Epitaxy refers to a type of crystal growth or material deposition in which new
crystal
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epitaxial film or epitaxial layer. The relative orientation(s) of the epitaxial layer to the seed layer is defined in terms of the orientation of the crystal lattice of each material. For most epitaxial growths, the new layer is usually crystalline and each crystallographic domain of the overlayer must have a well-defined orientation relative to the substrate crystal structure. Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films.
For most technological applications, single domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred. Epitaxy can also play an important role while growing superlattice structures.
The term ''epitaxy'' comes from the
Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
roots ''epi'' (ἐπί), meaning "above", and ''taxis'' (τάξις), meaning "an ordered manner".
One of the main commercial applications of epitaxial growth is in the semiconductor industry, where semiconductor films are grown epitaxially on semiconductor substrate wafers.
For the case of epitaxial growth of a planar film atop a substrate wafer, the epitaxial film's lattice will have a specific orientation relative to the substrate wafer's crystalline lattice such as the
01Miller index
Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices.
In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers ''h'', ''k'', and '' ...
of the film aligning with the
01index of the substrate. In the simplest case, the epitaxial layer can be a continuation of the same exact semiconductor compound as the substrate; this is referred to as homoepitaxy. Otherwise, the epitaxial layer will be composed of a different compound; this is referred to as heteroepitaxy.
Types
Homoepitaxy is a kind of epitaxy performed with only one material, in which a crystalline film is grown on a substrate or film of the same material. This technology is often used to grow a film which is more pure than the substrate and to fabricate layers having different
doping levels. In academic literature, homoepitaxy is often abbreviated to "homoepi".
Homotopotaxy is a process similar to homoepitaxy except that the thin-film growth is not limited to two-dimensional growth. Here the substrate is the thin-film material.
Heteroepitaxy is a kind of epitaxy performed with materials that are different from each other. In heteroepitaxy, a crystalline film grows on a crystalline substrate or film of a different material. This technology is often used to grow crystalline films of materials for which crystals cannot otherwise be obtained and to fabricate integrated crystalline layers of different materials. Examples include
silicon on sapphire
Silicon on sapphire (SOS) is a hetero-epitaxial process for metal-oxide-semiconductor (MOS) integrated circuit (IC) manufacturing that consists of a thin layer (typically thinner than 0.6 µm) of silicon grown on a sapphire (Al2O3) wafer. ...
,
gallium nitride
Gallium nitride () is a binary III/ V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it ...
(GaN) on
sapphire
Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, chromium, vanadium, or magnesium. The name sapphire is derived via the Latin "sapphir ...
,
aluminium gallium indium phosphide
Aluminium gallium indium phosphide (, also AlInGaP, InGaAlP, GaInP, etc.) is a semiconductor material that provides a platform for the development of novel multi-junction photovoltaics and optoelectronic devices, as it spans a direct bandgap fro ...
(AlGaInP) on
gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
(GaAs) or diamond or
iridium
Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal (after osmium) with a density of ...
, and
graphene
Graphene () is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. on
hexagonal boron nitride
Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal ...
(hBN).
Heteroepitaxy occurs when a film of different composition and/or crystal structure than the substrate is grown. In this case, the amount of strain in the film is determined by the ''lattice mismatch'' Ԑ:
Where
and
are the
lattice constant
A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal. A simple cubic crystal has o ...
s of the film and the substrate. The film and substrate could have similar lattice spacings but also have very different thermal expansion coefficients. If a film is then grown at a high temperature, then it can experience large strains upon cooling to room temperature. In reality,
is necessary for obtaining epitaxy. If
is larger than that, the film experiences a volumetric strain that builds with each layer until a critical thickness. With increased thickness the elastic strain in the film is relieved by the formation of dislocations which can become scattering centers that damage the quality of the structure. Heteroepitaxy is commonly used to create so-called
bandgap
In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
systems thanks to the additional energy caused by de deformation. A very popular system with a great potential for microelectronic applications is that of Si–Ge.
Heterotopotaxy is a process similar to heteroepitaxy except that thin-film growth is not limited to two-dimensional growth; the substrate is similar only in structure to the thin-film material.
Pendeo-epitaxy is a process in which the heteroepitaxial film is growing vertically and laterally at the same time.
In 2D crystal heterostructure, graphene nanoribbons embedded in hexagonal boron nitride give an example of pendeo-epitaxy.
Grain-to-grain epitaxy involves epitaxial growth between the grains of a multicrystalline epitaxial and seed layer.
