colours, and that a Lens (optics), lens and a second prism could recompose the multicoloured spectrum into white light. He also showed that the coloured light does not change its properties by separating out a coloured beam and shining it on various objects. Newton noted that regardless of whether it was reflected or scattered or transmitted, it stayed the same colour. Thus, he observed that colour is the result of objects interacting with already-coloured light rather than objects generating the colour themselves. This is known as Early life of Isaac Newton#Newton's theory of colour, Newton's theory of colour. From this work he concluded that any refracting telescope would suffer from the dispersion (optics), dispersion of light into colours. The interest of the
Royal Society
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
encouraged him to publish his notes ''On Colour'' (later expanded into ''Opticks''). Newton argued that light is composed of particles or ''corpuscles'' and were refracted by accelerating toward the denser medium, but he had to associate them with waves to explain the diffraction of light.
In his ''Hypothesis of Light'' of 1675, Newton wikt:posit, posited the existence of the luminiferous aether, ether to transmit forces between particles. In 1704, Newton published ''Opticks'', in which he expounded his corpuscular theory of light. He considered light to be made up of extremely subtle corpuscles, that ordinary matter was made of grosser corpuscles and speculated that through a kind of alchemical transmutation "Are not gross Bodies and Light convertible into one another, ...and may not Bodies receive much of their Activity from the Particles of Light which enter their Composition?"
;Electricity
Dr. William Gilbert (astronomer), William Gilbert, in ''
De Magnete
''De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure'' (''On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth'') is a scientific work published in 1600 by the English physician and scientist William Gilbert. A h ...
'', invented the New Latin word ''electricus'' from ' (''elektron''), the Greek word for "amber". Gilbert undertook a number of careful electrical experiments, in the course of which he discovered that many substances other than amber, such as sulphur, wax, glass, etc.,Priestley, Joseph (1757) ''History of Electricity''. London were capable of manifesting electrical properties. Gilbert also discovered that a heated body lost its electricity and that moisture prevented the electrification of all bodies, due to the now well-known fact that moisture impaired the insulation of such bodies. He also noticed that electrified substances attracted all other substances indiscriminately, whereas a magnet only attracted iron. The many discoveries of this nature earned for Gilbert the title of ''founder of the electrical science''.Maver, William, Jr.: "Electricity, its History and Progress" The Encyclopedia Americana; a library of universal knowledge, vol. X, pp. 172ff (1918). New York: Encyclopedia Americana Corp. By investigating the forces on a light metallic needle, balanced on a point, he extended the list of electric bodies, and found also that many substances, including metals and natural magnets, showed no attractive forces when rubbed. He noticed that dry weather with north or east wind was the most favourable atmospheric condition for exhibiting electric phenomena—an observation liable to misconception until the difference between conductor and insulator was understood.Dampier, W.C.D. (1905). The theory of experimental electricity. Cambridge physical series. Cambridge [Eng.: University Press.
Robert Boyle also worked frequently at the new science of electricity, and added several substances to Gilbert's list of electrics. He left a detailed account of his researches under the title of ''Experiments on the Origin of Electricity''. Boyle, in 1675, stated that electric attraction and repulsion can act across a vacuum. One of his important discoveries was that electrified bodies in a vacuum would attract light substances, this indicating that the electrical effect did not depend upon the air as a medium. He also added resin to the then known list of electrics.
This was followed in 1660 by Otto von Guericke, who invented an early electrostatics, electrostatic generator. By the end of the 17th century, researchers had developed practical means of generating electricity by friction with an electrostatic generator, but the development of electrostatic machines did not begin in earnest until the 18th century, when they became fundamental instruments in the studies about the new science of
electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describ ...
. The first usage of the word ''electricity'' is ascribed to Thomas Browne, Sir Thomas Browne in his 1646 work, ''Pseudodoxia Epidemica''. In 1729 Stephen Gray (scientist), Stephen Gray (1666–1736) demonstrated that electricity could be "transmitted" through metal filaments.
