KCNB1
   HOME

TheInfoList



OR:

Potassium voltage-gated channel, Shab-related subfamily, member 1, also known as KCNB1 or Kv2.1, is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
that, in humans, is encoded by the ''KCNB1''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
. Potassium voltage-gated channel subfamily B member one, or simply known as KCNB1, is a delayed rectifier and
voltage-gated potassium channel Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized ce ...
found throughout the body. The channel has a diverse number of functions. However, its main function, as a delayed rectifier, is to propagate current in its respective location. It is commonly expressed in the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all par ...
, but may also be found in
pulmonary arteries A pulmonary artery is an artery in the pulmonary circulation that carries deoxygenated blood from the right side of the heart to the lungs. The largest pulmonary artery is the ''main pulmonary artery'' or ''pulmonary trunk'' from the heart, and ...
, auditory outer hair cells,
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type o ...
s, the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
, and organs such as the
heart The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide t ...
and
pancreas The pancreas is an organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine gland, i.e. it has both an end ...
. Modulation of K+ channel activity and expression has been found to be at the crux of many profound pathophysiological disorders in several cell types. Potassium channels are among the most diverse of all ion channels in eukaryotes. With over 100 genes coding numerous functions, many
isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some isof ...
of potassium channels are present in the body, but most are divided up into two main groups: inactivating transient channels and non-inactivating delayed rectifiers. Due to the multiple varied forms, potassium delayed rectifier channels open or close in response to a myriad of signals. These include: cell
depolarization In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is esse ...
or hyperpolarization, increases in intracellular calcium concentrations, neurotransmitter binding, or second messenger activity such as
G-proteins G proteins, also known as guanine nucleotide-binding proteins, are a family of proteins that act as molecular switches inside cells, and are involved in transmitting signals from a variety of stimuli outside a cell to its interior. Their ac ...
or
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
s.


Structure

The general structure of all potassium channels contain a centered pore composed of alpha subunits with a pore loop expressed by a segment of conserved DNA, T/SxxTxGxG. This general sequence comprises the selectivity of the potassium channel. Depending on the channel, the alpha subunits are constructed in either a homo- or hetero-association, creating a 4-subunit selectivity pore or a 2-subunit pore, each with accessory beta subunits attached intracellularly. Also on the cytoplasmic side are the N- and C- termini, which play a crucial role in activating and deactivating KCNB1 channels. This pore creates the main opening of the channel where potassium ions flow through. The type of pore domain (number of subunits) determines if the channel has the typical 6
transmembrane A transmembrane protein (TP) is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequentl ...
(protein) spanning regions, or the less dominant inward rectifier type of only 2 regions. KCNB1 has 6TM labeled S1-S6, each with a tetrameric structure. S5 and S6 create the p-loop, while S4 is the location of the voltage sensor. S4, along with S2 and S3 create the ‘activating’ portions of the delayed rectifier channel. The heteromeric complexes that contain the distinct pore are electrically inactive or non-conducting, but unlike other potassium families, the pore of the KCNB1 group has numerous phosphorylation sites allowing kinase activity. Maturing KCNB1 channels develop these phosphorylation sites within the channel pore, but lack a glycosylation stage in the
N-terminus The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
. Specifically, the KCNB1 delayed rectifier channel conducts a potassium current (K+). This mediates high frequency firing due to the
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
sites located within the channel via kinases and a major calcium influx typical of all neurons.


Kinetics

The kinetics surrounding the activation and deactivation of the KCNB1 channel is relatively unknown, and has been under considerable study. Three of the six transmembrane regions, S2, S3 and S4, contribute to the activation phase of the channel. Upon depolarization, the S4 region, which is positively charged, is moved in response to the subsequent positive charge of the depolarization. As a result of S4 movement, the negatively charged regions of S2 and S3 appear to move as well. The movement of these regions causes an opening of the channel gate within regions of S5 and S6. The intracellular regions of the C and N-terminus also play a crucial role in the activation kinetics of the channel. The two termini interact with one other, as the C-terminus folds around the N-terminus during channel activation. The relative movement between the N- and C- termini greatly aids in producing a conformational change of the channel necessary for channel opening. This interaction between these intracellular regions is believed to be linked with membrane-spanning regions of S1 and S6, and thus aid in the movement of S2, S3, and S4 in opening the channel. Studies on selective mutations knocking out these intracellular termini have been shown to produce larger reductions in speed and probability of channel opening, which indicates their importance in channel activation.