This can usually occur when the seed layer only has an out-of-plane texture but no in-plane texture. In such a case, the seed layer consists of grains with different in-plane textures. The epitaxial overlayer then creates specific textures along each grain of the seed layer, due to lattice matching. This kind of epitaxial growth doesn't involve single-crystal films.
Epitaxy is used in
silicon
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
-based manufacturing processes for
bipolar junction transistor
A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor, uses only one kind of charge carrier. A bipolar ...
s (BJTs) and modern
complementary metal–oxide–semiconductors (CMOS), but it is particularly important for
compound semiconductor
Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way.
Because of ...
s such as
gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
. Manufacturing issues include control of the amount and uniformity of the deposition's resistivity and thickness, the cleanliness and purity of the surface and the chamber atmosphere, the prevention of the typically much more highly doped substrate wafer's diffusion of dopant to the new layers, imperfections of the growth process, and protecting the surfaces during manufacture and handling.
Mechanism
Near thermodynamic equilibrium (low
adatom
An adatom is an atom that lies on a crystal surface, and can be thought of as the opposite of a surface vacancy. This term is used in surface chemistry and epitaxy, when describing single atoms lying on surfaces and surface roughness. The word ...
supersaturation), the mechanism of epitaxial growth is classified into three primary growth modes-- Volmer–Weber (VW),
Frank–van der Merwe (FM) and
Stranski–Krastanov (SK).
In the VW growth regime, the epitaxial film grows out of 3D nuclei on the growth surface. In this mode, the adsorbate-adsorbate interactions are stronger than adsorbate-surface interactions, which leads to island formation by local nucleation and the epitaxial layer is formed when the islands join with each other.
In the FM growth mode, adsorbate-surface and adsorbate-adsorbate interactions are balanced, which promotes 2D layer-by-layer or step-flow epitaxial growth.
The SK mode is a combination of VW and FM modes. In this mechanism, the growth initiates in the FM mode, forming 2D layers, but after reaching a critical thickness, enters a VW-like 3D island growth regime.
Practical epitaxial growth, however, takes place in a high supersaturation regime, away from thermodynamic equilibrium. In that case, the epitaxial growth is governed by adatom kinetics rather than thermodynamics, and 2D step-flow growth becomes dominant.
Methods
Vapor-phase
Homoepitaxial growth of semiconductor thin films are generally done by
chemical
A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., wi ...
or
physical vapor deposition
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polym ...
methods that deliver the precursors to the substrate in gaseous state. For example, silicon is most commonly deposited from
silicon tetrachloride
Silicon tetrachloride or tetrachlorosilane is the inorganic compound with the formula SiCl4. It is a colourless volatile liquid that fumes in air. It is used to produce high purity silicon and silica for commercial applications.
Preparation
Silic ...
and
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
at approximately 1200 to 1250 °C:
:SiCl
4(g) + 2H
2(g) ↔ Si
(s) + 4HCl
(g)
where (g) and (s) represent gas and solid phases, respectively. This reaction is reversible, and the growth rate depends strongly upon the proportion of the two source gases. Growth rates above 2 micrometres per minute produce polycrystalline silicon, and negative growth rates (
etching
Etching is traditionally the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio (incised) in the metal. In modern manufacturing, other chemicals may be used on other types ...
) may occur if too much
hydrogen chloride
The compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride ga ...
byproduct is present. (In fact, hydrogen chloride may be added intentionally to etch the wafer.) An additional etching reaction competes with the deposition reaction:
:SiCl
4(g) + Si
(s) ↔ 2SiCl
2(g)
Silicon VPE may also use
silane
Silane is an inorganic compound with chemical formula, . It is a colourless, pyrophoric, toxic gas with a sharp, repulsive smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Sila ...
,
dichlorosilane
Dichlorosilane, or DCS as it is commonly known, is a chemical compound with the formula H2SiCl2. In its major use, it is mixed with ammonia (NH3) in LPCVD chambers to grow silicon nitride in semiconductor processing. A higher concentration of DCS ...
, and
trichlorosilane
Trichlorosilane is an inorganic compound with the formula HCl3Si. It is a colourless, volatile liquid. Purified trichlorosilane is the principal precursor to ultrapure silicon in the semiconductor industry. In water, it rapidly decomposes to pr ...
source gases. For instance, the silane reaction occurs at 650 °C in this way:
:SiH
4 → Si + 2H
2
VPE is sometimes classified by the chemistry of the source gases, such as
hydride VPE
Hydride vapour phase epitaxy (HVPE) is an epitaxial growth technique often employed to produce semiconductors such as GaN, GaAs, InP and their related compounds, in which hydrogen chloride is reacted at elevated temperature with the group-III metal ...
