RRNA (ribosomal RNA)
   HOME

TheInfoList



OR:

A non-coding RNA (ncRNA) is a functional
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
molecule that is not
translated Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-coding RNAs include
transfer RNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ac ...
s (tRNAs) and ribosomal RNAs (rRNAs), as well as small RNAs such as microRNAs, siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs,
scaRNAs Small Cajal body-specific RNAs (scaRNAs) are a class of small nucleolar RNAs (snoRNAs) that specifically localise to the Cajal body, a nuclear organelle (cellular sub-organelle) involved in the biogenesis of small nuclear ribonucleoproteins (sn ...
and the long ncRNAs such as Xist and HOTAIR. The number of non-coding RNAs within the human genome is unknown; however, recent
transcriptomic Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. He ...
and bioinformatic studies suggest that there are thousands of non-coding transcripts. Many of the newly identified ncRNAs have not been validated for their function. There is no consensus in the literature on how much of non-coding transcription is functional. Some researchers have argued that many ncRNAs are non-functional (sometimes referred to as "junk RNA"), spurious transcriptions. Others, however, disagree, arguing instead that many non-coding transcripts do have functions and that those functions are being and will continue to be discovered.


History and discovery

Nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
s were first discovered in 1868 by Friedrich Miescher, and by 1939, RNA had been implicated in
protein synthesis Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside Cell (biology), cells, homeostasis, balancing the loss of cellular proteins (via Proteolysis, degradation or Protein targeting, export) through the product ...
. Two decades later,
Francis Crick Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the helical struc ...
predicted a functional RNA component which mediated translation; he reasoned that RNA is better suited to base-pair with an mRNA transcript than a pure
polypeptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
. The first non-coding RNA to be characterised was an alanine tRNA found in baker's yeast, its structure was published in 1965. To produce a purified alanine tRNA sample,
Robert W. Holley Robert William Holley (January 28, 1922 – February 11, 1993) was an American biochemist. He shared the Nobel Prize in Physiology or Medicine in 1968 (with Har Gobind Khorana and Marshall Warren Nirenberg) for describing the structure of alani ...
''et al.'' used 140 kg of commercial baker's yeast to give just 1 g of purified tRNAAla for analysis. The 80 nucleotide tRNA was sequenced by first being digested with Pancreatic ribonuclease (producing fragments ending in Cytosine or Uridine) and then with takadiastase ribonuclease Tl (producing fragments which finished with Guanosine). Chromatography and identification of the 5' and 3' ends then helped arrange the fragments to establish the RNA sequence. Of the three structures originally proposed for this tRNA, the 'cloverleaf' structure was independently proposed in several following publications. The cloverleaf
secondary structure Protein secondary structure is the three dimensional conformational isomerism, form of ''local segments'' of proteins. The two most common Protein structure#Secondary structure, secondary structural elements are alpha helix, alpha helices and beta ...
was finalised following X-ray crystallography analysis performed by two independent research groups in 1974. Ribosomal RNA was next to be discovered, followed by URNA in the early 1980s. Since then, the discovery of new non-coding RNAs has continued with snoRNAs, Xist,
CRISPR CRISPR () (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacte ...
and many more. Recent notable additions include riboswitches and miRNA; the discovery of the RNAi
mechanism Mechanism may refer to: *Mechanism (engineering), rigid bodies connected by joints in order to accomplish a desired force and/or motion transmission *Mechanism (biology), explaining how a feature is created *Mechanism (philosophy), a theory that a ...
associated with the latter earned
Craig C. Mello Craig Cameron Mello (born October 18, 1960) is an American biologist and professor of molecular medicine at the University of Massachusetts Medical School in Worcester, Massachusetts. He was awarded the 2006 Nobel Prize for Physiology or Medicine, ...
and Andrew Fire the 2006 Nobel Prize in Physiology or Medicine. Recent discoveries of ncRNAs have been achieved through both experimental and bioinformatic methods.


Biological roles

Noncoding RNAs belong to several groups and are involved in many cellular processes. These range from ncRNAs of central importance that are conserved across all or most cellular life through to more transient ncRNAs specific to one or a few closely related species. The more conserved ncRNAs are thought to be molecular fossils or relics from the last universal common ancestor and the RNA world, and their current roles remain mostly in regulation of information flow from DNA to protein.


