16-cell
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the 16-cell is the
regular convex 4-polytope In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star reg ...
(four-dimensional analogue of a Platonic solid) with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician
Ludwig Schläfli Ludwig Schläfli (15 January 1814 – 20 March 1895) was a Swiss mathematician, specialising in geometry and complex analysis (at the time called function theory) who was one of the key figures in developing the notion of higher-dimensional space ...
in the mid-19th century. It is also called C16, hexadecachoron, or hexdecahedroid .Matila Ghyka, ''The Geometry of Art and Life'' (1977), p.68 It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes'', and is analogous to the
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
in three dimensions. It is Coxeter's \beta_4 polytope. Conway's name for a cross-polytope is orthoplex, for ''
orthant In geometry, an orthant or hyperoctant is the analogue in ''n''-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions. In general an orthant in ''n''-dimensions can be considered the intersection of ''n'' mutua ...
complex''. The
dual polytope In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other ...
is the
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
(4-
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
), which it can be combined with to form a compound figure. The 16-cell has 16 cells as the tesseract has 16 vertices.


Geometry

The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). Each of its 4 successor convex regular 4-polytopes can be constructed as the
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of a
polytope compound In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram. The outer vertices of a compound can be connecte ...
of multiple 16-cells: the 16-vertex
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
as a compound of two 16-cells, the 24-vertex 24-cell as a compound of three 16-cells, the 120-vertex
600-cell In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
as a compound of fifteen 16-cells, and the 600-vertex
120-cell In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, heca ...
as a compound of seventy-five 16-cells.


Coordinates

The 16-cell is the 4-dimensional
cross polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
, which means its vertices lie in opposite pairs on the 4 axes of a (w, x, y, z) Cartesian coordinate system. The eight vertices are (±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), (0, 0, 0, ±1). All vertices are connected by edges except opposite pairs. The edge length is . The vertex coordinates form 6 orthogonal central squares lying in the 6 coordinate planes. Squares in ''opposite'' planes that do not share an axis (e.g. in the ''xy'' and ''wz'' planes) are completely disjoint (they do not intersect at any vertices). The 16-cell constitutes an orthonormal ''basis'' for the choice of a 4-dimensional reference frame, because its vertices exactly define the four orthogonal axes.


Structure

The
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
of the 16-cell is , indicating that its cells are regular tetrahedra and its
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
is a
regular octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
. There are 8 tetrahedra, 12 triangles, and 6 edges meeting at every vertex. Its
edge figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
is a square. There are 4 tetrahedra and 4 triangles meeting at every edge. The 16-cell is bounded by 16 cells, all of which are regular
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
. It has 32
triangular A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- collinea ...
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
, 24 edges, and 8 vertices. The 24 edges bound 6 orthogonal central squares lying on
great circles In mathematics, a great circle or orthodrome is the circle, circular Intersection (geometry), intersection of a sphere and a Plane (geometry), plane incidence (geometry), passing through the sphere's centre (geometry), center point. Any Circula ...
in the 6 coordinate planes (3 pairs of completely orthogonal great squares). At each vertex, 3 great squares cross perpendicularly. The 6 edges meet at the vertex the way 6 edges meet at the
apex The apex is the highest point of something. The word may also refer to: Arts and media Fictional entities * Apex (comics), a teenaged super villainess in the Marvel Universe * Ape-X, a super-intelligent ape in the Squadron Supreme universe *Apex, ...
of a canonical octahedral pyramid.


