Calcium
   HOME

TheInfoList



OR:

Calcium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the symbol Ca and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
20. As an
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are al ...
, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust, and the third most abundant metal, after
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
and
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
. The most common calcium compound on Earth is calcium carbonate, found in
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
and the fossilised remnants of early sea life;
gypsum Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula . It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard or sidewalk chalk, and drywal ...
,
anhydrite Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the ...
,
fluorite Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs sca ...
, and
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common e ...
are also sources of calcium. The name derives from
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
''calx'' "
lime Lime commonly refers to: * Lime (fruit), a green citrus fruit * Lime (material), inorganic materials containing calcium, usually calcium oxide or calcium hydroxide * Lime (color), a color between yellow and green Lime may also refer to: Botany ...
", which was obtained from heating limestone. Some calcium compounds were known to the ancients, though their chemistry was unknown until the seventeenth century. Pure calcium was isolated in 1808 via electrolysis of its oxide by
Humphry Davy Sir Humphry Davy, 1st Baronet, (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several elements for t ...
, who named the element. Calcium compounds are widely used in many industries: in foods and pharmaceuticals for
calcium supplementation Calcium supplements are salts of calcium used in a number of conditions. Supplementation is generally only required when there is not enough calcium in the diet. By mouth they are used to treat and prevent low blood calcium, osteoporosis, and ...
, in the paper industry as bleaches, as components in cement and electrical insulators, and in the manufacture of soaps. On the other hand, the metal in pure form has few applications due to its high reactivity; still, in small quantities it is often used as an alloying component in steelmaking, and sometimes, as a calcium–lead alloy, in making automotive batteries. Calcium is the most abundant metal and the fifth-most abundant element in the human body. As electrolytes,
calcium ions Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contractio ...
(Ca2+) play a vital role in the physiological and biochemical processes of organisms and
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s: in
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
pathways where they act as a
second messenger Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or cell signaling, encompassing both first me ...
; in neurotransmitter release from
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
; in contraction of all muscle cell types; as
cofactors Cofactor may also refer to: * Cofactor (biochemistry), a substance that needs to be present in addition to an enzyme for a certain reaction to be catalysed * A domain parameter in elliptic curve cryptography, defined as the ratio between the order ...
in many
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
s; and in
fertilization Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Proce ...
. Calcium ions outside cells are important for maintaining the
potential difference Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
across excitable
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
s,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
synthesis, and bone formation.


Characteristics


Classification

Calcium is a very ductile silvery metal (sometimes described as pale yellow) whose properties are very similar to the heavier elements in its group, strontium, barium, and
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
. A calcium atom has twenty electrons, arranged in the electron configuration rs2. Like the other elements placed in group 2 of the periodic table, calcium has two
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
s in the outermost s-orbital, which are very easily lost in chemical reactions to form a dipositive ion with the stable electron configuration of a
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
, in this case
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
. Hence, calcium is almost always
divalent In chemistry, the valence (US spelling) or valency (British spelling) of an chemical element, element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, ...
in its compounds, which are usually ionic. Hypothetical univalent salts of calcium would be stable with respect to their elements, but not to
disproportionation In chemistry, disproportionation, sometimes called dismutation, is a redox reaction in which one compound of intermediate oxidation state converts to two compounds, one of higher and one of lower oxidation states. More generally, the term can ...
to the divalent salts and calcium metal, because the
enthalpy of formation Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant p ...
of MX2 is much higher than those of the hypothetical MX. This occurs because of the much greater
lattice energy In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ...
afforded by the more highly charged Ca2+ cation compared to the hypothetical Ca+ cation.Greenwood and Earnshaw, pp. 112–13 Calcium, strontium, barium, and radium are always considered to be
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are al ...
s; the lighter
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
and
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
, also in group 2 of the periodic table, are often included as well. Nevertheless, beryllium and magnesium differ significantly from the other members of the group in their physical and chemical behaviour: they behave more like
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
and
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
respectively and have some of the weaker metallic character of the
post-transition metal The metallic elements in the periodic table located between the transition metals and the chemically weak nonmetallic metalloids have received many names in the literature, such as ''post-transition metals'', ''poor metals'', ''other metals'', ...
s, which is why the traditional definition of the term "alkaline earth metal" excludes them.