New mechanical devices
As an aid to scientific investigation, various tools, measuring aids and calculating devices were developed in this period.
Calculating devices
John Napier introduced logarithms as a powerful mathematical tool. With the help of the prominent mathematician Henry Briggs (mathematician), Henry Briggs their logarithmic tables embodied a computational advance that made calculations by hand much quicker. His Napier's bones used a set of numbered rods as a multiplication tool using the system of lattice multiplication. The way was opened to later scientific advances, particularly in
astronomy
Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
and dynamics (mechanics), dynamics.
At Oxford University, Edmund Gunter built the first analog device to aid computation. The 'Gunter's scale' was a large plane scale, engraved with various scales, or lines. Natural lines, such as the line of chords, the line of sines and tangent (trigonometric function), tangents are placed on one side of the scale and the corresponding artificial or logarithmic ones were on the other side. This calculating aid was a predecessor of the Slide rule#History, slide rule. It was William Oughtred (1575–1660) who first used two such scales sliding by one another to perform direct multiplication and division (mathematics), division, and thus is credited as the inventor of the slide rule in 1622.
Blaise Pascal (1623–1662) invented the Mechanical calculator#The 17th century, mechanical calculator in 1642. The introduction of his Pascaline in 1645 launched the development of mechanical calculators first in Europe and then all over the world. Gottfried Leibniz (1646–1716), building on Pascal's work, became one of the most prolific inventors in the field of mechanical calculators; he was the first to describe a pinwheel calculator, in 1685, and invented the Leibniz wheel, used in the arithmometer, the first mass-produced mechanical calculator. He also refined the binary number system, foundation of virtually all modern computer architectures.
John Hadley (1682–1744) was the inventor of the octant (instrument), octant, the precursor to the sextant (invented by John Bird (astronomer), John Bird), which greatly improved the science of navigation.
Industrial machines
Denis Papin
Denis Papin FRS (; 22 August 1647 – 26 August 1713) was a French physicist, mathematician and inventor, best known for his pioneering invention of the steam digester, the forerunner of the pressure cooker and of the steam engine.
Early ...
(1647–1712) was best known for his pioneering invention of the steam digester, the forerunner of the steam engine. The first working steam engine was patented in 1698 by the English inventor Thomas Savery, as a "...new invention for raising of water and occasioning motion to all sorts of mill work by the impellent force of fire, which will be of great use and advantage for drayning mines, serveing townes with water, and for the working of all sorts of mills where they have not the benefitt of water nor constant windes." The invention was demonstrated to the
Royal Society
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
on 14 June 1699 and the machine was described by Savery in his book ''The Miner's Friend; or, An Engine to Raise Water by Fire'' (1702), in which he claimed that it could pump water out of mining, mines. Thomas Newcomen (1664–1729) perfected the practical steam engine for pumping water, the Newcomen steam engine. Consequently, Thomas Newcomen can be regarded as a forefather of the
Industrial Revolution
The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
.
Abraham Darby I (1678–1717) was the first, and most famous, of three generations of the Darby family who played an important role in the Industrial Revolution. He developed a method of producing high-grade iron in a blast furnace fueled by Coke (fuel), coke rather than charcoal. This was a major step forward in the production of iron as a raw material for the Industrial Revolution.
Telescopes
Refracting telescopes first appeared in the Netherlands in 1608, apparently the product of spectacle makers experimenting with lenses. The inventor is unknown but Hans Lippershey applied for the first patent, followed by Jacob Metius of Alkmaar. Galileo was one of the first scientists to use this new tool for his astronomical observations in 1609.
The reflecting telescope was described by James Gregory (astronomer and mathematician), James Gregory in his book ''Optica Promota'' (1663). He argued that a mirror shaped like the part of a
conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a spe ...
, would correct the spherical aberration that flawed the accuracy of refracting telescopes. His design, the "Gregorian telescope", however, remained un-built.