Rotations

Rotations in 4-dimensional Euclidean space In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article '' rotation'' means ''rotational ...
can be seen as the composition of two 2-dimensional rotations in completely orthogonal planes. The 16-cell is a simple frame in which to observe 4-dimensional rotations, because each of the 16-cell's 6 great squares has another completely orthogonal great square (there are 3 pairs of completely orthogonal squares). Many rotations of the 16-cell can be characterized by the angle of rotation in one of its great square planes (e.g. the ''xy'' plane) and another angle of rotation in the completely orthogonal great square plane (the ''wz'' plane). Completely orthogonal great squares have disjoint vertices: 4 of the 16-cell's 8 vertices rotate in one plane, and the other 4 rotate independently in the completely orthogonal plane. In 2 or 3 dimensions a rotation is characterized by a single plane of rotation; this kind of rotation taking place in 4-space is called a simple rotation, in which only one of the two completely orthogonal planes rotates (the angle of rotation in the other plane is 0). In the 16-cell, a simple rotation in one of the 6 orthogonal planes moves only 4 of the 8 vertices; the other 4 remain fixed. (In the simple rotation animation above, all 8 vertices move because the plane of rotation is not one of the 6 orthogonal basis planes.) In a
double rotation In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article ''rotation'' means ''rotational di ...
both sets of 4 vertices move, but independently: the angles of rotation may be different in the 2 completely orthogonal planes. If the two angles happen to be the same, a maximally symmetric
isoclinic rotation In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article ''rotation'' means ''rotational di ...
takes place. In the 16-cell an isoclinic rotation by 90 degrees of any pair of completely orthogonal square planes takes every square plane to its completely orthogonal square plane.


Constructions


Octahedral dipyramid

The simplest construction of the 16-cell is on the 3-dimensional cross polytope, the
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
. The octahedron has 3 perpendicular axes and 6 vertices in 3 opposite pairs (its
Petrie polygon In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a reg ...
is the
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
). Add another pair of vertices, on a fourth axis perpendicular to all 3 of the other axes. Connect each new vertex to all 6 of the original vertices, adding 12 new edges. This raises two octahedral pyramids on a shared octahedron base that lies in the 16-cell's central hyperplane. The octahedron that the construction starts with has three perpendicular intersecting squares (which appear as rectangles in the hexagonal projections). Each square intersects with each of the other squares at two opposite vertices, with ''two'' of the squares crossing at each vertex. Then two more points are added in the fourth dimension (above and below the 3-dimensional hyperplane). These new vertices are connected to all the octahedron's vertices, creating 12 new edges and ''three more squares'' (which appear edge-on as the 3 ''diameters'' of the hexagon in the projection), and three more octahedra. Something unprecedented has also been created. Notice that each square no longer intersects with ''all'' of the other squares: it does intersect with four of them (with ''three'' of the squares crossing at each vertex now), but each square has ''one'' other square with which it shares ''no'' vertices: it is not directly connected to that square at all. These two ''separate'' perpendicular squares (there are three pairs of them) are like the opposite edges of a
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
: perpendicular, but non-intersecting. They lie opposite each other (parallel in some sense), and they don't touch, but they also pass through each other like two perpendicular links in a chain (but unlike links in a chain they have a common center). They are an example of ''Clifford parallel planes'', and the 16-cell is the simplest regular polytope in which they occur. Clifford parallelism of objects of more than one dimension (more than just curved ''lines'') emerges here and occurs in all the subsequent 4-dimensional regular polytopes, where it can be seen as the defining relationship ''among'' disjoint regular 4-polytopes and their concentric parts. It can occur between congruent (similar) polytopes of 2 or more dimensions. For example, as noted above all the subsequent convex regular 4-polytopes are compounds of multiple 16-cells; those 16-cells are Clifford parallel polytopes.