(HVPE) and
metalorganic VPE (MOVPE or MOCVD).
A common technique used in
compound semiconductor
Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way.
Because of ...
growth is
molecular beam epitaxy
Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the devel ...
(MBE). In this method, a source material is heated to produce an
evaporate
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidi ...
d beam of particles, which travel through a very high
vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
(10
−8 Pa; practically free space) to the substrate and start epitaxial growth.
Chemical beam epitaxy, on the other hand, is an ultra-high vacuum process that uses gas phase precursors to generate the molecular beam.
Another widely used technique in microelectronics and nanotechnology is
atomic layer epitaxy, in which precursor gases are alternatively pulsed into a chamber, leading to atomic monolayer growth by surface saturation and
chemisorption
Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like cor ...
.
Liquid-phase
Liquid-phase epitaxy (LPE) is a method to grow semiconductor crystal layers from the melt on solid substrates. This happens at temperatures well below the melting point of the deposited semiconductor. The semiconductor is dissolved in the melt of another material. At conditions that are close to the equilibrium between dissolution and deposition, the deposition of the semiconductor crystal on the substrate is relatively fast and uniform. The most used substrate is indium phosphide (InP). Other substrates like glass or ceramic can be applied for special applications. To facilitate nucleation, and to avoid tension in the grown layer the thermal expansion coefficient of substrate and grown layer should be similar.
Centrifugal liquid-phase epitaxy is used commercially to make thin layers of
silicon
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
,
germanium
Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
, and
gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
.
Centrifugally formed film growth is a process used to form thin layers of materials by using a
centrifuge
A centrifuge is a device that uses centrifugal force to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities (e.g. cream from milk) or ...
. The process has been used to create silicon for thin-film solar cells
and far-infrared photodetectors.
Temperature and centrifuge spin rate are used to control layer growth.
Centrifugal LPE has the capability to create dopant concentration gradients while the solution is held at constant temperature.
Solid-phase
Solid-phase epitaxy (SPE) is a transition between the amorphous and crystalline phases of a material. It is usually produced by depositing a film of amorphous material on a crystalline substrate, then heating it to crystallize the film. The single-crystal substrate serves as a template for crystal growth. The annealing step used to recrystallize or heal silicon layers amorphized during ion implantation is also considered to be a type of solid phase epitaxy. The impurity segregation and redistribution at the growing crystal-amorphous layer interface during this process is used to incorporate low-solubility dopants in metals and silicon.
Doping
An epitaxial layer can be doped during deposition by adding impurities to the source gas, such as
arsine
Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in ...
,
phosphine
Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
, or
diborane
Diborane(6), generally known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Diborane is a key boron compound with a variety of applications. It has attracte ...
. Dopants in the source gas, liberated by evaporation or wet etching of the surface, may also diffuse into the epitaxial layer and cause ''autodoping''. The concentration of impurity in the gas phase determines its concentration in the deposited film. Doping can also achieved by a site-competition technique, where the growth precursor ratios are tuned to enhance the incorporation of vacancies, specific dopant species or vacant-dopant clusters into the lattice.
Additionally, the high temperatures at which epitaxy is performed may allow dopants to
diffuse
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
into the growing layer from other layers in the wafer (''out-diffusion'').
Minerals
In mineralogy, epitaxy is the overgrowth of one mineral on another in an orderly way, such that certain
crystal directions of the two minerals are aligned. This occurs when some planes in the
lattices of the overgrowth and the substrate have similar spacings between
atoms
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas, an ...
.
If the crystals of both minerals are well formed so that the directions of the
crystallographic axes are clear then the epitaxic relationship can be deduced just by a visual inspection.
Sometimes many separate crystals form the overgrowth on a single substrate, and then if there is epitaxy all the overgrowth crystals will have a similar orientation. The reverse, however, is not necessarily true. If the overgrowth crystals have a similar orientation there is probably an epitaxic relationship, but it is not certain.