In translation

Many of the conserved, essential and abundant ncRNAs are involved in translation. Ribonucleoprotein (RNP) particles called
ribosome Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
s are the 'factories' where translation takes place in the cell. The ribosome consists of more than 60% ribosomal RNA; these are made up of 3 ncRNAs in
prokaryotes A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
and 4 ncRNAs in
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
. Ribosomal RNAs catalyse the translation of nucleotide sequences to protein. Another set of ncRNAs,
Transfer RNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ac ...
s, form an 'adaptor molecule' between mRNA and protein. The H/ACA box and C/D box snoRNAs are ncRNAs found in archaea and eukaryotes. RNase MRP is restricted to eukaryotes. Both groups of ncRNA are involved in the maturation of rRNA. The snoRNAs guide covalent modifications of rRNA, tRNA and snRNAs; RNase MRP cleaves the
internal transcribed spacer 1 Internal transcribed spacer (ITS) is the spacer DNA situated between the small-subunit ribosomal RNA (rRNA) and large-subunit rRNA genes in the chromosome or the corresponding transcribed region in the polycistronic rRNA precursor transcript. I ...
between 18S and 5.8S rRNAs. The ubiquitous ncRNA, RNase P, is an evolutionary relative of RNase MRP. RNase P matures tRNA sequences by generating mature 5'-ends of tRNAs through cleaving the 5'-leader elements of precursor-tRNAs. Another ubiquitous RNP called SRP recognizes and transports specific nascent proteins to the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
in
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s and the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
in prokaryotes. In bacteria,
Transfer-messenger RNA Transfer-messenger RNA (abbreviated tmRNA, also known as 10Sa RNA and by its genetic name SsrA) is a bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties. The tmRNA forms a ribonucleoprotein complex (tmRNP) together with S ...
(tmRNA) is an RNP involved in rescuing stalled ribosomes, tagging incomplete polypeptides and promoting the degradation of aberrant mRNA.


In RNA splicing

In eukaryotes, the spliceosome performs the splicing reactions essential for removing
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene. ...
sequences, this process is required for the formation of mature mRNA. The spliceosome is another RNP often known as the snRNP or tri-snRNP. There are two different forms of the spliceosome, the major and minor forms. The ncRNA components of the major spliceosome are U1, U2, U4, U5, and U6. The ncRNA components of the minor spliceosome are U11, U12, U5, U4atac and U6atac. Another group of introns can catalyse their own removal from host transcripts; these are called self-splicing RNAs. There are two main groups of self-splicing RNAs: group I catalytic intron and
group II catalytic intron Group II introns are a large class of self-catalytic ribozymes and mobile genetic elements found within the genes of all three domains of life. Ribozyme activity (e.g., self- splicing) can occur under high-salt conditions ''in vitro''. However, ...
. These ncRNAs catalyze their own excision from mRNA, tRNA and rRNA precursors in a wide range of organisms. In mammals it has been found that snoRNAs can also regulate the
alternative splicing Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be ...
of mRNA, for example snoRNA HBII-52 regulates the splicing of serotonin receptor 2C. In nematodes, the SmY ncRNA appears to be involved in mRNA trans-splicing.


In DNA replication

Y RNA Y RNAs are small non-coding RNAs. They are components of the Ro60 ribonucleoprotein particle which is a target of autoimmune antibodies in patients with systemic lupus erythematosus. They are also reported to be necessary for DNA replication thro ...
s are stem loops, necessary for DNA replication through interactions with chromatin and initiation proteins (including the origin recognition complex). They are also components of the Ro60 ribonucleoprotein particle which is a target of autoimmune antibodies in patients with
systemic lupus erythematosus Lupus, technically known as systemic lupus erythematosus (SLE), is an autoimmune disease in which the body's immune system mistakenly attacks healthy tissue in many parts of the body. Symptoms vary among people and may be mild to severe. Comm ...
.


In gene regulation

The expression of many thousands of genes are regulated by ncRNAs. This regulation can occur in trans or in
cis Cis or cis- may refer to: Places * Cis, Trentino, in Italy * In Poland: ** Cis, Świętokrzyskie Voivodeship, south-central ** Cis, Warmian-Masurian Voivodeship, north Math, science and biology * cis (mathematics) (cis(''θ'')), a trigonome ...
. There is increasing evidence that a special type of ncRNAs called
enhancer RNAs Enhancer RNAs (eRNAs) represent a class of relatively long non-coding RNA molecules (50-2000 nucleotides) transcribed from the DNA sequence of enhancer regions. They were first detected in 2010 through the use of genome-wide techniques such as RN ...
, transcribed from the enhancer region of a gene, act to promote gene expression.