Physical properties

Calcium metal melts at 842 °C and boils at 1494 °C; these values are higher than those for magnesium and strontium, the neighbouring group 2 metals. It crystallises in the
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
arrangement like strontium; above 450 °C, it changes to an anisotropic
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
arrangement like magnesium. Its density of 1.55 g/cm3 is the lowest in its group. Calcium is harder than
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
but can be cut with a knife with effort. While calcium is a poorer conductor of electricity than
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
or
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
by volume, it is a better conductor by mass than both due to its very low density. While calcium is infeasible as a conductor for most terrestrial applications as it reacts quickly with atmospheric oxygen, its use as such in space has been considered.Hluchan and Pomerantz, p. 484


Chemical properties

The chemistry of calcium is that of a typical heavy alkaline earth metal. For example, calcium spontaneously reacts with water more quickly than magnesium and less quickly than strontium to produce calcium hydroxide and hydrogen gas. It also reacts with the
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
and
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
in the air to form a mixture of
calcium oxide Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "''lime''" connotes calcium-containing inorganic ...
and
calcium nitride Calcium nitride is the inorganic compound with the chemical formula Ca3 N2. It exists in various forms (isomorphs), α-calcium nitride being more commonly encountered. Structure α-Calcium nitride adopts an anti-bixbyite structure, similar to ...
.C. R. Hammond ''The elements'' (pp. 4–35) in When finely divided, it spontaneously burns in air to produce the nitride. In bulk, calcium is less reactive: it quickly forms a hydration coating in moist air, but below 30%
relative humidity Humidity is the concentration of water vapor present in the air. Water vapor, the gaseous state of water, is generally invisible to the human eye. Humidity indicates the likelihood for precipitation, dew, or fog to be present. Humidity dep ...
it may be stored indefinitely at room temperature.Hluchan and Pomerantz, p. 483 Besides the simple oxide CaO, the
peroxide In chemistry, peroxides are a group of compounds with the structure , where R = any element. The group in a peroxide is called the peroxide group or peroxo group. The nomenclature is somewhat variable. The most common peroxide is hydrogen ...
CaO2 can be made by direct oxidation of calcium metal under a high pressure of oxygen, and there is some evidence for a yellow
superoxide In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula . The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of t ...
Ca(O2)2. Calcium hydroxide, Ca(OH)2, is a strong base, though it is not as strong as the hydroxides of strontium, barium or the alkali metals. All four dihalides of calcium are known. Calcium carbonate (CaCO3) and
calcium sulfate Calcium sulfate (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ-anhydrite (the anhydrous form), it is used as a desiccant. One particular hydrate is better known as plaster of Paris ...
(CaSO4) are particularly abundant minerals.Greenwood and Earnshaw, pp. 122–15 Like strontium and barium, as well as the alkali metals and the divalent lanthanides europium and
ytterbium Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the othe ...
, calcium metal dissolves directly in liquid
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
to give a dark blue solution. Due to the large size of the calcium ion (Ca2+), high coordination numbers are common, up to 24 in some
intermetallic compound An intermetallic (also called an intermetallic compound, intermetallic alloy, ordered intermetallic alloy, and a long-range-ordered alloy) is a type of metallic bonding, metallic alloy that forms an ordered solid-state Chemical compound, compoun ...
s such as CaZn13. Calcium is readily complexed by oxygen
chelate Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
s such as
EDTA Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarboxylic acid with the formula H2N(CH2CO2H)2sub>2. This white, water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes ev ...
and
polyphosphate Polyphosphates are salts or esters of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic ring structures. In biology, the polyphosphate e ...
s, which are useful in
analytic chemistry Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separati ...
and removing calcium ions from
hard water Hard water is water that has high mineral content (in contrast with "soft water"). Hard water is formed when water percolates through deposits of limestone, chalk or gypsum, which are largely made up of calcium and magnesium carbonates, bicarbo ...
. In the absence of
steric hindrance Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
, smaller group 2 cations tend to form stronger complexes, but when large polydentate
macrocycle Macrocycles are often described as molecules and ions containing a ring of twelve or more atoms. Classical examples include the crown ethers, calixarenes, porphyrins, and cyclodextrins. Macrocycles describe a large, mature area of chemistry. ...
s are involved the trend is reversed. Although calcium is in the same group as magnesium and
organomagnesium compound Magnesium anthracenide with three thf ligands. Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containi ...
s are very commonly used throughout chemistry, organocalcium compounds are not similarly widespread because they are more difficult to make and more reactive, although they have recently been investigated as possible
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s. Organocalcium compounds tend to be more similar to organoytterbium compounds due to the similar
ionic radii Ionic radius, ''r''ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation ...
of Yb2+ (102 pm) and Ca2+ (100 pm).Greenwood and Earnshaw, pp. 136–37 Most of these compounds can only be prepared at low temperatures; bulky ligands tend to favor stability. For example, calcium di cyclopentadienyl, Ca(C5H5)2, must be made by directly reacting calcium metal with
mercurocene Organomercury refers to the group of organometallic compounds that contain mercury. Typically the Hg–C bond is stable toward air and moisture but sensitive to light. Important organomercury compounds are the methylmercury(II) cation, CH3Hg+; ...
or cyclopentadiene itself; replacing the C5H5 ligand with the bulkier C5(CH3)5 ligand on the other hand increases the compound's solubility, volatility, and kinetic stability.