Some authors
consider that overgrowths of a second generation of the same mineral species should also be considered as epitaxy, and this is common terminology for
semiconductor
A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
scientists who induce epitaxic growth of a film with a different
doping level on a semiconductor substrate of the same material. For naturally produced minerals, however, the
International Mineralogical Association
Founded in 1958, the International Mineralogical Association (IMA) is an international group of 40 national societies. The goal is to promote the science of mineralogy and to standardize the nomenclature of the 5000 plus known mineral species. Th ...
(IMA) definition requires that the two minerals be of different species.
[Acta Crystallographica Section A Crystal Physics, Diffraction, Theoretical and General Crystallography Volume 33, Part 4 (July 1977)]
Another man-made application of epitaxy is the making of artificial snow using
silver iodide
Silver iodide is an inorganic compound with the formula Ag I. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a gray coloration. The silver contamination arises because AgI is hig ...
, which is possible because
hexagonal
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A '' regular hexagon'' has ...
silver iodide and ice have similar cell dimensions.
Isomorphic minerals
Minerals that have the same structure (
isomorphic minerals) may have epitaxic relations. An example is
albite
Albite is a plagioclase feldspar mineral. It is the sodium endmember of the plagioclase solid solution series. It represents a plagioclase with less than 10% anorthite content. The pure albite endmember has the formula . It is a tectosilicate. I ...
on
microcline
Microcline (KAlSi3O8) is an important igneous rock-forming tectosilicate mineral. It is a potassium-rich alkali feldspar. Microcline typically contains minor amounts of sodium. It is common in granite and pegmatites. Microcline forms during slow ...
. Both these minerals are
triclinic
180px, Triclinic (a ≠ b ≠ c and α ≠ β ≠ γ )
In crystallography, the triclinic (or anorthic) crystal system is one of the 7 crystal systems. A crystal system is described by three basis vectors. In the triclinic system, the crystal i ...
, with
space group
In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it unchan ...
, and with similar
unit cell
In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessaril ...
parameters, a = 8.16 Å, b = 12.87 Å, c = 7.11 Å, α = 93.45°, β = 116.4°, γ = 90.28° for albite and a = 8.5784 Å, b = 12.96 Å, c = 7.2112 Å, α = 90.3°, β = 116.05°, γ = 89° for microcline.
Polymorphic minerals
Minerals that have the same composition but different structures (
polymorphic minerals) may also have epitaxic relations. Examples are
pyrite
The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Iron, FeSulfur, S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral.
Pyrite's metallic Luster (mineralogy), lust ...
and
marcasite
The mineral marcasite, sometimes called “white iron pyrite”, is iron sulfide (FeS2) with orthorhombic crystal structure. It is physically and crystallographically distinct from pyrite, which is iron sulfide with cubic crystal structure. Both ...
, both FeS
2, and
sphalerite
Sphalerite (sometimes spelled sphaelerite) is a sulfide mineral with the chemical formula . It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in Sedimentary exhalative deposits, sedimen ...
and
wurtzite
Wurtzite is a zinc and iron sulfide mineral with the chemical formula , a less frequently encountered Polymorphism (materials science), structural polymorph form of sphalerite. The iron content is variable up to eight percent.Palache, Charles, Har ...
, both ZnS.
Rutile on hematite
Some pairs of minerals that are not related structurally or compositionally may also exhibit epitaxy. A common example is
rutile
Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer Polymorphism (materials science), polymorphs of TiO2 are known, including anatase, akaogiite, and brookite.
Rutile has one of the highest ...
TiO
2 on
hematite
Hematite (), also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of . ...
Fe
2O
3.
Rutile is
tetragonal
In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square ...
and hematite is
trigonal
In crystallography, the hexagonal crystal family is one of the six crystal families, which includes two crystal systems (hexagonal and trigonal) and two lattice systems (hexagonal and rhombohedral). While commonly confused, the trigonal crysta ...
, but there are directions of similar spacing between the atoms in the
(100) plane of rutile (perpendicular to the a
axis
An axis (plural ''axes'') is an imaginary line around which an object rotates or is symmetrical. Axis may also refer to:
Mathematics
* Axis of rotation: see rotation around a fixed axis
* Axis (mathematics), a designator for a Cartesian-coordinat ...
) and the
(001) plane of hematite (perpendicular to the c axis). In epitaxy these directions tend to line up with each other, resulting in the axis of the rutile overgrowth being parallel to the c axis of hematite, and the c axis of rutile being parallel to one of the axes of hematite.
Hematite on magnetite
Another example is
hematite
Hematite (), also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of . ...
on
magnetite
Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With the ...