Trans-acting

In higher eukaryotes microRNAs regulate gene expression. A single miRNA can reduce the expression levels of hundreds of genes. The mechanism by which mature miRNA molecules act is through partial complementary to one or more messenger RNA (mRNA) molecules, generally in 3' UTRs. The main function of miRNAs is to down-regulate gene expression. The ncRNA RNase P has also been shown to influence gene expression. In the human nucleus, RNase P is required for the normal and efficient transcription of various ncRNAs transcribed by RNA polymerase III. These include tRNA,
5S rRNA The 5S ribosomal RNA (5S rRNA) is an approximately 120 nucleotide-long ribosomal RNA molecule with a mass of 40 kDa. It is a structural and functional component of the large subunit of the ribosome in all domains of life (bacteria, archaea, and e ...
, SRP RNA, and U6 snRNA genes. RNase P exerts its role in transcription through association with Pol III and chromatin of active tRNA and 5S rRNA genes. It has been shown that
7SK RNA In molecular biology 7SK is an abundant small nuclear RNA found in metazoans. It plays a role in regulating transcription by controlling the positive transcription elongation factor P-TEFb. 7SK is found in a small nuclear ribonucleoprotein c ...
, a metazoan ncRNA, acts as a negative regulator of the RNA polymerase II elongation factor P-TEFb, and that this activity is influenced by stress response pathways. The bacterial ncRNA, 6S RNA, specifically associates with RNA polymerase holoenzyme containing the sigma70 specificity factor. This interaction represses expression from a sigma70-dependent promoter during stationary phase. Another bacterial ncRNA,
OxyS RNA OxyS RNA is a small non-coding RNA which is induced in response to oxidative stress in ''Escherichia coli''. This RNA acts as a global regulator to activate or repress the expression of as many as 40 genes, by an antisense mechanism, including the ...
represses translation by binding to Shine-Dalgarno sequences thereby occluding ribosome binding. OxyS RNA is induced in response to oxidative stress in Escherichia coli. The B2 RNA is a small noncoding RNA polymerase III transcript that represses mRNA transcription in response to heat shock in mouse cells. B2 RNA inhibits transcription by binding to core Pol II. Through this interaction, B2 RNA assembles into preinitiation complexes at the promoter and blocks RNA synthesis. A recent study has shown that just the act of transcription of ncRNA sequence can have an influence on gene expression. RNA polymerase II transcription of ncRNAs is required for chromatin remodelling in the Schizosaccharomyces pombe. Chromatin is progressively converted to an open configuration, as several species of ncRNAs are transcribed.


Cis-acting

A number of ncRNAs are embedded in the 5' UTRs (Untranslated Regions) of protein coding genes and influence their expression in various ways. For example, a riboswitch can directly bind a small target molecule; the binding of the target affects the gene's activity. RNA leader sequences are found upstream of the first gene of amino acid biosynthetic operons. These RNA elements form one of two possible structures in regions encoding very short peptide sequences that are rich in the end product amino acid of the operon. A terminator structure forms when there is an excess of the regulatory amino acid and ribosome movement over the leader transcript is not impeded. When there is a deficiency of the charged tRNA of the regulatory amino acid the ribosome translating the leader peptide stalls and the antiterminator structure forms. This allows RNA polymerase to transcribe the operon. Known RNA leaders are Histidine operon leader, Leucine operon leader, Threonine operon leader and the
Tryptophan operon leader The Tryptophan operon leader is an RNA element found at the 5′ of some bacterial tryptophan operons. The leader sequence can form two different structures known as the terminator and the anti-terminator, based on the Tryptophan amounts in the ...
. Iron response elements (IRE) are bound by iron response proteins (IRP). The IRE is found in UTRs of various mRNAs whose products are involved in iron metabolism. When iron concentration is low, IRPs bind the ferritin mRNA IRE leading to translation repression. Internal ribosome entry sites (IRES) are RNA structures that allow for translation initiation in the middle of a mRNA sequence as part of the process of
protein synthesis Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside Cell (biology), cells, homeostasis, balancing the loss of cellular proteins (via Proteolysis, degradation or Protein targeting, export) through the product ...
.


