Cell biology (also cellular biology or cytology) is a branch of
biology that studies the
structure
A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
,
function, and behavior of
cells.
All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living and functioning of organisms.
Cell biology is the study of structural and functional units of cells. Cell biology encompasses both
prokaryotic and
eukaryotic cells and has many subtopics which may include the study of
cell metabolism,
cell communication
In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a Cell (biology), cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property ...
,
cell cycle,
biochemistry, and
cell composition. The study of cells is performed using several
microscopy
Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of micr ...
techniques,
cell culture
Cell culture or tissue culture is the process by which cells are grown under controlled conditions, generally outside of their natural environment. The term "tissue culture" was coined by American pathologist Montrose Thomas Burrows. This te ...
, and
cell fractionation. These have allowed for and are currently being used for discoveries and research pertaining to how cells function, ultimately giving insight into understanding larger organisms. Knowing the components of cells and how cells work is fundamental to all biological sciences while also being essential for research in
biomedical
Biomedicine (also referred to as Western medicine, mainstream medicine or conventional medicine) fields such as
cancer, and other diseases. Research in cell biology is interconnected to other fields such as
genetics,
molecular genetics,
molecular biology,
medical microbiology,
immunology, and
cytochemistry.
History
Cells were first seen in 17th century Europe with the invention of the
compound microscope
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microsco ...
. In 1665,
Robert Hooke
Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
termed the building block of all living organisms as "cells" (published in ''
Micrographia'') after looking at a piece of
cork
Cork or CORK may refer to:
Materials
* Cork (material), an impermeable buoyant plant product
** Cork (plug), a cylindrical or conical object used to seal a container
***Wine cork
Places Ireland
* Cork (city)
** Metropolitan Cork, also known as G ...
and observing a cell-like structure,
however, the cells were dead and gave no indication to the actual overall components of a cell. A few years later, in 1674,
Anton Van Leeuwenhoek was the first to analyze live cells in his examination of
algae
Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular mic ...
. All of this preceded the
cell theory which states that all living things are made up of cells and that cells are the functional and structural unit of organisms. This was ultimately concluded by plant scientist,
Matthias Schleiden
Matthias Jakob Schleiden (; 5 April 1804 – 23 June 1881) was a German botanist and co-founder of cell theory, along with Theodor Schwann and Rudolf Virchow.
Career
Matthias Jakob Schleiden was born in Hamburg. on 5 April 1804. His father was ...
[ and animal scientist Theodor Schwann in 1838, who viewed live cells in plant and animal tissue, respectively.] 19 years later, Rudolf Virchow further contributed to the cell theory, adding that all cells come from the division of pre-existing cells. Viruses are not considered in cell biology – they lack the characteristics of a living cell, and instead are studied in the microbiology
Microbiology () is the scientific study of microorganisms, those being unicellular (single cell), multicellular (cell colony), or acellular (lacking cells). Microbiology encompasses numerous sub-disciplines including virology, bacteriology, prot ...
subclass of virology.
Techniques
Cell biology research looks at different ways to culture and manipulate cells outside of a living body to further research in human anatomy and physiology, and to derive medications. The techniques by which cells are studied have evolved. Due to advancements in microscopy, techniques and technology have allowed scientists to hold a better understanding of the structure and function of cells. Many techniques commonly used to study cell biology are listed below:
* Cell culture
Cell culture or tissue culture is the process by which cells are grown under controlled conditions, generally outside of their natural environment. The term "tissue culture" was coined by American pathologist Montrose Thomas Burrows. This te ...
: Utilizes rapidly growing cells on media which allows for a large amount of a specific cell type and an efficient way to study cells. Cell culture is one of the major tools used in cellular and molecular biology, providing excellent model systems for studying the normal physiology and biochemistry of cells (e.g., metabolic studies, aging), the effects of drugs and toxic compounds on the cells, and mutagenesis and carcinogenesis. It is also used in drug screening and development, and large scale manufacturing of biological compounds (e.g., vaccines, therapeutic proteins).
* Fluorescence microscopy: Fluorescent markers such as GFP GFP may refer to:
Organisations
* Gaelic Football Provence, a French Gaelic Athletic Association club
* Geheime Feldpolizei, the German secret military police during the Second World War
* French Group for the Study of Polymers and their Applicat ...