. The magnetite structure is based on close-packed
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
anions
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
stacked in an ABC-ABC sequence. In this packing the close-packed layers are parallel to
(111) (a plane that symmetrically "cuts off" a corner of a cube). The hematite structure is based on close-packed oxygen anions stacked in an AB-AB sequence, which results in a crystal with hexagonal symmetry.
[Nesse, William (2000). Introduction to Mineralogy. Oxford University Press. Page 79]
If the
cations
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by con ...
were small enough to fit into a truly close-packed structure of oxygen anions then the spacing between the nearest neighbour oxygen sites would be the same for both species. The radius of the oxygen ion, however, is only 1.36 Å
and the Fe cations are big enough to cause some variations. The Fe radii vary from 0.49 Å to 0.92 Å,
depending on the
charge
Charge or charged may refer to:
Arts, entertainment, and media Films
* '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary
Music
* ''Charge'' (David Ford album)
* ''Charge'' (Machel Montano album)
* ''Charge!!'', an album by The Aqu ...
(2+ or 3+) and the
coordination number
In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central i ...
(4 or 8). Nevertheless, the O spacings are similar for the two minerals hence hematite can readily grow on the
(111) faces of magnetite, with hematite
(001) parallel to magnetite
(111).
Applications
Epitaxy is used in
nanotechnology
Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
and in
semiconductor fabrication
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuit (IC) chips such as modern computer processors, microcontrollers, and memory chips such as NAND flash and DRAM that are pres ...
. Indeed, epitaxy is the only affordable method of high quality crystal growth for many semiconductor materials. In
surface science
Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fiel ...
, epitaxy is used to create and study
monolayer A monolayer is a single, closely packed layer of atoms, molecules, or cells. In some cases it is referred to as a self-assembled monolayer. Monolayers of layered crystals like graphene and molybdenum disulfide are generally called 2D materials.
...
and multilayer films of
adsorbed
Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
organic molecule
In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
s on
single crystal
In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries.RIWD. "Re ...
line surfaces via
scanning tunnelling microscopy
A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. ...
.
See also
*
Heterojunction A heterojunction is an interface between two layers or regions of dissimilar semiconductors. These semiconducting materials have unequal band gaps as opposed to a homojunction. It is often advantageous to engineer the electronic energy bands in many ...
*
Island growth
*
Nano-RAM
Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of nonvolatile random-access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small size of the nanotub ...
*
Quantum cascade laser Quantum-cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared portion of the electromagnetic spectrum and were first demonstrated by Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, ...
*
Selective area epitaxy
Selective area epitaxy is the local growth of epitaxial layer through a patterned amorphous dielectric mask (typically SiO2 or Si3N4) deposited on a semiconductor substrate. Semiconductor growth conditions are selected to ensure epitaxial growth ...
*
Silicon on sapphire
Silicon on sapphire (SOS) is a hetero-epitaxial process for metal-oxide-semiconductor (MOS) integrated circuit (IC) manufacturing that consists of a thin layer (typically thinner than 0.6 µm) of silicon grown on a sapphire (Al2O3) wafer. ...
*
Single event upset
A single-event upset (SEU), also known as a single-event error (SEE), is a change of state caused by one single ionizing particle (ions, electrons, photons...) striking a sensitive node in a live micro-electronic device, such as in a microprocesso ...
*
Thermal Laser Epitaxy
*
Thin film
A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ap ...
*
Vertical-cavity surface-emitting laser
The vertical-cavity surface-emitting laser, or VCSEL , is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers (also ''in-plane'' lasers) which ...
*
Wake Shield Facility
Wake Shield Facility (WSF) was a NASA experimental science platform that was placed in low Earth orbit by the Space Shuttle. It was a diameter, free-flying stainless steel disk.
The WSF was deployed using the Space Shuttle's Canadarm. The WS ...
*
Zhores Alferov
Zhores Ivanovich Alferov (russian: link=no, Жоре́с Ива́нович Алфёров, ; be, Жарэс Іва́навіч Алфёраў; 15 March 19301 March 2019) was a Soviet and Russian physicist and academic who contributed signific ...
References
Bibliography
*
External links
{{Commons category multi , Semiconductor devices fabrication, Semiconductors
epitaxy.net a central forum for the epitaxy-communities
CrystalXE.com a specialized software in epitaxy
Thin film deposition
Semiconductor device fabrication
Crystallography
Methods of crystal growth