Isotopes

Natural calcium is a mixture of five stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s (40Ca, 42Ca, 43Ca, 44Ca, and 46Ca) and one isotope with a half-life so long that it can be considered stable for all practical purposes ( 48Ca, with a half-life of about 4.3 × 1019 years). Calcium is the first (lightest) element to have six naturally occurring isotopes. By far the most common isotope of calcium in nature is 40Ca, which makes up 96.941% of all natural calcium. It is produced in the
silicon-burning process In astrophysics, silicon burning is a very brief sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8–11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the f ...
from fusion of
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
s and is the heaviest stable nuclide with equal proton and neutron numbers; its occurrence is also supplemented slowly by the decay of primordial 40K. Adding another alpha particle leads to unstable 44Ti, which quickly decays via two successive
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
s to stable 44Ca; this makes up 2.806% of all natural calcium and is the second-most common isotope. The other four natural isotopes, 42Ca, 43Ca, 46Ca, and 48Ca, are significantly rarer, each comprising less than 1% of all natural calcium. The four lighter isotopes are mainly products of the oxygen-burning and silicon-burning processes, leaving the two heavier ones to be produced via
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
processes. 46Ca is mostly produced in a "hot"
s-process The slow neutron-capture process, or ''s''-process, is a series of reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynthesis) of approximat ...
, as its formation requires a rather high neutron flux to allow short-lived 45Ca to capture a neutron. 48Ca is produced by electron capture in the r-process in
type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
e, where high neutron excess and low enough entropy ensures its survival. 46Ca and 48Ca are the first "classically stable" nuclides with a six-neutron or eight-neutron excess respectively. Although extremely neutron-rich for such a light element, 48Ca is very stable because it is a doubly magic nucleus, having 20 protons and 28 neutrons arranged in closed shells. Its
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
to 48 Sc is very hindered because of the gross mismatch of nuclear spin: 48Ca has zero nuclear spin, being even–even, while 48Sc has spin 6+, so the decay is forbidden by the conservation of
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
. While two excited states of 48Sc are available for decay as well, they are also forbidden due to their high spins. As a result, when 48Ca does decay, it does so by
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move clos ...
to 48 Ti instead, being the lightest nuclide known to undergo double beta decay. The heavy isotope 46Ca can also theoretically undergo double beta decay to 46Ti as well, but this has never been observed. The lightest and most common isotope 40Ca is also doubly magic and could undergo
double electron capture Double electron capture is a decay mode of an atomic nucleus. For a nuclide (''A'', ''Z'') with a number of nucleons ''A'' and atomic number ''Z'', double electron capture is only possible if the mass of the nuclide (''A'', ''Z''−2) is lower. ...
to 40 Ar, but this has likewise never been observed. Calcium is the only element to have two primordial doubly magic isotopes. The experimental lower limits for the half-lives of 40Ca and 46Ca are 5.9 × 1021 years and 2.8 × 1015 years respectively. Apart from the practically stable 48Ca, the longest lived
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
of calcium is 41Ca. It decays by electron capture to stable 41 K with a half-life of about a hundred thousand years. Its existence in the early Solar System as an
extinct radionuclide An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nuc ...
has been inferred from excesses of 41K: traces of 41Ca also still exist today, as it is a
cosmogenic nuclide Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an '' in situ'' Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom ...
, continuously reformed through
neutron activation Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emit ...
of natural 40Ca. Many other calcium radioisotopes are known, ranging from 35Ca to 60Ca. They are all much shorter-lived than 41Ca, the most stable among them being 45Ca (half-life 163 days) and 47Ca (half-life 4.54 days). The isotopes lighter than 42Ca usually undergo
beta plus decay Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron ...
to isotopes of potassium, and those heavier than 44Ca usually undergo
beta minus decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For exam ...
to isotopes of
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
, although near the
nuclear drip line The nuclear drip line is the boundary beyond which atomic nuclei decay by the emission of a proton or neutron. An arbitrary combination of protons and neutrons does not necessarily yield a stable nucleus. One can think of moving up and/or to ...
s,
proton emission Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case t ...
and
neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
begin to be significant decay modes as well. Like other elements, a variety of processes alter the relative abundance of calcium isotopes. The best studied of these processes is the mass-dependent
fractionation Fractionation is a separation process in which a certain quantity of a mixture (of gases, solids, liquids, enzymes, or isotopes, or a suspension) is divided during a phase transition, into a number of smaller quantities (fractions) in which the ...
of calcium isotopes that accompanies the precipitation of calcium minerals such as
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
,
aragonite Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, (the other forms being the minerals calcite and vaterite). It is formed by biological and physical processes, including pre ...
and
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common e ...
from solution. Lighter isotopes are preferentially incorporated into these minerals, leaving the surrounding solution enriched in heavier isotopes at a magnitude of roughly 0.025% per atomic mass unit (amu) at room temperature. Mass-dependent differences in calcium isotope composition are conventionally expressed by the ratio of two isotopes (usually 44Ca/40Ca) in a sample compared to the same ratio in a standard reference material. 44Ca/40Ca varies by about 1% among common earth materials.