, are used to label a specific component of the cell. Afterwards, a certain light wavelength is used to excite the fluorescent marker which can then be visualized.
* Phase-contrast microscopy: Uses the optical aspect of light to represent the solid, liquid, and gas-phase changes as brightness differences.
* Confocal microscopy: Combines fluorescence microscopy with imaging by focusing light and snap shooting instances to form a 3-D image.
* Transmission electron microscopy: Involves metal staining and the passing of electrons through the cells, which will be deflected upon interaction with metal. This ultimately forms an image of the components being studied.
* Cytometry: The cells are placed in the machine which uses a beam to scatter the cells based on different aspects and can therefore separate them based on size and content. Cells may also be tagged with GFP-fluorescence and can be separated that way as well.
* Cell fractionation: This process requires breaking up the cell using high temperature or sonification followed by centrifugation
Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate ...
to separate the parts of the cell allowing for them to be studied separately.
Cell types
There are two fundamental classifications of cells: prokaryotic and eukaryotic. Prokaryotic cells are distinguished from eukaryotic cells by the absence of a cell nucleus
The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
or other membrane-bound organelle
In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
. Prokaryotic cells are much smaller than eukaryotic cells, making them the smallest form of life. Prokaryotic cells include Bacteria and Archaea
Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
, and lack an enclosed cell nucleus. Eukaryotic cells are found in plants, animals, fungi, and protists. They range from 10 to 100 μm in diameter, and their DNA is contained within a membrane-bound nucleus. Eukaryotes are organisms containing eukaryotic cells. The four eukaryotic kingdoms are Animalia, Plantae, Fungi, and Protista.
They both reproduce through binary fission. Bacteria, the most prominent type, have several different shapes, although most are spherical or rod-shaped. Bacteria can be classed as either gram-positive or gram-negative depending on the cell wall
A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mech ...
composition. Gram-positive bacteria have a thicker peptidoglycan layer than gram-negative bacteria. Bacterial structural features include a flagellum that helps the cell to move, ribosome
Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
s for the translation of RNA to protein, and a nucleoid
The nucleoid (meaning ''nucleus-like'') is an irregularly shaped region within the prokaryotic cell that contains all or most of the genetic material. The chromosome of a prokaryote is circular, and its length is very large compared to the cell dim ...
that holds all the genetic material in a circular structure. There are many processes that occur in prokaryotic cells that allow them to survive. In prokaryotes, mRNA synthesis is initiated at a promoter sequence on the DNA template comprising two consensus sequences that recruit RNA polymerase. The prokaryotic polymerase consists of a core enzyme of four protein subunits and a σ protein that assists only with initiation. For instance, in a process termed conjugation, the fertility factor allows the bacteria to possess a pilus which allows it to transmit DNA to another bacteria which lacks the F factor, permitting the transmittance of resistance allowing it to survive in certain environments.
Structure and function
Structure of eukaryotic cells
Eukaryotic cells are composed of the following organelles:
* Nucleus: The nucleus of the cell functions as the genome and genetic information storage for the cell, containing all the DNA organized in the form of chromosomes. It is surrounded by a nuclear envelope
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material.
The nuclear envelope consists of two lipid bilayer membrane ...
, which includes nuclear pores allowing for the transportation of proteins between the inside and outside of the nucleus. This is also the site for replication of DNA as well as transcription of DNA to RNA. Afterwards, the RNA is modified and transported out to the cytosol to be translated to protein.
* Nucleolus: This structure is within the nucleus, usually dense and spherical in shape. It is the site of ribosomal RNA (rRNA) synthesis, which is needed for ribosomal assembly.
* Endoplasmic reticulum (ER): This functions to synthesize, store, and secrete proteins to the Golgi apparatus. Structurally, the endoplasmic reticulum is a network of membranes found throughout the cell and connected to the nucleus. The membranes are slightly different from cell to cell and a cell's function determines the size and structure of the ER.
* Mitochondria
A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
: Commonly known as the powerhouse of the cell is a double membrane bound cell organelle. This functions for the production of energy or ATP within the cell. Specifically, this is the place where the Krebs cycle or TCA cycle for the production of NADH and FADH occurs. Afterwards, these products are used within the electron transport chain (ETC) and oxidative phosphorylation for the final production of ATP.