In genome defense

Piwi-interacting RNAs (piRNAs) expressed in
mammal Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur or ...
ian testes and
somatic cell A somatic cell (from Ancient Greek σῶμα ''sôma'', meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Such cells compo ...
s form RNA-protein complexes with Piwi proteins. These piRNA complexes (piRCs) have been linked to transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, particularly those in
spermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubule ...
. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are repeats found in the DNA of many bacteria and
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
. The repeats are separated by spacers of similar length. It has been demonstrated that these spacers can be derived from phage and subsequently help protect the cell from infection.


Chromosome structure

Telomerase is an RNP enzyme that adds specific DNA sequence repeats ("TTAGGG" in vertebrates) to telomeric regions, which are found at the ends of eukaryotic chromosomes. The telomeres contain condensed DNA material, giving stability to the chromosomes. The enzyme is a
reverse transcriptase A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, ...
that carries
Telomerase RNA Telomerase RNA component, also known as TR, TER or TERC, is an ncRNA found in eukaryotes that is a component of telomerase, the enzyme used to extend telomeres. TERC serves as a template for telomere replication (reverse transcription) by tel ...
, which is used as a template when it elongates telomeres, which are shortened after each replication cycle. Xist (X-inactive-specific transcript) is a long ncRNA gene on the X chromosome of the placental mammals that acts as major effector of the X chromosome inactivation process forming
Barr bodies A Barr body (named after discoverer Murray Barr) or X-chromatin is an inactive X chromosome in a cell with more than one X chromosome, rendered inactive in a process called lyonization, in species with XY sex-determination (including humans ...
. An
antisense RNA Antisense RNA (asRNA), also referred to as antisense transcript, natural antisense transcript (NAT) or antisense oligonucleotide, is a single stranded RNA that is complementary to a protein coding messenger RNA (mRNA) with which it hybridizes, and ...
,
Tsix Tsix is a non-coding RNA gene that is antisense to the Xist RNA. Tsix binds Xist during X chromosome inactivation. The name Tsix comes from the reverse of Xist, which stands for X-inactive specific transcript. Background Female mammals have ...
, is a negative regulator of Xist. X chromosomes lacking Tsix expression (and thus having high levels of Xist transcription) are inactivated more frequently than normal chromosomes. In drosophilids, which also use an XY sex-determination system, the roX (RNA on the X) RNAs are involved in dosage compensation. Both Xist and roX operate by
epigenetic In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are "o ...
regulation of transcription through the recruitment of
histone-modifying enzymes Histone-modifying enzymes are enzymes involved in the modification of histone substrates after protein translation and affect cellular processes including gene expression. To safely store the eukaryotic genome, DNA is wrapped around four core hi ...
.


Bifunctional RNA

''Bifunctional RNAs'', or ''dual-function RNAs'', are RNAs that have two distinct functions. The majority of the known bifunctional RNAs are mRNAs that encode both a protein and ncRNAs. However, a growing number of ncRNAs fall into two different ncRNA categories; e.g., H/ACA box snoRNA and miRNA. Two well known examples of bifunctional RNAs are
SgrS RNA SgrS (sugar transport-related sRNA, previously named ryaA) is a 227 nucleotide small RNA that is activated by SgrR in ''Escherichia coli'' during glucose-phosphate stress. The nature of glucose-phosphate stress is not fully understood, but is cor ...
and
RNAIII RNAIII is a stable 514 nt regulatory RNA transcribed by the P3 promoter of the '' Staphylococcus aureus'' quorum-sensing '' agr'' system ). It is the major effector of the ''agr'' regulon, which controls the expression of many '' S. aureus'' gene ...
. However, a handful of other bifunctional RNAs are known to exist (e.g., steroid receptor activator/SRA, VegT RNA, Oskar RNA, ENOD40, p53 RNA and SR1 RNA. Bifunctional RNAs have recently been the subject of a special issue of
Biochimie ''Biochimie'' is a monthly peer-reviewed scientific journal covering the fields of biochemistry, biophysics, and molecular biology. It is published by Elsevier on behalf of the . All articles are currently in English; previously articles in French ...
.


As a hormone

There is an important link between certain non-coding RNAs and the control of hormone-regulated pathways. In '' Drosophila'', hormones such as
ecdysone Ecdysone is a prohormone of the major insect molting hormone 20-hydroxyecdysone, which is secreted from the prothoracic glands. It is of steroidal structure. Insect molting hormones (ecdysone and its homologues) are generally called ecdysteroids. ...
and juvenile hormone can promote the expression of certain miRNAs. Furthermore, this regulation occurs at distinct temporal points within ''Caenorhabditis elegans'' development. In mammals, miR-206 is a crucial regulator of estrogen-receptor-alpha. Non-coding RNAs are crucial in the development of several endocrine organs, as well as in endocrine diseases such as diabetes mellitus. Specifically in the MCF-7 cell line, addition of 17β- estradiol increased global transcription of the noncoding RNAs called lncRNAs near estrogen-activated coding genes.