History

Calcium compounds were known for millennia, although their chemical makeup was not understood until the 17th century.Greenwood and Earnshaw, p. 108 Lime as a
building material Building material is material used for construction. Many naturally occurring substances, such as clay, rock (geology), rocks, sand, wood, and even twigs and leaves, have been used to construct buildings. Apart from naturally occurring materia ...
and as plaster for statues was used as far back as around 7000 BC. The first dated
lime kiln A lime kiln is a kiln used for the calcination of limestone ( calcium carbonate) to produce the form of lime called quicklime (calcium oxide). The chemical equation for this reaction is : CaCO3 + heat → CaO + CO2 This reaction can take p ...
dates back to 2500 BC and was found in
Khafajah Khafajah or Khafaje (Arabic: خفاجة; ancient Tutub, Arabic: توتوب) is an archaeological site in Diyala Province (Iraq). It was part of the city-state of Eshnunna. The site lies east of Baghdad and southwest of Eshnunna. History of arch ...
,
Mesopotamia Mesopotamia ''Mesopotamíā''; ar, بِلَاد ٱلرَّافِدَيْن or ; syc, ܐܪܡ ܢܗܪ̈ܝܢ, or , ) is a historical region of Western Asia situated within the Tigris–Euphrates river system, in the northern part of the F ...
. At about the same time, dehydrated
gypsum Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula . It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard or sidewalk chalk, and drywal ...
(CaSO4·2H2O) was being used in the
Great Pyramid of Giza The Great Pyramid of Giza is the biggest Egyptian pyramid and the tomb of Fourth Dynasty pharaoh Khufu. Built in the early 26th century BC during a period of around 27 years, the pyramid is the oldest of the Seven Wonders of the Ancient Worl ...
. This material would later be used for the plaster in the tomb of
Tutankhamun Tutankhamun (, egy, twt-ꜥnḫ-jmn), Egyptological pronunciation Tutankhamen () (), sometimes referred to as King Tut, was an Egyptian pharaoh who was the last of his royal family to rule during the end of the Eighteenth Dynasty (ruled ...
. The ancient Romans instead used lime mortars made by heating
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
(CaCO3). The name "calcium" itself derives from the Latin word ''calx'' "lime".
Vitruvius Vitruvius (; c. 80–70 BC – after c. 15 BC) was a Roman architect and engineer during the 1st century BC, known for his multi-volume work entitled '' De architectura''. He originated the idea that all buildings should have three attribut ...
noted that the lime that resulted was lighter than the original limestone, attributing this to the boiling of the water. In 1755,
Joseph Black Joseph Black (16 April 1728 – 6 December 1799) was a Scottish physicist and chemist, known for his discoveries of magnesium, latent heat, specific heat, and carbon dioxide. He was Professor of Anatomy and Chemistry at the University of Glas ...
proved that this was due to the loss of
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
, which as a gas had not been recognised by the ancient Romans. In 1789,
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794), When reduced without charcoal, it gave off an air which supported respiration and combustion in an enhanced way. He concluded that this was just a pure form of common air and th ...
suspected that lime might be an oxide of a fundamental
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
. In his table of the elements, Lavoisier listed five "salifiable earths" (i.e., ores that could be made to react with acids to produce salts (''salis'' = salt, in Latin): ''chaux'' (calcium oxide), ''magnésie'' (magnesia, magnesium oxide), ''baryte'' (barium sulfate), ''alumine'' (alumina, aluminium oxide), and ''silice'' (silica, silicon dioxide)). About these "elements", Lavoisier reasoned: Calcium, along with its congeners magnesium, strontium, and barium, was first isolated by
Humphry Davy Sir Humphry Davy, 1st Baronet, (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several elements for t ...
in 1808. Following the work of
Jöns Jakob Berzelius Jöns is a Swedish given name and a surname. Notable people with the given name include: * Jöns Jacob Berzelius (1779–1848), Swedish chemist * Jöns Budde (1435–1495), Franciscan friar from the Brigittine monastery in NaantaliVallis Grati ...
and
Magnus Martin af Pontin Magnus, meaning "Great" in Latin, was used as cognomen of Gnaeus Pompeius Magnus in the first century BC. The best-known use of the name during the Roman Empire is for the fourth-century Western Roman Emperor Magnus Maximus. The name gained wid ...
on electrolysis, Davy isolated calcium and magnesium by putting a mixture of the respective metal oxides with
mercury(II) oxide Mercury(II) oxide, also called mercuric oxide or simply mercury oxide, is the inorganic compound with the formula Hg O. It has a red or orange color. Mercury(II) oxide is a solid at room temperature and pressure. The mineral form montroydite is v ...
on a
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
plate which was used as the anode, the cathode being a platinum wire partially submerged into mercury. Electrolysis then gave calcium–mercury and magnesium–mercury amalgams, and distilling off the mercury gave the metal. However, pure calcium cannot be prepared in bulk by this method and a workable commercial process for its production was not found until over a century later.