* Golgi apparatus: This functions to further process, package, and secrete the proteins to their destination. The proteins contain a signal sequence that allows the Golgi apparatus to recognize and direct it to the correct place. Golgi apparatus also produce glycoprotein
Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycos ...
s and glycolipid
Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connec ...
s.
* Lysosome: The lysosome functions to degrade material brought in from the outside of the cell or old organelles. This contains many acid hydrolases, proteases, nucleases, and lipases, which break down the various molecules. Autophagy
Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
is the process of degradation through lysosomes which occurs when a vesicle buds off from the ER and engulfs the material, then, attaches and fuses with the lysosome to allow the material to be degraded.
* Ribosome
Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to ...
s: Functions to translate RNA to protein. it serves as a site of protein synthesis.
* Cytoskeleton: Cytoskeleton is a structure that helps to maintain the shape and general organization of the cytoplasm. It anchors organelles within the cells and makes up the structure and stability of the cell. The cytoskeleton is composed of three principal types of protein filaments: actin filaments, intermediate filaments, and microtubules, which are held together and linked to subcellular organelles and the plasma membrane by a variety of accessory proteins.
* Cell membrane: The cell membrane can be described as a phospholipid bilayer and is also consisted of lipids and proteins. Because the inside of the bilayer is hydrophobic and in order for molecules to participate in reactions within the cell, they need to be able to cross this membrane layer to get into the cell via osmotic pressure
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane.
It is also defined as the measure of the tendency of a solution to take in a pure ...
, diffusion, concentration gradients, and membrane channels.
* Centriole
In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. Centrioles are found in most eukaryotic cells, but are not present in conifers (Pinophyta), flowering plants (angiosperms) and most fungi, and a ...
s: Function to produce spindle fibers which are used to separate chromosomes during cell division.
Eukaryotic cells may also be composed of the following molecular components:
* Chromatin: This makes up chromosomes and is a mixture of DNA with various proteins.
* Cilia
The cilium, plural cilia (), is a membrane-bound organelle found on most types of eukaryotic cell, and certain microorganisms known as ciliates. Cilia are absent in bacteria and archaea. The cilium has the shape of a slender threadlike projecti ...
: They help to propel substances and can also be used for sensory purposes.
Cell metabolism
Cell metabolism is necessary for the production of energy for the cell and therefore its survival and includes many pathways. For cellular respiration, once glucose is available, glycolysis occurs within the cytosol of the cell to produce pyruvate. Pyruvate undergoes decarboxylation using the multi-enzyme complex to form acetyl coA which can readily be used in the TCA cycle to produce NADH and FADH2. These products are involved in the electron transport chain
An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
to ultimately form a proton gradient across the inner mitochondrial membrane. This gradient can then drive the production of ATP and H2O during oxidative phosphorylation
Oxidative phosphorylation (UK , US ) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine tri ...
. Metabolism in plant cells includes photosynthesis which is simply the exact opposite of respiration as it ultimately produces molecules of glucose.
Cell signaling
Cell signaling or cell communication is important for cell regulation and for cells to process information from the environment and respond accordingly. Signaling can occur through direct cell contact or endocrine
The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is the neu ...
, paracrine, and autocrine signaling. Direct cell-cell contact is when a receptor on a cell binds a molecule that is attached to the membrane of another cell. Endocrine signaling occurs through molecules secreted into the bloodstream. Paracrine signaling uses molecules diffusing between two cells to communicate. Autocrine is a cell sending a signal to itself by secreting a molecule that binds to a receptor on its surface. Forms of communication can be through:
* Ion channel
Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of io ...
s: Can be of different types such as voltage or ligand gated ion channels. They allow for the outflow and inflow of molecules and ions.
* G-protein coupled receptor (GPCR): Is widely recognized to contain seven transmembrane domains. The ligand binds on the extracellular domain and once the ligand binds, this signals a guanine exchange factor to convert GDP to GTP and activate the G-α subunit. G-α can target other proteins such as adenyl cyclase or phospholipase C, which ultimately produce secondary messengers such as cAMP, Ip3, DAG, and calcium. These secondary messengers function to amplify signals and can target ion channels or other enzymes. One example for amplification of a signal is cAMP binding to and activating PKA by removing the regulatory subunits and releasing the catalytic subunit. The catalytic subunit has a nuclear localization sequence which prompts it to go into the nucleus and phosphorylate other proteins to either repress or activate gene activity.