Tetrahedral constructions

The 16-cell has two
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
s from regular tetrahedra, a regular form and alternated form, shown here as nets, the second represented by tetrahedral cells of two alternating colors. The alternated form is a lower symmetry construction of the 16-cell called the
demitesseract In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the m ...
. Wythoff's construction replicates the 16-cell's characteristic 5-cell in a
kaleidoscope A kaleidoscope () is an optical instrument with two or more reflecting surfaces (or mirrors) tilted to each other at an angle, so that one or more (parts of) objects on one end of these mirrors are shown as a regular symmetrical pattern when v ...
of mirrors. Every regular 4-polytope has its characteristic 4-orthoscheme, an irregular 5-cell. There are three regular 4-polytopes with tetrahedral cells: the
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
, the 16-cell, and the
600-cell In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
. Although all are bounded by ''regular'' tetrahedron cells, their characteristic 5-cells (4-orthoschemes) are different tetrahedral pyramids, all based on the same characteristic ''irregular'' tetrahedron. They share the same characteristic tetrahedron (3-orthoscheme) and characteristic
right triangle A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right a ...
(2-orthoscheme) because they have the same kind of cell. The characteristic 5-cell of the regular 16-cell is represented by the Coxeter-Dynkin diagram , which can be read as a list of the dihedral angles between its mirror facets. It is an irregular tetrahedral pyramid based on the characteristic tetrahedron of the regular tetrahedron. The regular 16-cell is subdivided by its symmetry hyperplanes into 384 instances of its characteristic 5-cell that all meet at its center. The characteristic 5-cell (4-orthoscheme) has four more edges than its base characteristic tetrahedron (3-orthoscheme), joining the four vertices of the base to its apex (the fifth vertex of the 4-orthoscheme, at the center of the regular 16-cell). If the regular 16-cell has unit radius edge and edge length 𝒍 = \sqrt, its characteristic 5-cell's ten edges have lengths \sqrt, \sqrt, \sqrt (the exterior right triangle face, the ''characteristic triangle'' 𝟀, 𝝓, 𝟁), plus \sqrt, \sqrt, \sqrt (the other three edges of the exterior 3-orthoscheme facet the characteristic tetrahedron, which are the ''characteristic radii'' of the regular tetrahedron), plus 1, \sqrt, \sqrt, \sqrt (edges which are the characteristic radii of the regular 16-cell). The 4-edge path along orthogonal edges of the orthoscheme is \sqrt, \sqrt, \sqrt, \sqrt, first from a 16-cell vertex to a 16-cell edge center, then turning 90° to a 16-cell face center, then turning 90° to a 16-cell tetrahedral cell center, then turning 90° to the 16-cell center.


Helical construction

A 16-cell can be constructed (three different ways) from two
Boerdijk–Coxeter helix The Boerdijk–Coxeter helix, named after H. S. M. Coxeter and A. H. Boerdijk, is a linear stacking of regular tetrahedra, arranged so that the edges of the complex that belong to only one tetrahedron form three intertwined helices. There are ...
es of eight chained tetrahedra, each bent in the fourth dimension into a ring. The two circular helixes spiral around each other, nest into each other and pass through each other forming a
Hopf link In mathematical knot theory, the Hopf link is the simplest nontrivial link with more than one component. It consists of two circles linked together exactly once, and is named after Heinz Hopf. Geometric realization A concrete model consists o ...
. The 16 triangle faces can be seen in a 2D net within a
triangular tiling In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilate ...
, with 6 triangles around every vertex. The purple edges represent the
Petrie polygon In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a reg ...
of the 16-cell. The eight-cell ring of tetrahedra contains three
octagram In geometry, an octagram is an eight-angled star polygon. The name ''octagram'' combine a Greek numeral prefix, '' octa-'', with the Greek suffix '' -gram''. The ''-gram'' suffix derives from γραμμή (''grammḗ'') meaning "line". Deta ...
s of different colors, eight-edge circular paths that wind twice around the 16-cell on every third vertex of the octagram. The orange and yellow edges are two four-edge halves of one octagram, which join their ends to form a Möbius strip. Thus the 16-cell can be decomposed into two similar cell-disjoint circular chains of eight tetrahedrons each, four edges long. This decomposition can be seen in a 4-4
duoantiprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
construction of the 16-cell: or ,
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
⨂ or ss,
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
,2+,4 order 64. Three eight-edge paths (of different colors) spiral along each eight-cell ring, making 90° angles at each vertex. (In the Boerdijk–Coxeter helix before it is bent into a ring, the angles in different paths vary, but are not 90°.) Three paths (with three different colors and apparent angles) pass through each vertex. When the helix is bent into a ring, the segments of each eight-edge path (of various lengths) join their ends, forming a Möbius strip eight edges long along its single-sided circumference, and one edge wide. The six four-edge halves of the three eight-edge paths each make four 90° angles, but they are ''not'' the six orthogonal great squares: they are open-ended squares, four-edge 360° helices whose open ends are antipodal vertices. The four edges come from four different great squares, and are mutually orthogonal. Combined end-to-end in pairs of the same chirality, the six four-edge paths make three eight-edge Möbius loops. Each eight-edge helix is a
skew Skew may refer to: In mathematics * Skew lines, neither parallel nor intersecting. * Skew normal distribution, a probability distribution * Skew field or division ring * Skew-Hermitian matrix * Skew lattice * Skew polygon, whose vertices do not ...
octagram In geometry, an octagram is an eight-angled star polygon. The name ''octagram'' combine a Greek numeral prefix, '' octa-'', with the Greek suffix '' -gram''. The ''-gram'' suffix derives from γραμμή (''grammḗ'') meaning "line". Deta ...
that winds twice around the 16-cell and visits every vertex before closing into a loop. Its eight edges are the circular path-near-edges of an ''isocline'', a geodesic arc on which vertices move during an isoclinic rotation. The isoclines connect opposite vertices of face-bonded tetrahedral cells, which are also opposite vertices (antipodal vertices) of the 16-cell, so the isoclines have chords. The isocline winds around the 16-cell twice (720°) the way the edges of the
octagram In geometry, an octagram is an eight-angled star polygon. The name ''octagram'' combine a Greek numeral prefix, '' octa-'', with the Greek suffix '' -gram''. The ''-gram'' suffix derives from γραμμή (''grammḗ'') meaning "line". Deta ...
wind around twice, passing alongside each of the edges once, and alongside each of the orthogonal axes of the 16-cell twice. The eight-cell ring is
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from ...
: there is a right-handed form which spirals clockwise, and a left-handed form which spirals counterclockwise. The 16-cell contains one of each, so it also contains a left and a right isocline; the isocline is the circular axis around which the eight-cell ring twists. Each isocline visits all eight vertices of the 16-cell, so the pair of fibers is not a fibration of the 16-cell. Each eight-cell ring contains half of the 16 cells, but all 8 vertices; the two rings share the vertices. They also share the 24 edges, though they each contain three different eight-edge paths. Each left-right pair of rings contains 6 octagram helices, three left-handed and three right-handed, but only one left-right pair of isoclines. The left and right isoclines are Clifford parallel ''and'' completely orthogonal. At each vertex, there are three great squares and eight octagram isoclines (a left and a right of each fibration) that cross at the vertex and share a 16-cell axis chord.