Occurrence and production

At 3%, calcium is the fifth most abundant element in the Earth's crust, and the third most abundant metal behind
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
and
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
. It is also the fourth most abundant element in the
lunar highlands The geology of the Moon (sometimes called selenology, although the latter term can refer more generally to " lunar science") is quite different from that of Earth. The Moon lacks a true atmosphere, which eliminates erosion due to weather. It does ...
.
Sedimentary Sedimentary rocks are types of rock (geology), rock that are formed by the accumulation or deposition of mineral or organic matter, organic particles at Earth#Surface, Earth's surface, followed by cementation (geology), cementation. Sedimentati ...
calcium carbonate deposits pervade the Earth's surface as fossilized remains of past marine life; they occur in two forms, the
rhombohedral In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a three-dimensional figure with six faces which are rhombi. It is a special case of a parallelepiped where all edges are the same length. It can be us ...
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
(more common) and the orthorhombic
aragonite Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, (the other forms being the minerals calcite and vaterite). It is formed by biological and physical processes, including pre ...
(forming in more temperate seas). Minerals of the first type include
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
,
dolomite Dolomite may refer to: *Dolomite (mineral), a carbonate mineral *Dolomite (rock), also known as dolostone, a sedimentary carbonate rock *Dolomite, Alabama, United States, an unincorporated community *Dolomite, California, United States, an unincor ...
,
marble Marble is a metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or Dolomite (mineral), dolomite. Marble is typically not Foliation (geology), foliated (layered), although there are exceptions. In geology, the ...
,
chalk Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. Ch ...
, and
iceland spar Iceland spar, formerly called Iceland crystal ( is, silfurberg , ) and also called optical calcite, is a transparent variety of calcite, or crystallized calcium carbonate, originally brought from Iceland, and used in demonstrating the polarizati ...
; aragonite beds make up the
Bahamas The Bahamas (), officially the Commonwealth of The Bahamas, is an island country within the Lucayan Archipelago of the West Indies in the Atlantic Ocean, North Atlantic. It takes up 97% of the Lucayan Archipelago's land area and is home to ...
, the Florida Keys, and the
Red Sea The Red Sea ( ar, البحر الأحمر - بحر القلزم, translit=Modern: al-Baḥr al-ʾAḥmar, Medieval: Baḥr al-Qulzum; or ; Coptic: ⲫⲓⲟⲙ ⲛ̀ϩⲁϩ ''Phiom Enhah'' or ⲫⲓⲟⲙ ⲛ̀ϣⲁⲣⲓ ''Phiom ǹšari''; T ...
basins.
Coral Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and sec ...
s,
sea shell A seashell or sea shell, also known simply as a shell, is a hard, protective outer layer usually created by an animal or organism that lives in the sea. The shell is part of the body of the animal. Empty seashells are often found washe ...
s, and
pearl A pearl is a hard, glistening object produced within the soft tissue (specifically the mantle) of a living shelled mollusk or another animal, such as fossil conulariids. Just like the shell of a mollusk, a pearl is composed of calcium carb ...
s are mostly made up of calcium carbonate. Among the other important minerals of calcium are
gypsum Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula . It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard or sidewalk chalk, and drywal ...