In pathogenic avoidance

''
C. elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (r ...
'' was shown to learn and inherit
pathogenic In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
avoidance after exposure to a single non-coding RNA of a
bacterial pathogen Pathogenic bacteria are bacteria that can cause disease. This article focuses on the bacteria that are pathogenic to humans. Most species of bacteria are harmless and are often beneficial but others can cause infectious diseases. The number of ...
.


Roles in disease

As with proteins, mutations or imbalances in the ncRNA repertoire within the body can cause a variety of diseases.


Cancer

Many ncRNAs show abnormal expression patterns in cancerous tissues. These include miRNAs, long mRNA-like ncRNAs, GAS5, SNORD50,
telomerase RNA Telomerase RNA component, also known as TR, TER or TERC, is an ncRNA found in eukaryotes that is a component of telomerase, the enzyme used to extend telomeres. TERC serves as a template for telomere replication (reverse transcription) by tel ...
and
Y RNA Y RNAs are small non-coding RNAs. They are components of the Ro60 ribonucleoprotein particle which is a target of autoimmune antibodies in patients with systemic lupus erythematosus. They are also reported to be necessary for DNA replication thro ...
s. The miRNAs are involved in the large scale regulation of many protein coding genes, the Y RNAs are important for the initiation of DNA replication, telomerase RNA that serves as a primer for telomerase, an RNP that extends telomeric regions at chromosome ends (see telomeres and disease for more information). The direct function of the long mRNA-like ncRNAs is less clear.
Germ-line In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. Th ...
mutations in miR-16-1 and miR-15 primary precursors have been shown to be much more frequent in patients with
chronic lymphocytic leukemia Chronic lymphocytic leukemia (CLL) is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell). Early on, there are typically no symptoms. Later, non-painful lymph node swelling, feeling tired, fever, nigh ...
compared to control populations. It has been suggested that a rare SNP ( rs11614913) that overlaps hsa-mir-196a-2 has been found to be associated with non-small cell lung carcinoma. Likewise, a screen of 17 miRNAs that have been predicted to regulate a number of breast cancer associated genes found variations in the microRNAs miR-17 and miR-30c-1of patients; these patients were noncarriers of BRCA1 or
BRCA2 ''BRCA2'' and BRCA2 () are a human gene and its protein product, respectively. The official symbol (BRCA2, italic for the gene, nonitalic for the protein) and the official name (originally breast cancer 2; currently BRCA2, DNA repair associated) ...
mutations, lending the possibility that familial breast cancer may be caused by variation in these miRNAs. The p53 tumor suppressor is arguably the most important agent in preventing tumor formation and progression. The p53 protein functions as a transcription factor with a crucial role in orchestrating the cellular stress response. In addition to its crucial role in cancer, p53 has been implicated in other diseases including diabetes, cell death after ischemia, and various neurodegenerative diseases such as Huntington, Parkinson, and Alzheimer. Studies have suggested that p53 expression is subject to regulation by non-coding RNA. Another example of non-coding RNA dysregulated in cancer cells is the long non-coding RNA Linc00707. Linc00707 is upregulated and sponges miRNAs in human bone marrow-derived mesenchymal stem cells, in hepatocellular carcinoma, gastric cancer or breast cancer, and thus promotes osteogenesis, contributes to hepatocellular carcinoma progression, promotes proliferation and metastasis, or indirectly regulates expression of proteins involved in cancer aggressiveness, respectively.


Prader–Willi syndrome

The deletion of the 48 copies of the C/D box snoRNA
SNORD116 In molecular biology, SNORD116 (also known as HBII-85) is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryo ...
has been shown to be the primary cause of Prader–Willi syndrome. Prader–Willi is a developmental disorder associated with over-eating and learning difficulties. SNORD116 has potential target sites within a number of protein-coding genes, and could have a role in regulating alternative splicing.