As a configuration

This configuration matrix represents the 16-cell. The rows and columns correspond to vertices, edges, faces, and cells. The diagonal numbers say how many of each element occur in the whole 16-cell. The nondiagonal numbers say how many of the column's element occur in or at the row's element. \begin\begin8 & 6 & 12 & 8 \\ 2 & 24 & 4 & 4 \\ 3 & 3 & 32 & 2 \\ 4 & 6 & 4 & 16 \end\end


Tessellations

One can
tessellate A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
4-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
by regular 16-cells. This is called the 16-cell honeycomb and has
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
. Hence, the 16-cell has a
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the uni ...
of 120°. Each 16-cell has 16 neighbors with which it shares a tetrahedron, 24 neighbors with which it shares only an edge, and 72 neighbors with which it shares only a single point. Twenty-four 16-cells meet at any given vertex in this tessellation. The dual tessellation, the
24-cell honeycomb In Four-dimensional space, four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular polytope, regular space-filling tessellation (or honeycomb (geometry), honeycomb) of 4-dimensional Euclidean space by ...
, , is made of regular 24-cells. Together with the
tesseractic honeycomb In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol , and constructed by a 4-dimensional packing of tesseract facets. Its ver ...
these are the only three
regular tessellations The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * Regular (Badfinger song), "Regular" (Badfinger song) * Regular tuni ...
of R4.


Projections

The cell-first parallel projection of the 16-cell into 3-space has a cubical envelope. The closest and farthest cells are projected to inscribed tetrahedra within the cube, corresponding with the two possible ways to inscribe a regular tetrahedron in a cube. Surrounding each of these tetrahedra are 4 other (non-regular) tetrahedral volumes that are the images of the 4 surrounding tetrahedral cells, filling up the space between the inscribed tetrahedron and the cube. The remaining 6 cells are projected onto the square faces of the cube. In this projection of the 16-cell, all its edges lie on the faces of the cubical envelope. The cell-first perspective projection of the 16-cell into 3-space has a triakis tetrahedral envelope. The layout of the cells within this envelope are analogous to that of the cell-first parallel projection. The vertex-first parallel
projection Projection, projections or projective may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphic ...
of the 16-cell into 3-space has an
octahedral In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet a ...
envelope An envelope is a common packaging item, usually made of thin, flat material. It is designed to contain a flat object, such as a letter or card. Traditional envelopes are made from sheets of paper cut to one of three shapes: a rhombus, a sh ...
. This octahedron can be divided into 8 tetrahedral volumes, by cutting along the coordinate planes. Each of these volumes is the image of a pair of cells in the 16-cell. The closest vertex of the 16-cell to the viewer projects onto the center of the octahedron. Finally the edge-first parallel projection has a shortened octahedral envelope, and the face-first parallel projection has a
hexagonal bipyramid A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles. Although it is face-transitiv ...
al envelope.