(CaSO4·2H2O),
anhydrite Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the ...
(CaSO4),
fluorite Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs sca ...
(CaF2), and
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common e ...
( a5(PO4)3F. The major producers of calcium are
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and ...
(about 10000 to 12000
tonne The tonne ( or ; symbol: t) is a unit of mass equal to 1000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton ( United State ...
s per year),
Russia Russia (, , ), or the Russian Federation, is a List of transcontinental countries, transcontinental country spanning Eastern Europe and North Asia, Northern Asia. It is the List of countries and dependencies by area, largest country in the ...
(about 6000 to 8000 tonnes per year), and the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territorie ...
(about 2000 to 4000 tonnes per year).
Canada Canada is a country in North America. Its ten provinces and three territories extend from the Atlantic Ocean to the Pacific Ocean and northward into the Arctic Ocean, covering over , making it the world's second-largest country by tot ...
and
France France (), officially the French Republic ( ), is a country primarily located in Western Europe. It also comprises of Overseas France, overseas regions and territories in the Americas and the Atlantic Ocean, Atlantic, Pacific Ocean, Pac ...
are also among the minor producers. In 2005, about 24000 tonnes of calcium were produced; about half of the world's extracted calcium is used by the United States, with about 80% of the output used each year. In Russia and China, Davy's method of electrolysis is still used, but is instead applied to molten
calcium chloride Calcium chloride is an inorganic compound, a salt with the chemical formula . It is a white crystalline solid at room temperature, and it is highly soluble in water. It can be created by neutralising hydrochloric acid with calcium hydroxide. Ca ...
. Since calcium is less reactive than strontium or barium, the oxide–nitride coating that results in air is stable and lathe machining and other standard metallurgical techniques are suitable for calcium.Greenwood and Earnshaw, p. 110 In the United States and Canada, calcium is instead produced by reducing lime with aluminium at high temperatures.


Geochemical cycling

Calcium cycle, Calcium cycling provides a link between tectonics, climate, and the carbon cycle. In the simplest terms, uplift of mountains exposes calcium-bearing rocks such as some granites to chemical weathering and releases Ca2+ into surface water. These ions are transported to the ocean where they react with dissolved CO2 to form
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
(), which in turn settles to the sea floor where it is incorporated into new rocks. Dissolved CO2, along with carbonate and bicarbonate ions, are termed "Total inorganic carbon, dissolved inorganic carbon" (DIC). The actual reaction is more complicated and involves the bicarbonate ion (HCO) that forms when CO2 reacts with water at seawater pH: : + 2 → (Solid, s) + + At seawater pH, most of the CO2 is immediately converted back into . The reaction results in a net transport of one molecule of CO2 from the ocean/atmosphere into the lithosphere. The result is that each Ca2+ ion released by chemical weathering ultimately removes one CO2 molecule from the surficial system (atmosphere, ocean, soils and living organisms), storing it in carbonate rocks where it is likely to stay for hundreds of millions of years. The weathering of calcium from rocks thus scrubs CO2 from the ocean and atmosphere, exerting a strong long-term effect on climate.