Autism

The chromosomal locus containing the
small nucleolar RNA SNORD115 In molecular biology, SNORD115 (also known as HBII-52) is a non-coding RNA (ncRNA) molecule known as a small nucleolar RNA which usually functions in guiding the modification of other non-coding RNAs. This type of modifying RNA is usually located ...
gene cluster has been duplicated in approximately 5% of individuals with
autistic traits The autism spectrum, often referred to as just autism or in the context of a professional diagnosis autism spectrum disorder (ASD) or autism spectrum condition (ASC), is a neurodevelopmental condition (or conditions) characterized by difficulti ...
. A mouse model engineered to have a duplication of the SNORD115 cluster displays autistic-like behaviour. A recent small study of post-mortem brain tissue demonstrated altered expression of long non-coding RNAs in the prefrontal cortex and cerebellum of autistic brains as compared to controls.


Cartilage–hair hypoplasia

Mutations within RNase MRP have been shown to cause cartilage–hair hypoplasia, a disease associated with an array of symptoms such as short stature, sparse hair, skeletal abnormalities and a suppressed immune system that is frequent among Amish and Finnish. The best characterised variant is an A-to-G transition at nucleotide 70 that is in a loop region two bases 5' of a conserved
pseudoknot __NOTOC__ A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem. The pseudoknot was first recognized in the turnip yellow ...
. However, many other mutations within RNase MRP also cause CHH.


Alzheimer's disease

The antisense RNA,
BACE1-AS ''BACE1-AS'', also known as BACE1 antisense RNA ( non-protein coding), is a human gene at 11q23.3 encoding a long noncoding RNA molecule. It is transcribed from the opposite strand to ''BACE1'' and is upregulated in patients with Alzheimer's dis ...
is transcribed from the opposite strand to BACE1 and is upregulated in patients with
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
. BACE1-AS regulates the expression of BACE1 by increasing BACE1 mRNA stability and generating additional BACE1 through a post-transcriptional feed-forward mechanism. By the same mechanism it also raises concentrations of beta amyloid, the main constituent of senile plaques. BACE1-AS concentrations are elevated in subjects with Alzheimer's disease and in amyloid precursor protein transgenic mice.


miR-96 and hearing loss

Variation within the seed region of mature miR-96 has been associated with
autosomal dominant In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
, progressive hearing loss in humans and mice. The homozygous mutant mice were profoundly deaf, showing no cochlear responses. Heterozygous mice and humans progressively lose the ability to hear.


Mitochondrial transfer RNAs

A number of mutations within mitochondrial tRNAs have been linked to diseases such as MELAS syndrome, MERRF syndrome, and chronic progressive external ophthalmoplegia.


Distinction between functional RNA (fRNA) and ncRNA

Scientists have started to distinguish ''functional RNA'' (''fRNA'') from ncRNA, to describe regions functional at the RNA level that may or may not be stand-alone RNA transcripts. This implies that fRNA (such as riboswitches, SECIS elements, and other cis-regulatory regions) is not ncRNA. Yet fRNA could also include mRNA, as this is RNA coding for protein, and hence is functional. Additionally artificially evolved RNAs also fall under the fRNA umbrella term. Some publications state that ''ncRNA'' and ''fRNA'' are nearly synonymous, however others have pointed out that a large proportion of annotated ncRNAs likely have no function. It also has been suggested to simply use the term ''RNA'', since the distinction from a protein coding RNA (
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the p ...
) is already given by the qualifier ''mRNA''. This eliminates the ambiguity when addressing a gene "encoding a non-coding" RNA. Besides, there may be a number of ncRNAs that are misannoted in published literature and datasets.


See also

* Extracellular RNA * List of RNAs * Nucleic acid structure *
Rfam Rfam is a database containing information about non-coding RNA (ncRNA) families and other structured RNA elements. It is an annotated, open access database originally developed at the Wellcome Trust Sanger Institute in collaboration with Janel ...
* Riboswitch * Ribozyme * RNAs present in environmental samples * VA (viral associated) RNA


References


External links


Comprehensive database of mammalian ncRNAs
( Wayback Machine copy)
The Rfam Database
— a curated list of hundreds of families of related ncRNAs
NONCODE.org
— a free database of all kinds of noncoding RNAs (except tRNAs and rRNAs)
RNAcon
Prediction and classification of ncRN
BMC Genomics 2014, 15:127

ENCODE threads explorer
Non-coding RNA characterization. Nature (journal)
The Non-coding RNA Databases Resource (NRDR)
— a curated source of data related to over non-coding RNA databases available over the internet
DASHR
- a database of small non-coding RNA
Bioinformatics 2018
{{DEFAULTSORT:Non-Coding Rna RNA Molecular genetics