Function

Voltage-gated potassium ( Kv) channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Delayed rectifier potassium channels’ most prevalent role is in the falling phase of physiological
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
s. KCNB1 rectifiers are also important in forming the cardiac beat and rate synchronicity that exists within the heart, and the lysis of target molecules in the immune response. These channels can also act as effectors in downstream signaling in
G-protein coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of protein family, evolution ...
transduction. KCNB1's regulation and propagation of current provides a means for regulatory control over several physiological functions. Their diverse functions include regulating
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
release,
heart rate Heart rate (or pulse rate) is the frequency of the heartbeat measured by the number of contractions (beats) of the heart per minute (bpm). The heart rate can vary according to the body's physical needs, including the need to absorb oxygen and excr ...
,
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism o ...
secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
. Voltage-gated potassium channels are essential in regulating neuronal
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
, and in contributing to action potential production and firing. In mammalian CNS neurons, KCNB1 is a predominant delayed rectifier potassium current that regulates neuronal excitability, action potential duration, and tonic spiking. This is necessary when it comes to proper neurotransmitter release, as such release is dependent on membrane potential. In mouse cardiomyocytes, KCNB1 channel is the molecular substrate of major repolarization current IK-slow2.
Transgenic A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the ...
mice, expressing a
dominant-negative Hermann J. Muller (1890–1967), who was a 1946 Nobel Prize winner, coined the terms amorph, hypomorph, hypermorph, antimorph and neomorph to classify mutations based on their behaviour in various genetic situations, as well as gene interac ...
isoform of KCNB1, exhibit markedly prolonged
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
s and demonstrate
arrhythmia Arrhythmias, also known as cardiac arrhythmias, heart arrhythmias, or dysrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. A resting heart rate that is too fast – above 100 beats per minute in adults ...
. KCNB1 also contributes to the function and regulation of smooth muscle fibers. Human studies on pulmonary arteries have shown that normal, physiological inhibition of KCNB1 current aids
vasoconstriction Vasoconstriction is the narrowing of the blood vessels resulting from contraction of the muscular wall of the vessels, in particular the large arteries and small arterioles. The process is the opposite of vasodilation, the widening of blood vessel ...
of arteries. In human pancreatic ß cells, KCNB1, which mediates potassium efflux, produces a downstroke of the action potential in the cell. In effect, this behavior halts insulin secretion, as its activation decreases the Cav channel-mediated calcium influx that is necessary for insulin exocytosis. KCNB1 has also been found to promote apoptosis within neuronal cells. It is currently believed that KCNB1-induced apoptosis occurs in response to an increase in
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS) that results either from acute oxidation or as a consequence of other cellular stresses.


Regulation

KCNB1 conductance is regulated primarily by
oligomer In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
ization and
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
. Additional forms of regulation include
SUMOylation In molecular biology, SUMO (Small Ubiquitin-like Modifier) proteins are a family of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. This process is called SUMOylation (sometimes w ...
and
acetylation : In organic chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed ''acetate esters'' or simply '' acetates''. Deacetylation is the oppo ...
, although the direct effect of these modifications is still under investigation. KCNB1 consensus sites in the N-terminus are not subject to
glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not al ...
.