Uses

The largest use of metallic calcium is in steelmaking, due to its strong chemical affinity for oxygen and sulfur. Its oxides and sulfides, once formed, give liquid lime aluminate and sulfide inclusions in steel which float out; on treatment, these inclusions disperse throughout the steel and become small and spherical, improving castability, cleanliness and general mechanical properties. Calcium is also used in maintenance-free automotive battery, automotive batteries, in which the use of 0.1% calcium–
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
alloys instead of the usual antimony–lead alloys leads to lower water loss and lower self-discharging. Due to the risk of expansion and cracking,
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
is sometimes also incorporated into these alloys. These lead–calcium alloys are also used in casting, replacing lead–antimony alloys.Hluchan and Pomerantz, pp. 485–87 Calcium is also used to strengthen aluminium alloys used for bearings, for the control of graphitic carbon in cast iron, and to remove bismuth impurities from lead. Calcium metal is found in some drain cleaners, where it functions to generate heat and calcium hydroxide that Saponification, saponifies the fats and liquefies the proteins (for example, those in hair) that block drains. Besides metallurgy, the reactivity of calcium is exploited to remove
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
from high-purity
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
gas and as a getter for oxygen and nitrogen. It is also used as a reducing agent in the production of chromium, zirconium, thorium, and uranium. It can also be used to store hydrogen gas, as it reacts with hydrogen to form solid calcium hydride, from which the hydrogen can easily be re-extracted. Calcium isotope fractionation during mineral formation has led to several applications of calcium isotopes. In particular, the 1997 observation by Skulan and DePaolo that calcium minerals are isotopically lighter than the solutions from which the minerals precipitate is the basis of analogous applications in medicine and in paleoceanography. In animals with skeletons mineralized with calcium, the calcium isotopic composition of soft tissues reflects the relative rate of formation and dissolution of skeletal mineral. In humans, changes in the calcium isotopic composition of urine have been shown to be related to changes in bone mineral balance. When the rate of bone formation exceeds the rate of bone resorption, the 44Ca/40Ca ratio in soft tissue rises and vice versa. Because of this relationship, calcium isotopic measurements of urine or blood may be useful in the early detection of metabolic bone diseases like osteoporosis. A similar system exists in seawater, where 44Ca/40Ca tends to rise when the rate of removal of Ca2+ by mineral precipitation exceeds the input of new calcium into the ocean. In 1997, Skulan and DePaolo presented the first evidence of change in seawater 44Ca/40Ca over geologic time, along with a theoretical explanation of these changes. More recent papers have confirmed this observation, demonstrating that seawater Ca2+ concentration is not constant, and that the ocean is never in a "steady state" with respect to calcium input and output. This has important climatological implications, as the marine calcium cycle is closely tied to the carbon cycle. Many calcium compounds are used in food, as pharmaceuticals, and in medicine, among others. For example, calcium and phosphorus are supplemented in foods through the addition of calcium lactate, calcium diphosphate, and tricalcium phosphate. The last is also used as a polishing agent in toothpaste and in antacids. Calcium lactobionate is a white powder that is used as a suspending agent for pharmaceuticals. In baking, calcium phosphate is used as a leavening agent. Calcium sulfite is used as a bleach in papermaking and as a disinfectant, calcium silicate is used as a reinforcing agent in rubber, and calcium acetate is a component of liming rosin and is used to make metallic soaps and synthetic resins. Calcium is on the WHO Model List of Essential Medicines, World Health Organization's List of Essential Medicines.


Food sources

Foods rich in calcium include dairy products, such as yogurt and cheese, sardines, salmon, soy products, kale, and food fortification, fortified breakfast cereals. Because of concerns for long-term adverse side effects, including calcification of arteries and kidney stones, both the U.S. Institute of Medicine (IOM) and the European Food Safety Authority (EFSA) set Tolerable upper intake level, Tolerable Upper Intake Levels (ULs) for combined dietary and supplemental calcium. From the IOM, people of ages 9–18 years are not to exceed 3 g/day combined intake; for ages 19–50, not to exceed 2.5 g/day; for ages 51 and older, not to exceed 2 g/day. EFSA set the UL for all adults at 2.5 g/day, but decided the information for children and adolescents was not sufficient to determine ULs.


Biological and pathological role


Function

Calcium is an essential element needed in large quantities. The Ca2+ ion acts as an electrolyte and is vital to the health of the muscular, circulatory, and digestive systems; is indispensable to the building of bone; and supports synthesis and function of blood cells. For example, it regulates the Muscle contraction, contraction of muscles, nerve conduction, and the clotting of blood. As a result, intra- and extracellular calcium levels are tightly regulated by the body. Calcium can play this role because the Ca2+ ion forms stable coordination complexes with many organic compounds, especially
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s; it also forms compounds with a wide range of solubilities, enabling the formation of the skeleton. Sosa Torres, Martha; Kroneck, Peter M.H; "Introduction: From Rocks to Living Cells" pp. 1–32 in "Metals, Microbes and Minerals: The Biogeochemical Side of Life" (2021) pp. xiv + 341. Walter de Gruyter, Berlin. Editors Kroneck, Peter M.H. and Sosa Torres, Martha.