In 1666, Isaac Newton argued that the faults of the refracting telescope were fundamental because the lens refracted light of different colors differently. He concluded that light could not be refracted through a lens without causing chromatic aberrations. From these experiments Newton concluded that no improvement could be made in the refracting telescope. However, he was able to demonstrate that the angle of reflection remained the same for all colors, so he decided to build a Newton's reflector, reflecting telescope. It was completed in 1668 and is the earliest known functional reflecting telescope.Hall, Alfred Rupert ''Isaac Newton: adventurer in thought'' . p. 67
50 years later, John Hadley developed ways to make precision aspheric and Parabolic reflector, parabolic Objective (optics), objective mirrors for reflecting telescopes, building the first parabolic Newtonian telescope and a Gregorian telescope with accurately shaped mirrors. These were successfully demonstrated to the
Royal Society
The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
.
Other devices
The invention of the vacuum pump paved the way for the experiments of Robert Boyle and Robert Hooke into the nature of vacuum and atmospheric pressure. The first such device was made by Otto von Guericke in 1654. It consisted of a piston and an Air gun#History, air gun cylinder with flaps that could suck the air from any vessel that it was connected to. In 1657, he pumped the air out of two conjoined hemispheres and demonstrated that a team of sixteen horses were incapable of pulling it apart. The air pump construction was greatly improved by Robert Hooke in 1658.
Evangelista Torricelli (1607–1647) was best known for his invention of the mercury barometer. The motivation for the invention was to improve on the suction pumps that were used to raise water out of the mining, mines. Torricelli constructed a sealed tube filled with mercury, set vertically into a basin of the same substance. The column of mercury fell downwards, leaving a Torricellian vacuum above.
Materials, construction, and aesthetics
Surviving instruments from this period, tend to be made of durable metals such as brass, gold, or steel, although examples such as telescopes made of wood, pasteboard, or with leather components exist. Those instruments that exist in collections today tend to be robust examples, made by skilled craftspeople for and at the expense of wealthy patrons. These may have been commissioned as displays of wealth. In addition, the instruments preserved in collections may not have received heavy use in scientific work; instruments that had visibly received heavy use were typically destroyed, deemed unfit for display, or excluded from collections altogether. It is also postulated that the scientific instruments preserved in many collections were chosen because they were more appealing to collectors, by virtue of being more ornate, more portable, or made with higher-grade materials.
Intact air pumps are particularly rare. The pump at right included a glass sphere to permit demonstrations inside the vacuum chamber, a common use. The base was wooden, and the cylindrical pump was brass. Other vacuum chambers that survived were made of brass hemispheres.
Instrument makers of the late seventeenth and early eighteenth century were commissioned by organizations seeking help with navigation, surveying, warfare, and astronomical observation. The increase in uses for such instruments, and their widespread use in global exploration and conflict, created a need for new methods of manufacture and repair, which would be met by the
Industrial Revolution
The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe, and the United States, that occurred during the period from around 1760 to about 1820–1840. This transition included going f ...
.
Scientific developments
People and key ideas that emerged from the 16th and 17th centuries:
* First printed edition of Euclid's Elements, Euclid's ''Elements'' in 1482.
* Nicolaus Copernicus (1473–1543) published ''On the Revolutions of the Heavenly Spheres'' in 1543, which advanced the heliocentric theory of cosmology.
* Andreas Vesalius (1514–1564) published ''De Humani Corporis Fabrica'' (''On the Structure of the Human Body'') (1543), which discredited
Galen
Aelius Galenus or Claudius Galenus ( el, Κλαύδιος Γαληνός; September 129 – c. AD 216), often Anglicized as Galen () or Galen of Pergamon, was a Greek physician, surgeon and philosopher in the Roman Empire. Considered to be one ...
's views. He found that the circulation of blood resolved from pumping of the heart. He also assembled the first human skeleton from cutting open cadavers.