4 sphere Venn diagram

A 3-dimensional projection of the 16-cell and 4 intersecting spheres (a
Venn diagram A Venn diagram is a widely used diagram style that shows the logical relation between set (mathematics), sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple ...
of 4 sets) are topologically equivalent.


Symmetry constructions

The 16-cell's
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient ...
is denoted B4. There is a lower symmetry form of the ''16-cell'', called a demitesseract or 4-demicube, a member of the
demihypercube In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''- polytopes constructed from alternation of an ''n''- hypercube, labeled as ''hγn'' for being ''half'' of the hy ...
family, and represented by h, and
Coxeter diagram Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
s or . It can be drawn bicolored with alternating
tetrahedral In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
cells. It can also be seen in lower symmetry form as a tetrahedral antiprism, constructed by 2 parallel
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
in dual configurations, connected by 8 (possibly elongated) tetrahedra. It is represented by s, and Coxeter diagram: . It can also be seen as a snub 4-
orthotope In geometry, an orthotopeCoxeter, 1973 (also called a hyperrectangle or a box) is the generalization of a rectangle to higher dimensions. A necessary and sufficient condition is that it is congruent to the Cartesian product of intervals. If all o ...
, represented by s, and Coxeter diagram: or . With the
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
constructed as a 4-4
duoprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
, the 16-cell can be seen as its dual, a 4-4
duopyramid In geometry of 4 dimensions or higher, a double pyramid or duopyramid or fusil is a polytope constructed by 2 orthogonal polytopes with edges connecting all pairs of vertices between the two. The term fusil is used by Norman Johnson as a rhom ...
.


Related complex polygons

The Möbius–Kantor polygon is a
regular complex polygon In geometry, a regular complex polygon is a generalization of a regular polygon in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A regular polygon exists in 2 real ...
33, , in \mathbb^2 shares the same vertices as the 16-cell. It has 8 vertices, and 8 3-edges. The regular complex polygon, 24, , in \mathbb^2 has a real representation as a 16-cell in 4-dimensional space with 8 vertices, 16 2-edges, only half of the edges of the 16-cell. Its symmetry is 4 sub>2, order 32.


Related uniform polytopes and honeycombs

The regular 16-cell and
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
are the regular members of a set of 15 uniform 4-polytopes with the same B4 symmetry. The 16-cell is also one of the uniform polytopes of D4 symmetry. The 16-cell is also related to the
cubic honeycomb The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a r ...
,
order-4 dodecahedral honeycomb In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations (or honeycombs) of hyperbolic 3-space. With Schläfli symbol it has four dodecahedra around each edge, and 8 dodecahedra aro ...
, and order-4 hexagonal tiling honeycomb which all have octahedral vertex figures. It belongs to the sequence of 4-polytopes which have tetrahedral cells. The sequence includes three
regular 4-polytope In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regu ...
s of Euclidean 4-space, the
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It i ...
, 16-cell , and
600-cell In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also known as the C600, hexacosichoron and hexacosihedroid. It is also called a tetraplex (abbreviated from ...
), and the order-6 tetrahedral honeycomb of hyperbolic space. It is first in a sequence of quasiregular polytopes and honeycombs h, and a half symmetry sequence, for regular forms .


See also

* 24-cell * 4-polytope *
D4 polytope In 4-dimensional geometry, there are 7 uniform 4-polytopes with reflections of D4 symmetry, all are shared with higher symmetry constructions in the B4 or F4 symmetry families. there is also one half symmetry alternation, the snub 24-cell. Visua ...


Notes


Citations


References

* T. Gosset: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900 * H.S.M. Coxeter: ** ** ** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
Kaleidoscopes: Selected Writings of H.S.M. Coxeter , Wiley
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45** *
John H. Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English people, English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to ...
, Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, (Chapter 26. pp. 409: Hemicubes: 1n1) * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) * *


External links

*
Der 16-Zeller (16-cell)
Marco Möller's Regular polytopes in R4 (German)

* {{Authority control 016