* Receptor tyrosine kinases: Bind growth factors, further promoting the tyrosine on the intracellular portion of the protein to cross phosphorylate. The phosphorylated tyrosine becomes a landing pad for proteins containing an SH2 domain allowing for the activation of Ras and the involvement of the MAP kinase pathway.
Growth and development
Eukaryotic cell cycle
Cells are the foundation of all organisms and are the fundamental units of life. The growth and development of cells are essential for the maintenance of the host and survival of the organism. For this process, the cell goes through the steps of the cell cycle and development which involves cell growth, DNA replication, cell division, regeneration, and cell death.
The cell cycle is divided into four distinct phases: G1, S, G2, and M. The G phase – which is the cell growth phase – makes up approximately 95% of the cycle. The proliferation of cells is instigated by progenitors. All cells start out in an identical form and can essentially become any type of cells. Cell signaling such as induction can influence nearby cells to determinate the type of cell it will become. Moreover, this allows cells of the same type to aggregate and form tissues, then organs, and ultimately systems. The G1, G2, and S phase (DNA replication, damage and repair) are considered to be the interphase portion of the cycle, while the M phase (mitosis
In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
) is the cell division portion of the cycle. Mitosis is composed of many stages which include, prophase, metaphase, anaphase, telophase, and cytokinesis, respectively. The ultimate result of mitosis is the formation of two identical daughter cells.
The cell cycle is regulated in cell cycle checkpoints, by a series of signaling factors and complexes such as cyclins, cyclin-dependent kinase
Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They a ...
, and p53. When the cell has completed its growth process and if it is found to be damaged or altered, it undergoes cell death, either by apoptosis
Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
or necrosis
Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated dige ...
, to eliminate the threat it can cause to the organism's survival.
Cell mortality, cell lineage immortality
The ancestry of each present day cell presumably traces back, in an unbroken lineage for over 3 billion years to the origin of life. It is not actually cells that are immortal but multi-generational cell lineages.[Bernstein C, Bernstein H, Payne C. Cell immortality: maintenance of cell division potential. Prog Mol Subcell Biol. 2000;24:23-50. . PMID 10547857.] The immortality of a cell lineage depends on the maintenance of cell division potential. This potential may be lost in any particular lineage because of cell damage, terminal differentiation
Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
as occurs in nerve cells, or programmed cell death (apoptosis
Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
) during development. Maintenance of cell division potential over successive generations depends on the avoidance and the accurate repair of cellular damage, particularly DNA damage. In sexual organisms, continuity of the germline
In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
depends on the effectiveness of processes for avoiding DNA damage and repairing those DNA damages that do occur. Sexual processes in eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s, as well as in prokaryotes, provide an opportunity for effective repair of DNA damages in the germ line by homologous recombination.[
]
Cell cycle phases
The cell cycle is a four-stage process that a cell goes through as it develops and divides. It includes Gap 1 (G1), synthesis (S), Gap 2 (G2), and mitosis (M).The cell either restarts the cycle from G1 or leaves the cycle through G0 after completing the cycle. The cell can progress from G0 through terminal differentiation.
The interphase refers to the phases of the cell cycle that occur between one mitosis and the next, and includes G1, S, and G2.
G1 phase
The size of the cell grows.
The contents of cells are replicated.
S phase
Replication of DNA
The cell replicates each of the 46 chromosomes (23 pairs).
G2 phase
The cell multiplies.
In preparation for cell division, organelles and proteins form.
M phase
After mitosis, cytokinesis occurs (cell separation)
Formation of two daughter cells that are identical
G0 phase
These cells leave G1 and enter G0, a resting stage. A cell in G0 is doing its job without actively preparing to divide.
Pathology
The scientific branch that studies and diagnoses diseases on the cellular level is called cytopathology. Cytopathology is generally used on samples of free cells or tissue fragments, in contrast to the pathology branch of histopathology
Histopathology (compound of three Greek words: ''histos'' "tissue", πάθος ''pathos'' "suffering", and -λογία '' -logia'' "study of") refers to the microscopic examination of tissue in order to study the manifestations of disease. Spe ...