* The French mathematician François Viète (1540–1603) published ''In Artem Analyticem Isagoge'' (1591), which gave the first symbolic notation of parameters in literal algebra.
* William Gilbert (1544–1603) published ''On the Magnet and Magnetic Bodies, and on the Great Magnet the Earth'' in 1600, which laid the foundations of a theory of magnetism and electricity.
* Tycho Brahe (1546–1601) made extensive and more accurate naked eye observations of the planets in the late 16th century. These became the basic data for Kepler's studies.
* Sir Francis Bacon (1561–1626) published ''Novum Organum'' in 1620, which outlined a new system of logic based on the process of Reduction (philosophy), reduction, which he offered as an improvement over Aristotle's philosophical process of syllogism. This contributed to the development of what became known as the scientific method.
* Galileo Galilei (1564–1642) improved the telescope, with which he made several important astronomical observations, including the Galilean moons, four largest moons of Jupiter (1610), the phases of Venus (1610 – proving Copernicus correct), the rings of Saturn (1610), and made detailed observations of sunspots. He developed the laws for falling bodies based on pioneering quantitative experiments which he analyzed mathematically.
* Johannes Kepler (1571–1630) published the first two of his three laws of planetary motion in 1609.
* William Harvey (1578–1657) demonstrated that blood circulates, using dissections and other experimental techniques.
* René Descartes (1596–1650) published his ''Discourse on the Method'' in 1637, which helped to establish the scientific method.
* Antonie van Leeuwenhoek (1632–1723) constructed powerful single lens microscopes and made extensive observations that he published around 1660, opening up the micro-world of biology.
* Christiaan Huygens (1629–1695) published major studies of mechanics (he was the first one to correctly formulate laws concerning centrifugal force and discovered the theory of the pendulum) and optics (being one of the most influential proponents of the wave theory of light).
* Isaac Newton (1643–1727) built upon the work of Kepler, Galileo and Huygens. He showed that an inverse square law for gravity explained the elliptical orbits of the planets, and advanced the law of universal gravitation. His development of infinitesimal calculus (along with Leibniz) opened up new applications of the methods of mathematics to science. Newton taught that scientific theory should be coupled with rigorous experimentation, which became the keystone of modern science.
Criticism
The idea that modern science took place as a kind of revolution has been debated among historians. A weakness of the idea of a scientific revolution is the lack of a systematic approach to the question of knowledge in the period comprehended between the 14th and 17th centuries, leading to misunderstandings on the value and role of modern authors. From this standpoint, the continuity thesis is the hypothesis that there was no radical discontinuity between the intellectual development of the Middle Ages and the developments in the Renaissance and early modern period and has been deeply and widely documented by the works of scholars like Pierre Duhem, John Hermann Randall, Alistair Crombie and William A. Wallace, who proved the preexistence of a wide range of ideas used by the followers of the Scientific Revolution thesis to substantiate their claims. Thus, the idea of a scientific revolution following the Renaissance is—according to the continuity thesis—a myth. Some continuity theorists point to earlier intellectual revolutions occurring in the Middle Ages, usually referring to either a European Renaissance of the 12th century or a medieval Science in medieval Islam, Muslim scientific revolution, as a sign of continuity.
Another contrary view has been recently proposed by Arun Bala in his dialogue, dialogical history of the birth of modern science. Bala proposes that the changes involved in the Scientific Revolution—the Philosophy of mathematics, mathematical realist turn, the mechanical philosophy, the atomism, the central role assigned to the Sun in Copernican heliocentrism—have to be seen as rooted in Multiculturalism, multicultural influences on Europe. He sees specific influences in Ibn al-Haytham, Alhazen's physical optical theory, History of science and technology in China, Chinese mechanical technologies leading to the perception of the world as a machine, the Hindu–Arabic numeral system, which carried implicitly a new mode of Atomism#Indian atomism, mathematical atomic thinking, and the heliocentrism rooted in ancient Egyptian religious ideas associated with Hermeticism.