Phosphorylation

Many proteins undergo phosphorylation, or the addition of phosphate groups to
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s subunits. Phosphorylation is modulated by
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
s, which add phosphate groups, and
phosphatase In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid Ester, monoester into a phosphate ion and an Alcohol (chemistry), alcohol. Because a phosphatase enzyme catalysis, catalyzes the hydrolysis of its Substrate ...
s, which remove phosphate groups. In its phosphorylated state, KCNB1 is a poor conductor of current. There are 16 phosphorylation sites that are subject to the activity of kinases, such as
cyclin-dependent kinase 5 Cyclin-dependent kinase 5 is a protein, and more specifically an enzyme, that is encoded by the Cdk5 gene. It was discovered 15 years ago, and it is saliently expressed in post-mitotic central nervous system neurons (CNS). The molecule belongs ...
and
AMP-activated protein kinase 5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme (EC 2.7.11.31) that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cell ...
. These sites are reversibly regulated by phosphatases such as, phosphatase
calcineurin Calcineurin (CaN) is a calcium and calmodulin dependent serine/threonine protein phosphatase (also known as protein phosphatase 3, and calcium-dependent serine-threonine phosphatase). It activates the T cells of the immune system and can be bloc ...
. Under periods of high electrical activity, depolarization of the neuron increases calcium influx and triggers phosphatase activity. Under resting conditions, KCNB1 tends to be phosphorylated. Phosphorylation raises the threshold voltage requirement for activation and allows microdomains to bind the channel, preventing KCNB1 from entering the plasma membrane. Microdomains localize KCNB1 in dendrites in cell bodies of hippocampal and cortical neurons. Conductance associated with de-phosphorylation of this channel acts to decrease or end periods high excitability. However, this relationship is not static and is cell dependent. The role of phosphorylation can be affected by reactive oxygen species (ROS) that increase during oxidative stress. ROS act to increase the levels of zinc (Zn2+) and calcium (Ca2+) intracellularly that act with protein kinases to phosphorylate certain sites on KCNB1. This phosphorylation increases the insertion of KCNB1 into the membrane and elevates conductance. Under these conditions the interaction with SNARE protein
syntaxin Syntaxins are a family of membrane integrated Q-SNARE proteins participating in exocytosis. Domains Syntaxins possess a single C-terminal transmembrane domain, a SNARE domain (known as H3), and an N-terminal regulatory domain (Habc). Syntaxin ...
, is enhanced. This surge of KCNB1 current induces activation of a pro-apoptotic pathway, DNA fragmentation, and caspase activation.


Oligomerization

Another proposed mechanism for regulation of apoptosis is oligomerization, or the process of forming multi-protein complexes held together through
disulfide bonds In biochemistry, a disulfide (or disulphide in British English) refers to a functional group with the structure . The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In ...
. Under oxidative stress,
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS) form and act to regulate KCNB1 through oxidation. Increase in oxygen radicals directly causes formation of KCNB1 oligomers that then accumulate in the plasma membrane and initially decrease current flow. Oligomer activation of c-Src and JNK kinases induces the initial pro-apoptotic signal, which is coupled to KCNB1 current. This further promotes the apoptosis pathway. KCNB1 oligomers have been detected in the post mortem human hippocampus


Blockers

Potassium delayed rectifiers have been implicated in many pharmacological uses in the investigation of biological toxins for drug development. A main component to many of the toxins with negative effects on delayed rectifiers contain
cystine Cystine is the oxidized derivative of the amino acid cysteine and has the formula (SCH2CH(NH2)CO2H)2. It is a white solid that is poorly soluble in water. As a residue in proteins, cystine serves two functions: a site of redox reactions and a me ...
inhibitors that are arranged around
disulfide bond In biochemistry, a disulfide (or disulphide in British English) refers to a functional group with the structure . The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In ...
formations. Many of these toxins originate from species of tarantulas. ''G. spatulata'' produces the
hanatoxin Hanatoxin is a toxin found in the venom of the '' Grammostola spatulata'' tarantula. The toxin is mostly known for inhibiting the activation of voltage-gated potassium channels, most specifically Kv4.2 and Kv2.1, by raising its activation thresh ...
, which was the first drug to be manipulated to interact with KCNB1 receptors by inhibiting the activation of most potassium voltage-gated channels. Other toxins, such as
stromatoxin Stromatoxin is a spider toxin that blocks certain delayed-rectifier and A-type voltage-gated potassium channels. Etymology Stromatoxin was first identified in the venom of the African tarantula ''Stromatopelma calceatum'' (the featherleg baboon s ...
, heteroscordratoxin, and
guangxitoxin Guangxitoxin, also known as GxTX, is a peptide toxin found in the venom of the tarantula '' Plesiophrictus guangxiensis''. It primarily inhibits outward voltage-gated Kv2.1 potassium channel currents, which are prominently expressed in pancreati ...
, target the selectivity of voltage KCNB1 rectifiers, by either lowering potassium binding affinity or increasing the binding rate of potassium. This can lead to
excitotoxicity In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate re ...
, or overstimulation of postsynaptic neurons. In nature, the prey of tarantula that are injected with these endogenous toxins induces this excitotoxic effect, producing paralysis for easy capture. Physiologically, these venoms work on KCNB1 rectifier affinity by altering the channels’ voltage sensor, making it more or less sensitive to extracellular potassium concentrations. KCNB1 is also susceptible to
tetraethylammonium Tetraethylammonium (TEA), () or (Et4N+) is a quaternary ammonium cation consisting of four ethyl groups attached to a central nitrogen atom, and is positively charged. It is a counterion used in the research laboratory to prepare lipophilic salts ...
(TEA) and 4-aminopyridine (4-AP), which completely block all channel activity. TEA also works on calcium-activated potassium channels, furthering its inhibitory effects on neurons and skeletal muscle. Some isoforms of TEA are beneficial for patients with severe
Alzheimer's Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As t ...
, as blocking KCNB1 channels reduces the amount of neuronal apoptosis, thereby slowing the rate of dementia. This has been attributed to the oxidative properties of the channel by ROS.