, which studies whole tissues. Cytopathology is commonly used to investigate diseases involving a wide range of body sites, often to aid in the diagnosis of cancer but also in the diagnosis of some infectious diseases and other inflammatory conditions. For example, a common application of cytopathology is the Pap smear, a screening test used to detect cervical cancer
Cervical cancer is a cancer arising from the cervix. It is due to the abnormal growth of cells that have the ability to invade or spread to other parts of the body. Early on, typically no symptoms are seen. Later symptoms may include abnormal ...
, and precancerous cervical lesions that may lead to cervical cancer.
Cell cycle checkpoints and DNA damage repair system
The cell cycle is composed of a number of well-ordered, consecutive stages that result in cellular division. The fact that cells do not begin the next stage until the last one is finished, is a significant element of cell cycle regulation. Cell cycle checkpoints are characteristics that constitute an excellent monitoring strategy for accurate cell cycle and divisions. Cdks, associated cyclin counterparts, protein kinases, and phosphatases regulate cell growth and division from one stage to another. The cell cycle is controlled by the temporal activation of Cdks, which is governed by cyclin partner interaction, phosphorylation by particular protein kinases, and de-phosphorylation by Cdc25 family phosphatases. In response to DNA damage, a cell's DNA repair reaction is a cascade of signaling pathways that leads to checkpoint engagement, regulates, the repairing mechanism in DNA, cell cycle alterations, and apoptosis. Numerous biochemical structures, as well as processes that detect damage in DNA, are ATM and ATR, which induce the DNA repair checkpoints
The cell cycle is a sequence of activities in which cell organelles are duplicated and subsequently separated into daughter cells with precision. There are major events that happen during a cell cycle. The processes that happen in the cell cycle include cell development, replication and segregation of chromosomes. The cell cycle checkpoints are surveillance systems that keep track of the cell cycle's integrity, accuracy, and chronology. Each checkpoint serves as an alternative cell cycle endpoint, wherein the cell's parameters are examined and only when desirable characteristics are fulfilled does the cell cycle advance through the distinct steps.The cell cycle's goal is to precisely copy each organism's DNA and afterwards equally split the cell and its components between the two new cells. Four main stages occur in the eukaryotes. In G1, the cell is usually active and continues to grow rapidly, while in G2, the cell growth continues while protein molecules become ready for separation. These are not dormant times; they are when cells gain mass, integrate growth factor receptors, establish a replicated genome, and prepare for chromosome segregation. DNA replication is restricted to a separate Synthesis in eukaryotes, which is also known as the S-phase. During mitosis, which is also known as the M-phase, the segregation of the chromosomes occur. DNA, like every other molecule, is capable of undergoing a wide range of chemical reactions. Modifications in DNA's sequence, on the other hand, have a considerably bigger impact than modifications in other cellular constituents like RNAs or proteins because DNA acts as a permanent copy of the cell genome. When erroneous nucleotides are incorporated during DNA replication, mutations can occur. The majority of DNA damage is fixed by removing the defective bases and then re-synthesizing the excised area. On the other hand, some DNA lesions can be mended by reversing the damage, which may be a more effective method of coping with common types of DNA damage. Only a few forms of DNA damage are mended in this fashion, including pyrimidine dimers caused by ultraviolet (UV) light changed by the insertion of methyl or ethyl groups at the purine ring's O6 position.