Binding

Calcium ions may be complexed by proteins through binding the carboxyl groups of glutamic acid or aspartic acid residues; through interacting with phosphorylation, phosphorylated serine, tyrosine, or threonine residues; or by being chelation, chelated by γ-carboxylated amino acid residues. Trypsin, a digestive enzyme, uses the first method; osteocalcin, a bone matrix protein, uses the third. Some other bone matrix proteins such as osteopontin and bone sialoprotein use both the first and the second. Direct activation of enzymes by binding calcium is common; some other enzymes are activated by noncovalent association with direct calcium-binding enzymes. Calcium also binds to the phospholipid layer of the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
, anchoring proteins associated with the cell surface.Hluchan and Pomerantz, pp. 489–94


Solubility

As an example of the wide range of solubility of calcium compounds, monocalcium phosphate is very soluble in water, 85% of extracellular calcium is as dicalcium phosphate with a solubility of 2.0 Molar concentration, mM and the hydroxyapatite of bones in an organic matrix is tricalcium phosphate at 100 μM.


Nutrition

Calcium is a common constituent of multivitamin dietary supplements, but the composition of calcium complexes in supplements may affect its bioavailability which varies by solubility of the salt involved: calcium citrate, Calcium malate, malate, and Calcium lactate, lactate are highly bioavailable, while the Calcium oxalate, oxalate is less. Other calcium preparations include calcium carbonate, calcium citrate malate, and calcium gluconate. The intestine absorbs about one-third of calcium eaten as the Radical ion, free ion, and plasma calcium level is then regulated by the kidneys.


Hormonal regulation of bone formation and serum levels

Parathyroid hormone and vitamin D promote the formation of bone by allowing and enhancing the deposition of calcium ions there, allowing rapid bone turnover without affecting bone mass or mineral content. When plasma calcium levels fall, cell surface receptors are activated and the secretion of parathyroid hormone occurs; it then proceeds to stimulate the entry of calcium into the plasma pool by taking it from targeted kidney, gut, and bone cells, with the bone-forming action of parathyroid hormone being antagonised by calcitonin, whose secretion increases with increasing plasma calcium levels.


Abnormal serum levels

Excess intake of calcium may cause hypercalcemia. However, because calcium is absorbed rather inefficiently by the intestines, high serum calcium is more likely caused by excessive secretion of parathyroid hormone (PTH) or possibly by excessive intake of vitamin D, both of which facilitate calcium absorption. All these conditions result in excess calcium salts being deposited in the heart, blood vessels, or kidneys. Symptoms include anorexia, nausea, vomiting, memory loss, confusion, muscle weakness, increased urination, dehydration, and metabolic bone disease. Chronic hypercalcaemia typically leads to calcification of soft tissue and its serious consequences: for example, calcification can cause loss of elasticity of vascular walls and disruption of laminar blood flow—and thence to Vulnerable plaque, plaque rupture and thrombosis. Conversely, inadequate calcium or vitamin D intakes may result in hypocalcemia, often caused also by inadequate secretion of parathyroid hormone or defective PTH receptors in cells. Symptoms include neuromuscular excitability, which potentially causes tetany and disruption of conductivity in cardiac tissue.


Bone disease

As calcium is required for bone development, many bone diseases can be traced to the organic matrix or the hydroxyapatite in molecular structure or organization of bone. Osteoporosis is a reduction in mineral content of bone per unit volume, and can be treated by supplementation of calcium, vitamin D, and bisphosphonates. Inadequate amounts of calcium, vitamin D, or phosphates can lead to softening of bones, called osteomalacia.


Safety


Metallic calcium

Because calcium reacts exothermically with water and acids, calcium metal coming into contact with bodily moisture results in severe corrosive irritation. When swallowed, calcium metal has the same effect on the mouth, oesophagus, and stomach, and can be fatal.Rumack BH. POISINDEX. Information System Micromedex, Inc., Englewood, CO, 2010; CCIS Volume 143. Hall AH and Rumack BH (Eds) However, long-term exposure is not known to have distinct adverse effects.Hluchan and Pomerantz, pp. 487–89


References


Bibliography

* * {{Authority control Calcium, Chemical elements Alkaline earth metals Dietary minerals Dietary supplements Reducing agents Sodium channel blockers World Health Organization essential medicines Chemical elements with face-centered cubic structure