Physiological Role in Disease


Neurodegenerative Disease

Oxidative damage is widely considered to play a role in neurodegenerative disorders, including
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
. Such oxidative stress alters the redox sensitivity of the Kv2.1 delayed rectifier, resulting in the modulation of the channel. ''In vitro'' studies and studies in animal models show that when KCNB1 is oxidized, it no longer conducts, leading to neurons becoming hyperpolarized and dying; oxidized KCNB1 also clusters in
lipid raft The plasma membranes of cells contain combinations of glycosphingolipids, cholesterol and protein receptors organised in glycolipoprotein lipid microdomains termed lipid rafts. Their existence in cellular membranes remains somewhat controversial. ...
s and cannot be internalized, which also leads to apoptosis. These alterations disrupt normal neuronal signaling and increase the likelihood of neurological diseases. Oxidized (oligomerized) KCNB1 channels are present in the hippocampi of old (Braak stage 1-2) and Alzheimer's disease (Braak stage 5) donors of either sexes As indicated earlier, oxidative and nitrosative injurious stimuli also activate a cell death-inducing cascade that promotes to a zinc and calcium/clamodulin-dependent interaction between syntaxin and Kv2.1, leading to the pro-apoptotic insertion of additional potassium channels into the plasma membrane. These new population of channels aid in the loss of intracellular potassium, creating a permissive environment for protease and nuclease activation in injured neurons. Agents that interfere with the Kv2.1/syntaxin interaction are highly neuroprotective in acute ischemic injury models (stroke) Increased probability of the channel remaining open can also potentially drive neurodegeneration. Human immunodeficiency virus type-1 (HIV-1)-associated dementia (HAD) may be driven by an overabundance of
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
, which in turn can trigger increased calcium levels, which in turn can drive calcium-dependent dephosphorylation of KCNB1 channels, which increases probability of channel activation and current conductance. Enhanced KCNB1 current couples cell shrinkage associated with apoptosis and dendritic beading leading to diminished
long term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neuron ...
. These neuronal modifications may explain the atrophy of cell layer volume and late stage cell death observed in HAD disease.


Cancer

Exploitation of this channel is advantageous in cancer cell survival as they have the ability to produce heme oxygenase-1, an enzyme with the ability to generate carbon monoxide (CO). Oncogenic cells benefit from producing CO due to the antagonizing effects of the KCNB1 channel. Inhibition of KCNB1 allows cancer proliferation without the apoptotic pathway preventing tumor formation. Although potassium channels are studied as a therapeutic target for cancer, this apoptotic regulation is dependent on cancer type, potassium channel type, expression levels, intracellular localization as well as regulation by pro- or anti-apoptotic factors.


Interactions

KCNB1 has been shown to
interact Advocates for Informed Choice, dba interACT or interACT Advocates for Intersex Youth, is a 501(c)(3) nonprofit organization using innovative strategies to advocate for the legal and human rights of children with intersex traits. The organizati ...
with: *
KCNH1 Potassium voltage-gated channel subfamily H member 1 is a protein that in humans is encoded by the ''KCNH1'' gene. Voltage-gated potassium (Kv) channels represent the most complex class of voltage-gated ion channels from both functional and struct ...
, and *
PTPRE Receptor-type tyrosine-protein phosphatase epsilon is an enzyme that in humans is encoded by the ''PTPRE'' gene. Function The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signa ...
.


See also

*
Voltage-gated potassium channel Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized ce ...
*
Guangxitoxin Guangxitoxin, also known as GxTX, is a peptide toxin found in the venom of the tarantula '' Plesiophrictus guangxiensis''. It primarily inhibits outward voltage-gated Kv2.1 potassium channel currents, which are prominently expressed in pancreati ...


References


Further reading

* * * * * * * * * * * * * *


External links

* * {{Ion channels, g3 Ion channels