Mitochondrial membrane dynamics
Mitochondria are commonly referred to as the cell's "powerhouses" because of their capacity to effectively produce ATP which is essential to maintain cellular homeostasis and metabolism. Moreover, researchers have gained a better knowledge of mitochondria's significance in cell biology because of the discovery of cell signaling pathways by mitochondria which are crucial platforms for cell function regulation such as apoptosis. Its physiological adaptability is strongly linked to the cell mitochondrial channel's ongoing reconfiguration through a range of mechanisms known as mitochondrial membrane dynamics, which include endomembrane fusion and fragmentation (separation) as well as ultrastructural membrane remodeling. As a result, mitochondrial dynamics regulate and frequently choreograph not only metabolic but also complicated cell signaling processes such as cell pluripotent stem cells, proliferation, maturation, aging, and mortality. Mutually, post-translational alterations of mitochondrial apparatus and the development of transmembrane contact sites among mitochondria and other structures, which both have the potential to link signals from diverse routes that affect mitochondrial membrane dynamics substantially, Mitochondria are wrapped by two membranes: an inner mitochondrial membrane (IMM) and an outer mitochondrial membrane (OMM), each with a distinctive function and structure, which parallels their dual role as cellular powerhouses and signaling organelles. The inner mitochondrial membrane divides the mitochondrial lumen into two parts: the inner border membrane, which runs parallel to the OMM, and the cristae, which are deeply twisted, multinucleated invaginations that give room for surface area enlargement and house the mitochondrial respiration apparatus. The outer mitochondrial membrane, on the other hand, is soft and permeable. It, therefore, acts as a foundation for cell signaling pathways to congregate, be deciphered, and be transported into mitochondria. Furthermore, the OMM connects to other cellular organelles, such as the endoplasmic reticulum (ER), lysosomes, endosomes, and the plasma membrane. Mitochondria play a wide range of roles in cell biology, which is reflected in their morphological diversity. Ever since the beginning of the mitochondrial study, it has been well documented that mitochondria can have a variety of forms, with both their general and ultra-structural morphology varying greatly among cells, during the cell cycle, and in response to metabolic or cellular cues. Mitochondria can exist as independent organelles or as part of larger systems; they can also be unequally distributed in the cytosol through regulated mitochondrial transport and placement to meet the cell's localized energy requirements. Mitochondrial dynamics refers to the adaptive and variable aspect of mitochondria, including their shape and subcellular distribution.
Autophagy
Autophagy is a self-degradative mechanism that regulates energy sources during growth and reaction to dietary stress. Autophagy also cleans up after itself, clearing aggregated proteins, cleaning damaged structures including mitochondria and endoplasmic reticulum and eradicating intracellular infections. Additionally, autophagy has antiviral and antibacterial roles within the cell, and it is involved at the beginning of distinctive and adaptive immune responses to viral and bacterial contamination. Some viruses include virulence proteins that prevent autophagy, while others utilize autophagy elements for intracellular development or cellular splitting. Macro autophagy, micro autophagy, and chaperon-mediated autophagy are the three basic types of autophagy. When macro autophagy is triggered, an exclusion membrane incorporates a section of the cytoplasm, generating the autophagosome, a distinctive double-membraned organelle. The autophagosome then joins the lysosome to create an autolysosome, with lysosomal enzymes degrading the components. In micro autophagy, the lysosome or vacuole engulfs a piece of the cytoplasm by invaginating or protruding the lysosomal membrane to enclose the cytosol or organelles. The chaperone-mediated autophagy (CMA) protein quality assurance by digesting oxidized and altered proteins under stressful circumstances and supplying amino acids through protein denaturation. Autophagy is the primary intrinsic degradative system for peptides, fats, carbohydrates, and other cellular structures. In both physiologic and stressful situations, this cellular progression is vital for upholding the correct cellular balance. Autophagy instability leads to a variety of illness symptoms, including inflammation, biochemical disturbances, aging, and neurodegenerative, due to its involvement in controlling cell integrity. The modification of the autophagy-lysosomal networks is a typical hallmark of many neurological and muscular illnesses. As a result, autophagy has been identified as a potential strategy for the prevention and treatment of various disorders. Many of these disorders are prevented or improved by consuming polyphenol in the meal. As a result, natural compounds with the ability to modify the autophagy mechanism are seen as a potential therapeutic option. The creation of the double membrane (phagophore), which would be known as nucleation, is the first step in macro-autophagy. The phagophore approach indicates dysregulated polypeptides or defective organelles that come from the cell membrane, Golgi apparatus, endoplasmic reticulum, and mitochondria. With the conclusion of the autophagocyte, the phagophore's enlargement comes to an end. The auto-phagosome combines with the lysosomal vesicles to formulate an auto-lysosome that degrades the encapsulated substances, referred to as phagocytosis.