Bala argues that by ignoring such multicultural impacts we have been led to a Eurocentrism, Eurocentric conception of the Scientific Revolution. However, he clearly states: "The makers of the revolution—Copernicus, Kepler, Galileo, Descartes, Newton, and many others—had to selectively appropriate relevant ideas, transform them, and create new auxiliary concepts in order to complete their task... In the ultimate analysis, even if the revolution was rooted upon a multicultural base it is the accomplishment of Europeans in Europe." Critics note that lacking documentary evidence of transmission of specific scientific ideas, Bala's model will remain "a working hypothesis, not a conclusion".
A third approach takes the term "Renaissance" literally as a "rebirth". A closer study of Greek philosophy and Greek mathematics demonstrates that nearly all of the so-called revolutionary results of the so-called scientific revolution were in actuality restatements of ideas that were in many cases older than those of Aristotle and in nearly all cases at least as old as Archimedes. Aristotle even explicitly argues against some of the ideas that were espoused during the Scientific Revolution, such as heliocentrism. The basic ideas of the scientific method were well known to Archimedes and his contemporaries, as demonstrated in the well-known discovery of buoyancy. Lucio Russo claims that science as a unique approach to objective knowledge was born in the Hellenistic period (c. 300 BC), but was extinguished with the advent of the Roman Empire. This approach to the Scientific Revolution reduces it to a period of relearning classical ideas that is very much an extension of the Renaissance. This view does not deny that a change occurred but argues that it was a reassertion of previous knowledge (a renaissance) and not the creation of new knowledge. It cites statements from Newton, Copernicus and others in favour of the Pythagoreanism, Pythagorean worldview as evidence.
In more recent analysis of the Scientific Revolution during this period, there has been criticism of not only the Eurocentric ideologies spread, but also of the dominance of male scientists of the time. Female scholars were not always given the opportunities that a male scholar would have had, and the incorporation of women's work in the sciences during this time tends to be obscured. Scholars have tried to look into the participation of women in the 17th century in science, and even with sciences as simple as domestic knowledge women were making advances. With the limited history provided from texts of the period we are not completely aware if women were helping these scientists develop the ideas they did. Another idea to consider is the way this period influenced even the women scientists of the periods following it. Annie Jump Cannon was an astronomer who benefitted from the laws and theories developed from this period; she made several advances in the century following the Scientific Revolution. It was an important period for the future of science, including the incorporation of women into fields using the developments made.
See also
* Chemical revolution
* History of gravitational theory
* Information revolution
* ''
The Structure of Scientific Revolutions
''The Structure of Scientific Revolutions'' (1962; second edition 1970; third edition 1996; fourth edition 2012) is a book about the history of science by philosopher Thomas S. Kuhn. Its publication was a landmark event in the history, philoso ...
'' (book)
References
Further reading
* Burns, William E. ''The Scientific Revolution in Global Perspective'' (Oxford University Press, 2016) xv + 198 pp.
* Cohen, H. Floris. ''The Rise of Modern Science Explained: A Comparative History'' (Cambridge University Press, 2015). vi + 296 pp.
*
*
* Henry, John. ''The Scientific Revolution and the Origins of Modern Science'' (2008), 176 pp
* Knight, David. ''Voyaging in Strange Seas: The Great Revolution in Science'' (Yale U.P., 2014) viii + 329 pp.
* Lindberg, D.C. ''The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450'' (Univ. of Chicago Press, 1992).
*
*
*
*
* Weinberg, Steven. ''To Explain the World: The Discovery of Modern Science'' (2015) xiv + 417 pp.
* Westfall, Richard S. ''Never at Rest: A Biography of Isaac Newton'' (1983).
*
* Wootton, David. ''The Invention of Science: A New History of the Scientific Revolution'' (Penguin, 2015) . xiv + 769 pp.