Notable cell biologists
* Jean Baptiste Carnoy
Jean Baptiste Carnoy (11 January 1836 – 6 September 1899), born in Rumillies (Belgium), was a Roman Catholic priest and a scientist in the field of cytology. He made the initial explanation of the real nature of the albuminoid membrane, and co ...
* Peter Agre
Peter Agre (born January 30, 1949) is an American physician, Nobel Laureate, and molecular biologist, Bloomberg Distinguished Professor at the Johns Hopkins Bloomberg School of Public Health and Johns Hopkins School of Medicine, and director ...
* Günter Blobel
* Robert Brown
* Geoffrey M. Cooper
Geoffrey M. Cooper is professor of biology at Boston University. He served as chair of the department of biology for a number of years, and subsequently as associate dean of the faculty for the natural sciences in the university's college of arts ...
* Christian de Duve
* Robert Hooke
Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
* H. Robert Horvitz
* Marc Kirschner
Marc Wallace Kirschner (born February 28, 1945) is an American cell biologist and biochemist and the founding chair of the Department of Systems Biology at Harvard Medical School. He is known for major discoveries in cell and developmental biolog ...
* Anton van Leeuwenhoek
* Ira Mellman
Ira Mellman is an American cell biologist who discovered endosomes. He serves as Vice President of Research Oncology at Genentech in South San Francisco, California.
Research
Mellman's work has examined the role of endocytosis in cell metabol ...
* Peter D. Mitchell
* Rudolf Virchow
* Paul Nurse
Sir Paul Maxime Nurse (born 25 January 1949) is an English geneticist, former President of the Royal Society and Chief Executive and Director of the Francis Crick Institute. He was awarded the 2001 Nobel Prize in Physiology or Medicine alon ...
* George Emil Palade
George Emil Palade (; November 19, 1912 – October 7, 2008) was a Romanian cell biologist. Described as "the most influential cell biologist ever",
* Keith R. Porter
Keith Roberts Porter (June 11, 1912 – May 2, 1997) was a Canadian-American cell biologist. He created pioneering biology techniques and research using electron microscopy of cells. Porter also contributed to the development of other experiment ...
* Ray Rappaport
Ray Rappaport (May 21, 1922 – December 14, 2010) was an American cell biologist. He did pioneering research using physical manipulations of cells to understand the mechanisms of cytokinesis, the process by which a cell's cytoplasm is divided in t ...
* Michael Swann
* Roger Tsien
Roger Yonchien Tsien (pronounced , "'' CHEN''"'';'' February 1, 1952 – August 24, 2016) was an American biochemist. He was a professor of chemistry and biochemistry at the University of California, San Diego and was awarded the Nobel Prize in ...
* Edmund Beecher Wilson
* Kenneth R. Miller
Kenneth Raymond Miller (born July 14, 1948) is an American cell biologist, molecular biologist, and former biology professor. Miller's primary research focus is the structure and function of cell membranes, especially chloroplast thylakoid membra ...
* Matthias Jakob Schleiden
* Theodor Schwann
* Yoshinori Ohsumi
* Jan Evangelista Purkyně
See also
* The American Society for Cell Biology
* Cell biophysics Cell biophysics (or cellular biophysics) is a sub-field of biophysics that focuses on physical principles underlying cell function. Sub-areas of current interest include statistical models of intracellular signaling dynamics, intracellular transport ...
* Cell disruption
* Cell physiology
* Cellular adaptation
* Cellular microbiology
Cellular microbiology is a discipline that bridges microbiology and cell biology.
The term "cellular microbiology" was coined by the authors of the book of the same title published in 1996. Cooperation and mutual dependency between microbiology ...
* Institute of Molecular and Cell Biology (disambiguation)
* Meiomitosis
In cell biology, Meiomitosis is an aberrant cellular division pathway that combines normal mitosis pathways with ectopically expressed meiotic machinery resulting in genomic instability.
Description
Meiotic pathways are normally restricted to ...
* Organoid
* Outline of cell biology
Notes
References
* electronic-book electronic-
* Cell and Molecular Biology by Karp 5th Ed.,
*
External links
*
*
*
Aging Cell
'
"Francis Harry Compton Crick (1916-2004)" by A. Andrei at the Embryo Project Encyclopedia
"Biology Resource By Professor Lin."
{{DEFAULTSORT:Cell Biology